CN113224185A - —种核壳纳米锥阵列太阳能电池 - Google Patents

—种核壳纳米锥阵列太阳能电池 Download PDF

Info

Publication number
CN113224185A
CN113224185A CN202110495082.1A CN202110495082A CN113224185A CN 113224185 A CN113224185 A CN 113224185A CN 202110495082 A CN202110495082 A CN 202110495082A CN 113224185 A CN113224185 A CN 113224185A
Authority
CN
China
Prior art keywords
core
shell
nanocone
array
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110495082.1A
Other languages
English (en)
Inventor
张棕奕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110495082.1A priority Critical patent/CN113224185A/zh
Publication of CN113224185A publication Critical patent/CN113224185A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供—种核壳纳米锥阵列太阳能电池,涉及太阳能电池、光电探测器技术领域。该—种核壳纳米锥阵列太阳能电池,包括硅衬底基板,所述硅衬底基板上以正方周期阵列化分布着磷化铟核芯纳米锥‑氧化锌包覆壳层的核壳纳米锥阵列,承接来自阵列上方照射的太阳光,实现光电能量转换。通过优化核壳纳米锥阵列结构,以实现①减小太阳光辐射在电池表面的反射损耗;②增加入射光在电池吸收层内的传输距离;③提高入射光在核芯材料中的共振耦合强度;④合理规划核壳分层使载流子易于传输、分离和收集。

Description

—种核壳纳米锥阵列太阳能电池
技术领域
本发明涉及太阳能电池、光电探测器技术领域,具体为—种核壳纳米锥阵列太阳能电池。
背景技术
目前光伏市场采用的光电转换模块主体依然为硅晶平板,现有的平板太阳能电池在长波段的反射率较高,吸收率较低,光电转换效率偏低。
与传统的硅晶平板太阳能电池相比,核壳型纳米锥阵列结构太阳能电池在光电子调控方面具有更加优越的性能。核壳型纳米锥太阳能电池中复杂特殊的光学、电学性质对可实现更加高效的光电转换性能。近年来的纳米制备工艺的长足发展,使得尺度可控的纳米结构制作成为可能。核壳型纳米锥光电转换器件可以更加高效地对光子传输行为的进行精确管理和调控,为光电能量的高效耦合提供了新的途径。
目前,与本方案最相近的是瑞典隆德大学固体物理研究所Nicklas Anttu等人于2012年提出的Al2O3壳层包覆InAs核芯纳米线的核壳纳米线阵列太阳能电池。
太阳能电池发电的本质是光伏效应,太阳能电池的光电转换能力直接取决于电池结构捕获太阳光的能力大小。
为了进一步提高核壳型纳米锥阵列结构太阳能电池捕获太阳光的能力,增加电池的吸收效率,本发明提出以下方案。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了—种核壳纳米锥阵列太阳能电池,解决了现有的太阳能电池光电转化率低的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:—种核壳纳米锥阵列太阳能电池,包括硅衬底基板,所述硅衬底基板上以正方周期阵列化分布着磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列,承接来自阵列上方照射的太阳光,实现光电能量转换。
优选的,所述磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列包括若干个周期单元,每个所述周期单元中心竖直放置一个InP-ZnO核壳纳米锥。
优选的,所述InP-ZnO核壳纳米锥包括InP核芯和ZnO倾斜壳,且ZnO倾斜壳均匀包覆在InP核芯的外层。
优选的,所述硅衬底基板为微米级厚度的晶体硅材料,所述正方周期阵列采用600nm正方型周期。
优选的,所述硅材料的层厚度为50-100μm,所述InP-ZnO核壳纳米锥结构高度为1-4μm、底面直径D为420-440nm,所述ZnO倾斜壳的厚度为80-90nm。
优选的,所述磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列沿着InP-ZnO核壳纳米锥轴线承接入射光。
优选的,所述硅衬底基板以Ti/Au作背面的欧姆触点。
(三)有益效果
本发明提供了—种核壳纳米锥阵列太阳能电池。具备以下有益效果:
1、本发明针对提高太阳能电池吸光层的陷光效率问题,进行优化核壳纳米锥阵列结构,以实现①减小太阳光辐射在电池表面的反射损耗;②增加入射光在电池吸收层内的传输距离;③提高入射光在核芯材料中的共振耦合强度;④合理规划核壳分层使载流子易于传输、分离和收集。
2、本发明利用核壳纳米锥结构中特殊的光电耦合模式,兼顾短波段与长波段的光吸收效率,整体提升可见光波段的光吸收效率。此外,本发明能够有效加强纳米阵列结构的鲁棒性,并且与传统平板块状太阳能电池相比,能够利用阵列间隙和锥体的空间占比有效降低半导体材料的使用量,降低电池成本,相比平板太阳能电池或纳米线太阳能电池更加经济。
3、本发明能够从两个陷光原理方面进行最优化:一是最大限度地利用每一个独立的共振模式,尽量使入射光能更好地耦合进这种共振模式中;二是最大化地增加共振模式数。共振模式数量的多少直接决定了吸收谱波峰数目的多少,简并共振模式分离成各个独立的模式将有助于拓宽谱线吸收峰。
如图3-5所示,不同波长下的入射光在核壳纳米锥阵列太阳能电池吸光层内部出现了三种共振耦合模式:F-P模式、导模共振模式和混合模式(导模共振模式+F-P模式)。多种共振模式共同作用导致了核壳纳米锥阵列太阳能电池的宽带吸收增益机制。
图4.(b)和图5.(c)显示在不同波长下核壳纳米锥表现出相似的核芯场约束,这对宽带吸收效应至关重要。这两个被集中约束在半导体材料中的场强分布都展现出了导模共振模式的特征,并且在核-壳分界面处也显现了强烈的局域耦合效应。
除了导模共振的特征外,(b)、(c)两峰处也都有F-P谐振特性。沿纳米锥主轴纵向排布的F-P谐振模式加强了核壳纳米锥阵列对入射光的耦合效率。在此,本发明中将这类F-P模式与导模共振模式并存的模式归类为混合模式。在混合模式下,两种耦合特性会主导核芯的光吸收。
在近红外波段,核壳纳米锥阵列中相关的电场分布剖面如图2.(d)所示。随着波长接近InP材料的吸收限,典型F-P模式消失,导模共振模式对该波段的陷光效应的贡献增大。
电场分布相对于阵列平面都是非对称分布的,表明它们中很少是单一的F-P谐振或导模共振,也即是说,它们大多是不同类型共振模式的混合或叠加。在短波段,F-P模式在壳层中占主导地位,并在核芯的浅表面和顶端对吸收有贡献;在中波段,混合模式通常在核芯中出现,并有助于贡献整个光谱中最强的光吸收;在长波段,导模共振模式在锥体中占主导地位,由此拓展了光在核芯的光吸收带宽。这三种类型的耦合模式在整个太阳光谱中相互补偿,总体上促进了宽带吸收增益。
本发明以核壳纳米锥为太阳能电池光吸收调控主体,以Ti/Au作衬底背面的欧姆触点,封装制备出实际光伏能源器件。光吸收层可由现有的气相外延生长方法制备。这种设计可应用于多种半导体材料,实现低成本、高效率的光电转换器件。
有的光伏能源电池吸光层主要还是以平板晶硅\非晶硅结构为主,该类电池光电转换效率低,太阳能利用率低,单位体积半导体发电效率低,单位发电功率低,成本高。此外,传统晶硅太阳能电池光电效率趋于饱和(24%左右),无法突破Shockley-Queisser吸收效率极限。本发明设计能够兼顾效率与成本,创造性地提出了核壳纳米锥阵列结构设计。本设计巧妙地降低了电池顶部光反射面积,增加了电池吸光层光程,利用了壳层减反射效应,大大降低了电池的光反射。传统平板太阳能电池光吸收共振耦合模式单一,吸收谱线中的吸收峰偏窄,吸收峰数目少,高吸收主要集中与短波段。本发明利用锥体纵向对称性破缺,导致光学共振耦合模式数目的增多,在长波段大大提高了光吸收效率,在多种耦合模式的作用下,电池光吸收谱线呈现出又高又宽的吸收效果,如图3.(a)中红色谱线所示。当阵列高度达到或超越4μm时,电池光电转换效率高达34%,若继续增加阵列高度设计,电池能量转换效率将突破Shockley-Queisser效率极限。
3、图3-5.中当H=1μm时,对应于底面直径最大的裸纳米锥阵列太阳能电池(D=600nm,t=0nm)、最佳核壳纳米锥阵列太阳能电池(D=420nm,t=90nm)以及将最佳核壳纳米锥阵列太阳能电池去壳层(D=420nm,t=0nm)的(a)光吸收、(b)光反射和(c)光透射谱线。
此外,InP基系太阳能电池的抗辐照性比硅(Si)基系电池更优越。与Si相比,InP材料内部缺陷易受温度影响而移动,可自动修复辐射造成的缺陷劣化,因而更适合太空电池的应用。此外,对比Si,InP还具有击穿电场、热导率、电子平均速度均高的特点。由于InP的高光吸收系数,其整体的光吸收层厚度仅需4μm以下,意味着InP在超薄光伏器件和光电探测器件的应用中具有很大的优势。由于表面复合速率远低于Si的表面复合速率,因此InP基系电池结构不需要窗口层,同样结构下的制备工艺较传统硅材料相对简单。
本设计最大的优点在于,通过引入ZnO非吸收材料壳层,实现了不增加吸收材料的情况下扩大入射光的吸收截面面积。与裸纳米线相比,半导体核芯-介质壳层的纳米锥结构具有强烈的光汇聚效应,通过改变壳层厚度,实现对吸收模式的调控以及耦合强度,并能够产生多共振模式叠加从而实现光俘获增益。
附图说明
图1为本发明结构单元剖面图;
图2为核壳纳米锥阵列单元中心(y=0)处x-z剖面的不同波长大小下的TE入射波电场强度分布图;
图3为当H=1μm时,(a)光吸收图;
图4为当H=1μm时,(b)光反射和图;
图5为当H=1μm时,(c)光透射谱线图。
其中图1中其中H和P分别为阵列的高度和周期,D为InP核芯底面直径,t为ZnO倾斜壳层水平厚度。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
如图1-5所示,本发明实施例提供—种核壳纳米锥阵列太阳能电池,包括硅衬底基板,硅衬底基板上以正方周期阵列化分布着磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列,承接来自阵列上方照射的太阳光,实现光电能量转换。
磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列包括若干个周期单元,每个周期单元中心竖直放置一个InP-ZnO核壳纳米锥,InP-ZnO核壳纳米锥包括InP核芯和ZnO倾斜壳,且ZnO倾斜壳均匀包覆在InP核芯的外层,硅衬底基板为微米级厚度的晶体硅材料,正方周期阵列采用600nm正方型周期。
硅材料的层厚度为50-100μm,InP-ZnO核壳纳米锥结构高度为1-4μm、底面直径D为420-440nm,ZnO倾斜壳的厚度为80-90nm磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列沿着InP-ZnO核壳纳米锥轴线承接入射光硅衬底基板以Ti/Au作背面的欧姆触点。
实施例二:
如图1-5所示,与实施例一的不同之处在于由于几何形状的相似性,太阳能电池或光电探测器吸光层(或感光层)可能是核壳纳米圆台\纳米椭圆台\纳米椭圆线\纳米金字塔阵列等结构。
核壳结构核芯材料可能为其他半导体,如晶体硅、非晶硅、砷化镓(GaAs)等。
壳层材料可能为氧化铟锡(ITO)、二氧化硅(SiO2)、玻璃等折射率约为2的透明介质;基地材料为其他半导体材料,折射率在3.5左右;阵列高度超过4μm;壳层材料充满整个纳米锥阵列间的间隙;阵列为其他形状分布;比如三角阵列、六角阵列、菱形阵列等;衬底背面的欧姆接触点材料为铜(Cu)、铝(Au)、银(Ag)等
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种核壳纳米锥阵列太阳能电池,包括硅衬底基板,其特征在于:所述硅衬底基板上以正方周期阵列化分布着磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列,承接来自阵列上方照射的太阳光,实现光电能量转换。
2.根据权利要求1所述的—种核壳纳米锥阵列太阳能电池,其特征在于:所述磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列包括若干个周期单元,每个所述周期单元中心竖直放置一个InP-ZnO核壳纳米锥。
3.根据权利要求2所述的—种核壳纳米锥阵列太阳能电池,其特征在于:所述InP-ZnO核壳纳米锥包括InP核芯和ZnO倾斜壳,且ZnO倾斜壳均匀包覆在InP核芯的外层。
4.根据权利要求3所述的—种核壳纳米锥阵列太阳能电池,其特征在于:所述硅衬底基板为微米级厚度的晶体硅材料,所述正方周期阵列采用600nm正方型周期。
5.根据权利要求4所述的—种核壳纳米锥阵列太阳能电池,其特征在于:所述硅材料的层厚度为50-100μm,所述InP-ZnO核壳纳米锥结构高度为1-4μm、底面直径D为420-440nm,所述ZnO倾斜壳的厚度为80-90nm。
6.根据权利要求1-5中任意一项所述的—种核壳纳米锥阵列太阳能电池,其特征在于:所述磷化铟核芯纳米锥-氧化锌包覆壳层的核壳纳米锥阵列沿着InP-ZnO核壳纳米锥轴线承接入射光。
7.根据权利要求6所述的—种核壳纳米锥阵列太阳能电池,其特征在于:所述硅衬底基板以Ti/Au作背面的欧姆触点。
CN202110495082.1A 2021-05-07 2021-05-07 —种核壳纳米锥阵列太阳能电池 Pending CN113224185A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110495082.1A CN113224185A (zh) 2021-05-07 2021-05-07 —种核壳纳米锥阵列太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110495082.1A CN113224185A (zh) 2021-05-07 2021-05-07 —种核壳纳米锥阵列太阳能电池

Publications (1)

Publication Number Publication Date
CN113224185A true CN113224185A (zh) 2021-08-06

Family

ID=77091528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110495082.1A Pending CN113224185A (zh) 2021-05-07 2021-05-07 —种核壳纳米锥阵列太阳能电池

Country Status (1)

Country Link
CN (1) CN113224185A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901468B2 (en) 2021-11-12 2024-02-13 Softpv Inc. Semiconductor packaging including photovoltaic particles having a core-shell structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129947A1 (en) * 2003-01-22 2005-06-16 Xiaogang Peng Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
US20110146771A1 (en) * 2009-05-27 2011-06-23 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
US20130092222A1 (en) * 2011-10-14 2013-04-18 Nanograss Solar Llc Nanostructured Solar Cells Utilizing Charge Plasma
KR20130093209A (ko) * 2012-02-14 2013-08-22 재단법인대구경북과학기술원 코어-쉘 나노와이어를 이용한 태양전지
US20130298977A1 (en) * 2010-11-01 2013-11-14 Yi Chen Method of forming an array of nanostructures
WO2020010267A2 (en) * 2018-07-05 2020-01-09 University Of Washington Layered luminescent solar concentrators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129947A1 (en) * 2003-01-22 2005-06-16 Xiaogang Peng Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
US20110146771A1 (en) * 2009-05-27 2011-06-23 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
US20130298977A1 (en) * 2010-11-01 2013-11-14 Yi Chen Method of forming an array of nanostructures
US20130092222A1 (en) * 2011-10-14 2013-04-18 Nanograss Solar Llc Nanostructured Solar Cells Utilizing Charge Plasma
KR20130093209A (ko) * 2012-02-14 2013-08-22 재단법인대구경북과학기술원 코어-쉘 나노와이어를 이용한 태양전지
WO2020010267A2 (en) * 2018-07-05 2020-01-09 University Of Washington Layered luminescent solar concentrators

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG, ZONGYI, ET.AL: "Design of an InP/ZnO core-shell nanocone array solar cell with efficient broadband light absorption enhancement", 《APPLIED OPTICS》, vol. 59, no. 1, pages 107 - 115 *
ZHANG, ZONGYI, ET.AL: "Efficient broadband light absorption enhancement in InP/ZnO core-shell nanocone arrays for photovoltaic application", 《TENTH INTERNATIONAL CONFERENCE ON THIN FILM PHYSICS AND APPLICATIONS 》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901468B2 (en) 2021-11-12 2024-02-13 Softpv Inc. Semiconductor packaging including photovoltaic particles having a core-shell structure

Similar Documents

Publication Publication Date Title
Saive Light trapping in thin silicon solar cells: A review on fundamentals and technologies
US8808933B2 (en) Semiconductor wire array structures, and solar cells and photodetectors based on such structures
US8216872B1 (en) Method of integrating light-trapping layer to thin-film solar cell
US20200328366A1 (en) High absorption, photo induced resonance energy transfer electromagnetic energy collector
US20080264486A1 (en) Guided-wave photovoltaic devices
AU2014307879B2 (en) Radial p-n junction nanowire solar cells
US20130220406A1 (en) Vertical junction solar cell structure and method
US20070227582A1 (en) Low aspect ratio concentrator photovoltaic module with improved light transmission and reflective properties
US8993363B2 (en) Optoelectronic devices and applications thereof
TW201424017A (zh) 具有高轉換效率之光伏打元件
JP7498368B2 (ja) タンデム型太陽光発電デバイス
AU2022338576A1 (en) Laminated solar cell and photovoltaic assembly
CN108365029B (zh) 一种含有六边柱GaAs光子晶体吸收层的多层太阳能电池
CN113224185A (zh) —种核壳纳米锥阵列太阳能电池
US9614108B1 (en) Optically-thin chalcogenide solar cells
US9947824B1 (en) Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
CN115411125A (zh) 一种薄膜太阳能电池及其制备方法、光伏组件、发电设备
WO2018078659A1 (en) Refined light trapping technique using 3-dimensional globule structured solar cell
US20170084763A1 (en) Semiconductor device
CN106784335A (zh) 一种传导的表面等离极化激元型异质集成太阳电池
WO2010112129A1 (en) Bifacial multi-junction solar module
Righini et al. Light management in solar cells: Recent advances
Liu et al. Approaching single-junction theoretical limit using ultra-thin GaAs solar cells with optimal optical designs
RU2390881C1 (ru) Фотоэлемент
CN117577723A (zh) 多结太阳能电池、钙钛矿晶硅叠层电池、晶硅电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination