CN113221385B - An Initialization Method and System for Interdecadal Forecasting - Google Patents
An Initialization Method and System for Interdecadal Forecasting Download PDFInfo
- Publication number
- CN113221385B CN113221385B CN202110638200.XA CN202110638200A CN113221385B CN 113221385 B CN113221385 B CN 113221385B CN 202110638200 A CN202110638200 A CN 202110638200A CN 113221385 B CN113221385 B CN 113221385B
- Authority
- CN
- China
- Prior art keywords
- forecast
- initial
- interdecadal
- field
- forecasting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011423 initialization method Methods 0.000 title claims abstract description 16
- 238000004088 simulation Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000012950 reanalysis Methods 0.000 claims abstract description 13
- 230000008878 coupling Effects 0.000 claims abstract description 8
- 238000010168 coupling process Methods 0.000 claims abstract description 8
- 238000005859 coupling reaction Methods 0.000 claims abstract description 8
- 238000004458 analytical method Methods 0.000 claims description 7
- 238000002474 experimental method Methods 0.000 claims description 7
- 230000002547 anomalous effect Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000001932 seasonal effect Effects 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 230000035939 shock Effects 0.000 abstract description 2
- 238000010792 warming Methods 0.000 description 13
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Development Economics (AREA)
- Marketing (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Health & Medical Sciences (AREA)
- Educational Administration (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供一种年代际预报的初始化方法及系统,涉及年代际气候预测技术领域,该方法包括:基于全球耦合模式的历史模拟得到预报初始场,得到多组大气预报初始场;基于大气再分析数据驱动的海洋海冰历史模拟,将其气候态订正为全球耦合模式历史模拟的海洋和海冰的气候态,得到海洋海冰预报初始场;将得到的多组大气预报初始场分别与陆地、海洋和海冰初始场结合,构建成年代际集合预报的多组初始场;对预先构造的年代际预报系统进行初始化,实施历史后报或对未来的业务型集合年代际预测。本发明能够保证进行业务型年代际预测,减少初始化后冲击带来的影响,提高预报系统对自然变率预测的准确性,从而加强年代际预报系统的业务预测水平。
The invention provides an initialization method and system for interdecadal forecasting, and relates to the technical field of interdecadal climate prediction. The method includes: obtaining a forecast initial field based on historical simulation of a global coupling model, and obtaining multiple groups of atmospheric forecast initial fields; based on atmospheric reanalysis The data-driven historical simulation of ocean sea ice corrects its climatic state to the climatic state of ocean and sea ice simulated by the global coupled model, and obtains the initial forecast field of ocean sea ice; The initial fields of ocean and sea ice are combined to construct multiple sets of initial fields for interdecadal ensemble forecasting; the pre-constructed interdecadal forecast system is initialized to implement historical hindcast or future operational ensemble interdecadal forecasts. The present invention can ensure operational interdecadal forecasting, reduce the impact of post-initialization shocks, improve the accuracy of natural variability forecasting by the forecasting system, and thereby enhance the operational forecasting level of the interdecadal forecasting system.
Description
技术领域technical field
本发明涉及年代际气候预测技术领域,具体地,涉及一种年代际预报的初始化方法及系统。The invention relates to the technical field of interdecadal climate prediction, in particular, to an initialization method and system for interdecadal prediction.
背景技术Background technique
短期气候变化预测已被世界气候研究计划署公认为国际气候研究界面临的重大挑战之一。Short-term climate change prediction has been recognized by the World Climate Research Programme as one of the major challenges facing the international climate research community.
公开号为CN111291944A的中国发明专利,公开了一种基于NPSDV驱动因子识别的海洋气候预测方法及系统,所述预测方法包括:获取海表盐度SSS分析参数;根据SSS分析参数确定北太平洋海表盐度年代际变化NPSDV的时间序列以及驱动因子指数时间序列,并计算NPSDV的时间序列功率谱、驱动因子指数时间序列功率谱、NPSDV的时间序列滞后交叉自相关、驱动因子指数时间序列滞后交叉自相关、滞后交叉相关;利用自回归过程模型重构空间点SSS异常,确定SSS异常重构结果;根据NPSDV的时间序列功率谱、驱动因子指数时间序列功率谱、NPSDV的时间序列滞后交叉自相关、驱动因子指数时间序列滞后交叉自相关、滞后交叉相关以及SSS异常重构结果确定驱动因子;根据驱动因子预测海洋气候。The Chinese invention patent with publication number CN111291944A discloses a marine climate prediction method and system based on NPSDV driving factor identification. The prediction method includes: acquiring SSS analysis parameters of sea surface salinity; The time series of NPSDV of interdecadal salinity variation and the time series of driving factor index, and the time series power spectrum of NPSDV, the time series power spectrum of driving factor index, the time series lag cross autocorrelation of NPSDV, and the time series lag cross autocorrelation of driving factor index time series are calculated. Correlation, lag cross-correlation; reconstruct the spatial point SSS anomaly using the autoregressive process model, and determine the SSS anomaly reconstruction result; The driving factor index time series lag cross autocorrelation, lag cross correlation and SSS anomaly reconstruction results determine the driving factor; predict the marine climate according to the driving factor.
近年来,短期气候预测领域迅速发展,基于观测的耦合模式的初始化可以显著提高一年至十年的预测能力。第五、六次耦合模式比较计划中就有考察初始化对年代际气候预测的影响。运行和分析年代际预报实验的巨大计算成本是近期气候预测进展的重大障碍,使得系统地评估年代际预报系统对参数选择的敏感性变得困难,如集合大小、集合生成方法、开始日期、集合组数以及初始化方法,初始化地球系统分量的数量和模式分辨率。目前每一项的评估都还不足,需要投入更多的设计和计算资源。In recent years, the field of short-term climate prediction has developed rapidly, and the initialization of observation-based coupled models can significantly improve the forecasting power from one to ten years. The effects of initialization on decadal climate predictions were investigated in the fifth and sixth coupled model comparison plans. The enormous computational cost of running and analyzing decadal forecasting experiments is a significant obstacle to recent progress in climate prediction, making it difficult to systematically assess the sensitivity of decadal forecasting systems to the choice of parameters, such as ensemble size, ensemble generation method, start date, ensemble The number of groups and the initialization method, which initializes the number of Earth system components and the mode resolution. Each of these is currently under-assessed and requires more design and computational resources.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的缺陷,本发明提供一种年代际预报的初始化方法及系统。Aiming at the defects in the prior art, the present invention provides an initialization method and system for interdecadal forecasting.
根据本发明提供的一种年代际预报的初始化方法及系统,所述方案如下:According to an initialization method and system for an interdecadal forecast provided by the present invention, the scheme is as follows:
第一方面,提供了一种年代际预报的初始化方法,所述方法包括:In a first aspect, an initialization method for interdecadal forecasting is provided, the method comprising:
步骤S1:基于全球耦合模式的历史模拟得到预报初始场,对所得该组大气初始场进行多次扰动,得到多组大气预报初始场;Step S1: obtaining the initial forecast field based on the historical simulation of the global coupling model, and performing multiple disturbances on the obtained group of initial atmospheric fields to obtain multiple groups of initial forecast fields for the atmosphere;
步骤S2:基于大气再分析数据驱动的海洋海冰历史模拟,将其气候态订正为全球耦合模式历史模拟的海洋和海冰的气候态,从而得到海洋海冰预报初始场;Step S2: Based on the historical simulation of ocean sea ice driven by atmospheric reanalysis data, the climatic state is corrected to the climatic state of the ocean and sea ice simulated by the global coupled model historically, so as to obtain the initial field of ocean sea ice forecast;
步骤S3:将得到的多组大气预报初始场分别与陆地、海洋和海冰初始场结合,构建成年代际集合预报的多组初始场;Step S3: Combining the obtained initial fields of atmospheric forecast with the initial fields of land, ocean and sea ice, respectively, to construct a plurality of initial fields of interdecadal ensemble forecasting;
步骤S4:对预先构造的年代际预报系统进行初始化,实施历史后报或对未来的业务型集合年代际预测。Step S4: Initialize the pre-constructed decadal forecasting system, and implement historical retrospective or future operational ensemble interdecadal forecasting.
优选的,所述步骤S1中的保存指定日期的重启场,将大气和陆地作为预报初始场。Preferably, in the step S1, in the restart field for saving the specified date, the atmosphere and the land are used as the initial forecast field.
优选的,所述步骤S1还包括对大气重启场叠加机器截断误差级别的随机扰动,采用不同大小的扰动得到不同的大气预报初始场。Preferably, the step S1 further includes superimposing random disturbances of machine truncation error levels on the atmospheric restart field, and using disturbances of different sizes to obtain different initial atmospheric forecast fields.
优选的,所述步骤S2包括:Preferably, the step S2 includes:
选择和获取大气再分析数据;Selection and acquisition of atmospheric reanalysis data;
特定变量需要转换到海洋和海冰分量所需的强迫场格式;specific variables need to be converted to the forcing field format required for the ocean and sea ice components;
进行多轮驱动实验,得到深海充分调整的海洋和大气的重启场。Conduct multi-wheel drive experiments to get deep sea fully tuned ocean and atmospheric restart fields.
优选的,所述步骤S2中的海洋海冰预报初始场为海洋海冰重启场的气候态与海冰重启场的异常场相加。Preferably, the initial field of ocean sea ice prediction in the step S2 is the addition of the climatic state of the ocean sea ice restart field and the abnormal field of the sea ice restart field.
优选的,所述步骤S3构建成年代际集合预报的多组初始场包括指定后报/预报的开始与结束日期。Preferably, the multiple groups of initial fields constructed into the interdecadal ensemble forecast in the step S3 include the start and end dates of the designated hindcast/forecast.
第二方面,提供了一种年代际预报的初始化系统,所述系统包括:In a second aspect, an initialization system for decadal forecasting is provided, the system comprising:
预报初始场的选择单元:用于指定预报的起始状态;Selection unit of forecast initial field: used to specify the initial state of forecast;
模型构建单元:用于构建/指定预报的模式分量选择,外强迫场的选择;Model building unit: model component selection for building/specifying forecast, selection of external forcing field;
结果分析单元:用于分析回报/预测的效果。Results Analysis Unit: Used to analyze the performance of returns/forecasts.
优选的,所述预报初始场的选择单元包括:Preferably, the selection unit for predicting the initial field includes:
大气分量选择模块:用于选择哪一组大气预报初始场;Atmospheric component selection module: used to select which group of initial fields for atmospheric forecasting;
海洋海冰分量模块:用于选择哪一轮的海洋海冰预报初始场。Ocean sea ice component module: used to select which round of initial field of ocean sea ice forecast.
优选的,所述模型构建单元包括:Preferably, the model building unit includes:
预报系统参数设置模块:用于指定模式的网格及外强迫的来源,运行的长度,输出变量和文件的设置。Forecast system parameter setting module: used to specify the source of the grid and external forcing of the model, the length of the run, the settings of output variables and files.
预报系统的编译和运行模块:用于衔接预报系统与服务器间的接口。The compilation and operation module of the forecast system: used to connect the interface between the forecast system and the server.
优选的,所述结果分析单元包括:Preferably, the result analysis unit includes:
数据处理模块:用于把逐月的数据/文件,拼接成季节平均或年平均的数据;Data processing module: used to splicing monthly data/files into seasonal average or annual average data;
绘图模块:用于绘制全球表面温度的年际变化,表面温度趋势的空间结构。Mapping module: used to plot the interannual variation of global surface temperature, the spatial structure of surface temperature trends.
与现有技术相比,本发明具有如下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
将多组大气预报初始场分别与陆地、海洋和海冰初始场结合,构建成年代际集合预报的多组初始场;从而对预先构造的年代际预报系统进行初始化,实施历史后报或对未来的业务型集合年代际预测,使用准实时的大气再分析资料驱动的海洋海冰初始场,并对该场进行气候态订正的初始化方法,能保证进行业务型年代际预测,减少初始化后冲击带来的影响,提高预报系统对自然变率预测的准确性,从而加强年代际预报系统的业务预测水平。Combine multiple sets of initial atmospheric forecast fields with land, ocean and sea ice initial fields respectively to construct multiple sets of initial fields for interdecadal ensemble forecasting; thus initialize the pre-constructed interdecadal forecast system, implement historical hindcast or forecast future forecasts. The operational ensemble interdecadal prediction, using the initial field of ocean sea ice driven by quasi-real-time atmospheric reanalysis data, and the initialization method of climatological correction for the field can ensure operational decadal prediction and reduce the impact zone after initialization. It can improve the accuracy of natural variability prediction by the forecasting system, thereby enhancing the operational forecasting level of the decadal forecasting system.
附图说明Description of drawings
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent by reading the detailed description of non-limiting embodiments with reference to the following drawings:
图1为本发明的整体流程示意图;Fig. 1 is the overall flow schematic diagram of the present invention;
图2为本发明实施例1全球表面温度的曲线图;Fig. 2 is the graph of the global surface temperature of the embodiment 1 of the present invention;
图3为本发明实施例1中冬季表面温度趋势的空间分布图;Fig. 3 is the spatial distribution diagram of the surface temperature trend in winter in Example 1 of the present invention;
图4为本发明实施例2中冬季表面温度趋势的空间分布图。FIG. 4 is a spatial distribution diagram of the surface temperature trend in winter in Example 2 of the present invention.
具体实施方式Detailed ways
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。The present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several changes and improvements can be made without departing from the inventive concept. These all belong to the protection scope of the present invention.
本发明实施例提供了一种年代际预报的初始化方法,参照图1所示,步骤如下:An embodiment of the present invention provides an initialization method for interdecadal forecasting. Referring to FIG. 1 , the steps are as follows:
步骤S1:基于全球耦合模式的历史模拟得到预报初始场,从全球耦合模式模拟中获得大气和陆地的预报初始场,包括进行随机扰动后,获得多组大气预报初始场。Step S1: Obtain the initial forecast field based on the historical simulation of the global coupled model, and obtain the initial forecast field of the atmosphere and land from the global coupled model simulation, including obtaining multiple groups of initial forecast fields of the atmosphere after random disturbance.
步骤S2:基于大气再分析数据驱动的海洋海冰历史模拟,将其气候态订正为全球耦合模式历史模拟的海洋和海冰的气候态,从而得到海洋海冰预报初始场。Step S2: Based on the historical simulation of ocean sea ice driven by atmospheric reanalysis data, the climatic state is corrected to the climatic state of the ocean and sea ice simulated by the global coupled model, thereby obtaining the initial field of ocean sea ice forecast.
步骤S3:将得到的多组大气预报初始场分别与陆地、海洋和海冰初始场结合,构建成年代际集合预报的多组初始场。Step S3: Combine the obtained initial fields of atmospheric forecast with the initial fields of land, ocean and sea ice, respectively, to construct multi-group initial fields of interdecadal ensemble forecasting.
步骤S4:对预先构造的年代际预报系统进行初始化,实施历史后报或对未来的业务型集合年代际预测。Step S4: Initialize the pre-constructed decadal forecasting system, and implement historical retrospective or future operational ensemble interdecadal forecasting.
在步骤S1中,先获取大气和陆地的预报初始场,选定全球耦合模式进行历史模拟,保存指定日期的重启场,其中的大气和陆地将作为年代际预报系统的预报初始场。In step S1, first obtain the initial forecast fields of the atmosphere and land, select the global coupling model for historical simulation, and save the restart field on the specified date, in which the atmosphere and land will be used as the initial forecast fields of the interdecadal forecast system.
对大气重启场叠加机器截断误差级别的随机扰动,采用不同大小的扰动得到不同的大气预报初始场。The random perturbation of the machine truncation error level is superimposed on the atmospheric restart field, and different initial fields of atmospheric forecast are obtained by using perturbations of different sizes.
再步骤S2中,对海洋海冰历史模拟的构建包括:In step S2, the construction of the ocean sea ice history simulation includes:
选择和获取大气再分析数据;Selection and acquisition of atmospheric reanalysis data;
特定变量需要转换到海洋和海冰分量所需的强迫场格式;specific variables need to be converted to the forcing field format required for the ocean and sea ice components;
进行多轮驱动实验,得到深海充分调整的海洋和大气的重启场;Carry out multi-wheel drive experiments to obtain a fully adjusted ocean and atmosphere restart field in the deep sea;
海洋海冰重启场的气候态与海冰重启场的异常场相加最终为海洋海冰预报初始场。The climatic state of the ocean sea ice restart field and the anomalous field of the sea ice restart field are finally added to the initial field of ocean sea ice forecast.
在步骤S3中,构建成年代际集合预报的多组初始场包括指定后报/预报的开始与结束日期。In step S3, multiple sets of initial fields constructed into an interdecadal ensemble forecast include the start and end dates of the designated hindcast/forecast.
本发明还提供了一种年代际预报的初始化系统,该系统包括:The present invention also provides an initialization system for interdecadal forecasting, the system comprising:
预报初始场的选择单元:用于指定预报的起始状态;Selection unit of forecast initial field: used to specify the initial state of forecast;
模型构建单元:用于构建/指定预报的模式分量选择,外强迫场的选择;Model building unit: model component selection for building/specifying forecast, selection of external forcing field;
结果分析单元:用于分析回报/预测的效果。Results Analysis Unit: Used to analyze the performance of returns/forecasts.
其中,在预报初始场的选择单元中包括:Among them, the selection unit of forecast initial field includes:
大气分量选择模块:用于选择哪一组大气预报初始场;Atmospheric component selection module: used to select which group of initial fields for atmospheric forecasting;
海洋海冰分量模块:用于选择哪一轮的海洋海冰预报初始场。Ocean sea ice component module: used to select which round of initial field of ocean sea ice forecast.
在模型构建单元中包括:Included in the model building unit:
预报系统参数设置模块:用于指定模式的网格及外强迫的来源,运行的长度,输出变量和文件的设置;Forecast system parameter setting module: used to specify the grid of the model and the source of external forcing, the length of the run, the settings of output variables and files;
预报系统的编译和运行模块:用于衔接预报系统与服务器间的接口。The compilation and operation module of the forecast system: used to connect the interface between the forecast system and the server.
在结果分析单元中,具体包括:In the result analysis unit, it includes:
数据处理模块:用于把逐月的数据/文件,拼接成季节平均或年平均的数据;Data processing module: used to splicing monthly data/files into seasonal average or annual average data;
绘图模块:用于绘制全球表面温度的年际变化,表面温度趋势的空间结构。Mapping module: used to plot the interannual variation of global surface temperature, the spatial structure of surface temperature trends.
接下来,对本发明进行更为具体的说明。Next, the present invention will be described in more detail.
实施例1:Example 1:
全球变暖停滞现象的可预测性。2002-2012期间全球平均的地表气温不再持续变暖,称为全球变暖停滞。全球变暖停滞的未来走势及其对气候的影响是目前包括科学界和社会及经济学界关心的热点问题。变暖停滞虽然是全球表面温度平均的结果,但是在各个区域表现的并不一致。而这些区域模态的形成及对应的年代际-多年代际变化是变暖停滞可预测性的基础,然而目前尚缺乏该方面的研究。Predictability of global warming hiatus. The global average surface temperature from 2002 to 2012 no longer continued to warm, which is called the global warming stagnation. The future trend of global warming stagnation and its impact on the climate is a hot issue at present, including the scientific community and the social and economic community. The warming stagnation, although the result of an average global surface temperature, is not uniform across regions. The formation of these regional modes and the corresponding interdecadal-multidecadal changes are the basis for the predictability of warming stagnation, but there is still a lack of research in this area.
参照图1所示,步骤如下:Referring to Figure 1, the steps are as follows:
步骤一:全球耦合模式的历史模拟;Step 1: Historical simulation of the global coupling model;
全球耦合模式的历史模拟的设置,包括:The settings for the historical simulation of the global coupling model, including:
模式及其版本为,cesm1_1_1_lrg_ens;模式网格为,f09_g16;The mode and its version are, cesm1_1_1_lrg_ens; the mode grid is, f09_g16;
模拟时段为,1980年至2019年;The simulation period is from 1980 to 2019;
对于1980-2005年,采用的compset为,B20TRC5CN;For 1980-2005, the compset used is B20TRC5CN;
对于2006-2019年,采用的compset为,BRCP85C5CN;For 2006-2019, the compset used is BRCP85C5CN;
输出频率为,每月一次,用于分析气候模拟能力;The output frequency is, once a month, used to analyze climate simulation capabilities;
本实例的重启场选为每年的1月1号,即1980年1月1日,1981年1月1日,……,2020年1月1日;该实验做为控制实验。The restart field of this example is selected as January 1st every year, that is, January 1st, 1980, January 1st, 1981, ..., January 1st, 2020; this experiment is used as a control experiment.
步骤二:对所得该组大气初始场进行多次扰动;Step 2: Perform multiple disturbances on the obtained initial atmospheric field of the group;
采用机器截断误差级别的扰动的方法是,在user_nl_cam中添加pertlim=1.d-14,即随机扰动的大小为1014;The method of adopting the disturbance of machine truncation error level is to add pertlim=1.d-14 in user_nl_cam, that is, the size of random disturbance is 10 14 ;
以此类推,pertlim=2.d-14,pertlim=1.d-14,……,pertlim=9.d-14得到9组扰动的大气初始场,加上原始的大气初始场,共有10组大气初始场;By analogy, pertlim=2.d-14, pertlim=1.d-14, ..., pertlim=9.d-14 to get 9 groups of disturbed initial atmospheric fields, plus the original initial atmospheric field, there are 10 groups in total Atmospheric initial field;
步骤三:得到大气再分析数据并转换为海洋海冰模式所需的强迫场;Step 3: Obtain the atmospheric reanalysis data and convert it into the forcing field required for the oceanic sea ice model;
本例中大气再分析数据采用NCEP2,时间范围是1979-2019,下载的变量包括:In this example, the atmospheric reanalysis data uses NCEP2, the time range is 1979-2019, and the downloaded variables include:
逐月的降水,逐日的向下短波通量、向下长波通量、向上短波通量,逐6小时的海标气压场,10米处的纬向风和经向风,2米处的比湿和气温。Monthly precipitation, daily downward short-wave flux, downward long-wave flux, upward short-wave flux, 6-hour sea standard pressure field, zonal and meridional winds at 10 meters, ratio at 2 meters humidity and temperature.
把2米比湿和气温转换到10米,转换公式采用2009年Large和Yeager发表在Climate Dynamics上的方法。To convert the specific humidity and air temperature of 2 meters to 10 meters, the conversion formula adopts the method published by Large and Yeager in Climate Dynamics in 2009.
步骤四:基于步骤三的大气强迫场驱动的海洋海冰进行历史模拟;Step 4: Perform historical simulation based on the ocean sea ice driven by the atmospheric forcing field in Step 3;
模式及其版本为,cesm1_1_1_lrg_ens;The schema and its version are, cesm1_1_1_lrg_ens;
模式网格为,f09_g16;The pattern grid is, f09_g16;
模拟时段为,1979年至2019年;The simulation period is from 1979 to 2019;
采用的compset为,GIAF;The compset used is, GIAF;
输出频率为,每月一次,用于分析气候模拟能力;The output frequency is, once a month, used to analyze climate simulation capabilities;
本实例的重启场选为每年的1月1号,即1979年1月1日,1980年1月1日,……,2020年1月1日;The restart field of this instance is selected as January 1st every year, that is, January 1st, 1979, January 1st, 1980, ..., January 1st, 2020;
第一轮得到1980-2020年1月1日,共42年的重启场;The first round won the restart field from 1980 to January 1, 2020, a total of 42 years;
把2020年1月1日的重启场做为1979年1月1日,带入上述模式设置,从而得到第二轮的42年的重启场;Take the restart field on January 1, 2020 as January 1, 1979, and bring it into the above mode settings, so as to get the second round of the 42-year restart field;
以此类推,共进行5轮,使得海洋状态基本与大气强迫场达到平衡;And so on, a total of 5 rounds are carried out, so that the ocean state basically reaches a balance with the atmospheric forcing field;
保留第5轮的1980年1月1日-2020年1月1日的重启场。Reservation of the restart field from January 1, 1980 to January 1, 2020 for the fifth round.
步骤五:得到海洋和海冰的预报初始场;Step 5: Obtain the forecast initial field of ocean and sea ice;
由步骤二中重启场,计算海洋和海冰的气候态;Restart the field in step 2 to calculate the climatic state of the ocean and sea ice;
由步骤四中重启场,计算海洋和海冰的异常场;Restart the field in step 4 to calculate the anomalous field of ocean and sea ice;
二者相加,做为海洋和海冰的预报初始场;The two are added together as the initial forecast field for ocean and sea ice;
步骤六:全球变暖停滞的年代际预报;Step 6: Interdecadal forecast of global warming stagnation;
模式及其版本为,cesm1_1_2_LENS_n17;模式网格为,f09_g16;The mode and its version are, cesm1_1_2_LENS_n17; the mode grid is, f09_g16;
模拟时段为,2002年至2013年;The simulation period is from 2002 to 2013;
采用的compset为,B20TRLENS;The compset used is, B20TRLENS;
输出频率为,每月一次,用于分析对全球变暖停滞的模拟能力;The output frequency, once per month, is used to analyze the ability of the simulation to stop global warming;
由步骤一得到的2002年1月1日的大气和陆地预报初始场,结合步骤五得到的2002年1月1日的海洋和海冰预报初始场,做为第一组年代际预报的初始场;The initial forecast fields of the atmosphere and land on January 1, 2002 obtained in step 1, combined with the initial fields of ocean and sea ice forecasts on January 1, 2002 obtained in step 5, are used as the initial fields of the first group of interdecadal forecasts ;
采用上述模式设置运行11年,得到第一组的年代际预报结果;Using the above model settings to run for 11 years, the first group of decadal forecast results were obtained;
由步骤二得到的2002年1月1日的大气和陆地预报初始场,结合步骤五得到的2002年1月1日的海洋和海冰预报初始场,做为第二组至第九组的年代际预报的初始场;The initial forecast fields of the atmosphere and land on January 1, 2002 obtained in step 2, combined with the initial forecast fields of ocean and sea ice on January 1, 2002 obtained in step 5, are used as the ages of the second group to the ninth group the initial field of the international forecast;
采用上述模式设置运行11年,得到第二组至第九组的年代际预报结果。Using the above model settings for 11 years, the decadal forecast results of the second to ninth groups were obtained.
步骤七:分析全球变暖停滞的年代际预报结果;Step 7: Analyze the decadal forecast results of the stagnation of global warming;
再分析数据NCEP中2002-2013年全球平均的地表温度趋势接近于0,而10组年代际预报的地表温度趋势与控制实验接近,都表现为一定的增暖趋势如图2所示,其中第四组模拟的结果与观测最为接近,其温度趋势为0.23℃/10年,如表1所示:In the reanalysis data NCEP, the global average surface temperature trend from 2002 to 2013 was close to 0, while the surface temperature trend of the 10 groups of interdecadal forecasts was close to the control experiment, showing a certain warming trend as shown in Figure 2. The results of the four sets of simulations are the closest to the observations, with a temperature trend of 0.23°C/10 years, as shown in Table 1:
表1Table 1
此外,第四组模拟的温度趋势的空间结构在一定程度上能够抓住观测中的特征,参照图3所示,如北美、南太平洋、澳大利亚和南大洋的变冷趋势。但是未能再现欧亚大陆、北大西洋的变冷和中东太平洋的冷趋势。事实上,其它九组实验模拟的中东太平洋都呈现一致的变暖结构,也因此全球平均地表温度也呈现变暖趋势。In addition, the spatial structure of the simulated temperature trends in the fourth group can to a certain extent capture the features in the observations, as shown in Fig. 3, such as the cooling trends in North America, the South Pacific, Australia and the Southern Ocean. But it failed to reproduce the cooling trends in Eurasia, the North Atlantic, and the central and eastern Pacific. In fact, the other nine sets of experimental simulations in the Central and Eastern Pacific show a consistent warming structure, and therefore the global average surface temperature also shows a warming trend.
实施例2:Example 2:
未来气候预测,在本实施例中,提供一种构建未来短期气候的预测方法,如图1所示,具体如下:Future climate prediction, in this embodiment, a prediction method for constructing a future short-term climate is provided, as shown in Figure 1, and the details are as follows:
步骤一至步骤五与实施例1相同;Step 1 to step 5 are identical with embodiment 1;
步骤六:未来短期气候的预测;Step 6: Prediction of future short-term climate;
模式及其版本为,cesm1_1_2_LENS_n17;模式网格为,f09_g16;The mode and its version are, cesm1_1_2_LENS_n17; the mode grid is, f09_g16;
模拟时段为,2020年至2009年;The simulation period is from 2020 to 2009;
采用的compset为,B20TRLENS;The compset used is, B20TRLENS;
输出频率为,每月一次,用于分析未来短期气候的预测能力;The output frequency, once a month, is used to analyze the forecasting ability of future short-term climate;
由步骤一得到的2020年1月1日的大气和陆地预报初始场,结合步骤五得到的2020年1月1日的海洋和海冰预报初始场,做为第一组年代际预报的初始场;The initial fields of atmospheric and land forecasts on January 1, 2020 obtained in step 1, combined with the initial fields of ocean and sea ice forecasts on January 1, 2020 obtained in step 5, are used as the initial fields of the first group of interdecadal forecasts ;
采用上述模式设置运行10年,得到第一组的年代际预报结果;Using the above model settings to run for 10 years, the first group of decadal forecast results were obtained;
由步骤二得到的2020年1月1日的大气和陆地预报初始场,结合步骤五得到的2020年1月1日的海洋和海冰预报初始场,做为第二组至第九组的年代际预报的初始场;The initial forecast fields of atmosphere and land on January 1, 2020 obtained in step 2, combined with the initial forecast fields of ocean and sea ice on January 1, 2020 obtained in step 5, are used as the ages of the second to ninth groups the initial field of the international forecast;
采用上述模式设置运行10年,得到第二组至第九组的年代际预报结果;Using the above model settings to run for 10 years, the interdecadal forecast results of the second to ninth groups were obtained;
步骤七:分析未来短期气候的预测结果;Step 7: Analyze the forecast results of future short-term climate;
预测的2020-2029全球表面温度呈现变暖的趋势参照图2所示,空间上表现为热带太平洋和欧亚大陆是变暖最强的区域,北极和南大洋是变冷的区域如图4所示。The predicted 2020-2029 global surface temperature shows a warming trend, as shown in Figure 2. Spatially, the tropical Pacific and Eurasia are the regions with the strongest warming, and the Arctic and Southern Ocean are the cooling regions, as shown in Figure 4. Show.
本发明实施例提供了一种年代际预报的初始化方法及系统,基于全球耦合模式的历史模拟得到大气和陆地的预报初始场,对所得该组大气初始场进行多次扰动,得到多组大气预报初始场;基于大气再分析数据驱动的海洋海冰历史模拟,将其气候态订正为上述全球耦合模式历史模拟的海洋和海冰的气候态,从而得到海洋和海冰的预报初始场;将上述得到的多组大气预报初始场分别与陆地、海洋和海冰初始场结合,构建成年代际集合预报的多组初始场;从而对预先构造的年代际预报系统进行初始化,实施历史后报或对未来的业务型集合年代际预测,使用准实时的大气再分析资料驱动的海洋海冰初始场,并对该场进行气候态订正的初始化方法,能保证进行业务型年代际预测,减少初始化后冲击带来的影响,提高预报系统对自然变率预测的准确性,从而加强年代际预报系统的业务预测水平。The embodiments of the present invention provide an initialization method and system for interdecadal forecasting. Based on the historical simulation of the global coupling model, the initial forecast fields of the atmosphere and land are obtained, and the obtained initial fields of the atmosphere are disturbed multiple times to obtain multiple sets of atmospheric forecasts. Initial field; based on the historical simulation of ocean and sea ice driven by atmospheric reanalysis data, the climatic state is corrected to the climatic state of the ocean and sea ice simulated by the above-mentioned global coupled model, so as to obtain the predicted initial field of ocean and sea ice; The obtained multiple sets of initial atmospheric forecast fields are combined with the initial fields of land, ocean and sea ice to construct multiple sets of initial fields for interdecadal ensemble forecasting; thus, initialize the pre-constructed interdecadal forecast system, implement historical retrospective or For future operational ensemble decadal prediction, the initial field of ocean sea ice driven by quasi-real-time atmospheric reanalysis data and the initialization method of climatological correction for the field can ensure operational decadal prediction and reduce post-initialization shocks It will improve the accuracy of natural variability prediction by the forecasting system, thereby enhancing the operational forecasting level of the decadal forecasting system.
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统及其各个装置、模块、单元以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统及其各个装置、模块、单元以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同功能。所以,本发明提供的系统及其各项装置、模块、单元可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置、模块、单元也可以视为硬件部件内的结构;也可以将用于实现各种功能的装置、模块、单元视为既可以是实现方法的软件模块又可以是硬件部件内的结构。Those skilled in the art know that, in addition to implementing the system provided by the present invention and its various devices, modules and units in the form of purely computer-readable program codes, the system provided by the present invention and its various devices can be implemented by logically programming the method steps. , modules, and units realize the same function in the form of logic gates, switches, application-specific integrated circuits, programmable logic controllers, and embedded microcontrollers. Therefore, the system provided by the present invention and its various devices, modules and units can be regarded as a kind of hardware components, and the devices, modules and units included in it for realizing various functions can also be regarded as hardware components. The device, module and unit for realizing various functions can also be regarded as both a software module for realizing the method and a structure within a hardware component.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the above-mentioned specific embodiments, and those skilled in the art can make various changes or modifications within the scope of the claims, which do not affect the essential content of the present invention. The embodiments of the present application and features in the embodiments may be combined with each other arbitrarily, provided that there is no conflict.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110638200.XA CN113221385B (en) | 2021-06-08 | 2021-06-08 | An Initialization Method and System for Interdecadal Forecasting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110638200.XA CN113221385B (en) | 2021-06-08 | 2021-06-08 | An Initialization Method and System for Interdecadal Forecasting |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113221385A CN113221385A (en) | 2021-08-06 |
CN113221385B true CN113221385B (en) | 2022-09-23 |
Family
ID=77083221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110638200.XA Active CN113221385B (en) | 2021-06-08 | 2021-06-08 | An Initialization Method and System for Interdecadal Forecasting |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113221385B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114462247B (en) * | 2022-02-14 | 2022-10-21 | 中国人民解放军61540部队 | Method and system for identifying annual representative modality of sea surface salinity of North Pacific ocean |
CN119200033A (en) * | 2024-08-30 | 2024-12-27 | 上海勘测设计研究院有限公司 | A method, system and device for seasonal prediction of wind resource power based on numerical model |
CN118760831B (en) * | 2024-09-02 | 2024-11-15 | 广东海洋大学 | Method for estimating salinity under extreme climate conditions based on CMIP6 data |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103942325A (en) * | 2014-04-29 | 2014-07-23 | 中南大学 | Method for association rule mining of ocean-land climate events with combination of climate subdivision thought |
CN107103396A (en) * | 2017-06-13 | 2017-08-29 | 南京大学 | The Chinese seasonal climate Forecasting Methodology modeled based on main SVD mode |
CN108549961A (en) * | 2018-05-02 | 2018-09-18 | 河海大学 | A method of wave significant wave height is estimated based on CMIP5 |
CN110309901A (en) * | 2019-05-16 | 2019-10-08 | 同济大学 | Improved artificial bee colony data processing method for solving conditional nonlinear optimal disturbance |
CN110443993A (en) * | 2019-06-12 | 2019-11-12 | 中国科学院大气物理研究所 | A method of suitable for model predictions ENSO |
CN110532500A (en) * | 2019-08-08 | 2019-12-03 | 河海大学 | The construction method of multi-reservoir Parameterization Scheme in a kind of regional atmospheric hydrological model |
CN111401634A (en) * | 2020-03-13 | 2020-07-10 | 成都信息工程大学 | A method, system and storage medium for acquiring climate information |
CN112069449A (en) * | 2020-09-04 | 2020-12-11 | 中科三清科技有限公司 | Weather forecasting method and device based on initial value set |
CN112819254A (en) * | 2021-03-05 | 2021-05-18 | 兰州大学 | Assimilation planet scale and machine learning external forcing climate mode prediction method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10909446B2 (en) * | 2019-05-09 | 2021-02-02 | ClimateAI, Inc. | Systems and methods for selecting global climate simulation models for training neural network climate forecasting models |
CN110543987A (en) * | 2019-08-28 | 2019-12-06 | 向波 | Intelligent climate prediction system |
CN111291944B (en) * | 2020-03-16 | 2022-09-23 | 中国人民解放军61540部队 | Marine climate prediction method and system based on NPSDV driving factor identification |
CN112036617B (en) * | 2020-08-17 | 2021-10-29 | 国能大渡河流域水电开发有限公司 | A Dynamic-Statistical Objective Quantitative Climate Prediction Method and System |
-
2021
- 2021-06-08 CN CN202110638200.XA patent/CN113221385B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103942325A (en) * | 2014-04-29 | 2014-07-23 | 中南大学 | Method for association rule mining of ocean-land climate events with combination of climate subdivision thought |
CN107103396A (en) * | 2017-06-13 | 2017-08-29 | 南京大学 | The Chinese seasonal climate Forecasting Methodology modeled based on main SVD mode |
CN108549961A (en) * | 2018-05-02 | 2018-09-18 | 河海大学 | A method of wave significant wave height is estimated based on CMIP5 |
CN110309901A (en) * | 2019-05-16 | 2019-10-08 | 同济大学 | Improved artificial bee colony data processing method for solving conditional nonlinear optimal disturbance |
CN110443993A (en) * | 2019-06-12 | 2019-11-12 | 中国科学院大气物理研究所 | A method of suitable for model predictions ENSO |
CN110532500A (en) * | 2019-08-08 | 2019-12-03 | 河海大学 | The construction method of multi-reservoir Parameterization Scheme in a kind of regional atmospheric hydrological model |
CN111401634A (en) * | 2020-03-13 | 2020-07-10 | 成都信息工程大学 | A method, system and storage medium for acquiring climate information |
CN112069449A (en) * | 2020-09-04 | 2020-12-11 | 中科三清科技有限公司 | Weather forecasting method and device based on initial value set |
CN112819254A (en) * | 2021-03-05 | 2021-05-18 | 兰州大学 | Assimilation planet scale and machine learning external forcing climate mode prediction method |
Non-Patent Citations (7)
Title |
---|
Christian Katlein.Platelet Ice Under Arctic Pack Ice in Winter.《Geophysical Research Letters》.2020, * |
RAFI ULLAH KHAN.Risk Assessment and Decision Support for Sustainable Traffic Safety in Hong Kong Waters.《IEEE Access》.2020, * |
Yidan Xu.Contribution of SST change to multidecadal global and continental surface air temperature trends between 1910 and 2013.《Climate Dynamics》.2019, * |
万修全.地球系统模式CESM及其在高性能计算机上的配置应用实例.《地球科学进展》.2014, * |
周天军.年代际气候预测问题: 科学前沿与挑战.《地球科学进展》.2017, * |
应美佳.南大洋混合层的时空变化特征.《海洋与湖沼》.2019, * |
林霄沛.全球变暖"停滞"现象辨识与机理研究.《地球科学进展》.2016, * |
Also Published As
Publication number | Publication date |
---|---|
CN113221385A (en) | 2021-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113221385B (en) | An Initialization Method and System for Interdecadal Forecasting | |
Zhang et al. | Feedbacks between vegetation restoration and local precipitation over the Loess Plateau in China | |
Kardakos et al. | Application of time series and artificial neural network models in short-term forecasting of PV power generation | |
Barnaby et al. | Weather data for building performance simulation | |
Koster et al. | A mechanism for land–atmosphere feedback involving planetary wave structures | |
CN106650784A (en) | Feature clustering comparison-based power prediction method and device for photovoltaic power station | |
CN111260154B (en) | Short-term solar radiation prediction method and device based on CNN-LSTM | |
Natgunanathan et al. | Deakin microgrid digital twin and analysis of AI models for power generation prediction | |
Yang et al. | Will the arid and semi-arid regions of Northwest China become warmer and wetter based on CMIP6 models? | |
CN105488592A (en) | Method for predicting generated energy of photovoltaic power station | |
CN108021538A (en) | A kind of electric quantity data restoration methods based on joint Weather information matrix decomposition | |
Balti et al. | Big data based architecture for drought forecasting using LSTM, ARIMA, and Prophet: Case study of the Jiangsu Province, China | |
Solman et al. | Climate change over the extratropical Southern Hemisphere: The tale from an ensemble of reanalysis datasets | |
Azmoodehfar et al. | Assessment the effect of ENSO on weather temperature changes using fuzzy analysis (case study: Chabahar) | |
Zhang et al. | Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia | |
Wang | A conceptual modeling study on biosphere–atmosphere interactions and its implications for physically based climate modeling | |
CN104573378B (en) | A kind of method for optimizing surface process parameterization | |
Kratzenberg et al. | Identification and handling of critical irradiance forecast errors using a random forest scheme–A case study for southern Brazil | |
CN104834981A (en) | Method for short-term main-cause-hidden type prediction of power station photovoltaic power | |
CN118736424A (en) | A remote sensing monitoring method and system for root soil moisture content during spring wheat growth period | |
KR20250052254A (en) | Method for prediction power generation using meta-learning, device and system using the same | |
Curran et al. | Determining the power rate of change of 353 plant inverters time-series data across multiple climate zones, using a month-by-month data science analysis | |
Ghosh et al. | Smart cropping based on predicted solar radiation using iot and machine learning | |
KR20240118244A (en) | A Method For Diagnosing Anomaly In A Solar Power Plant By Predicting Power Generation Based On Artificial Intelligence Technology And A Computer-Readable Recording Medium In Which A Program To Perform The Diagnosis Is Recorded | |
Gaikwad et al. | Different rainfall prediction models and general data mining rainfall prediction model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |