CN113218403A - AGV system of inertia vision combination formula location - Google Patents

AGV system of inertia vision combination formula location Download PDF

Info

Publication number
CN113218403A
CN113218403A CN202110528533.7A CN202110528533A CN113218403A CN 113218403 A CN113218403 A CN 113218403A CN 202110528533 A CN202110528533 A CN 202110528533A CN 113218403 A CN113218403 A CN 113218403A
Authority
CN
China
Prior art keywords
lower computer
camera
group
upper computer
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110528533.7A
Other languages
Chinese (zh)
Other versions
CN113218403B (en
Inventor
王梓丞
许德新
杜宇汪
郭冬修
甄亚楠
胡文彬
王显峰
綦志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN202110528533.7A priority Critical patent/CN113218403B/en
Publication of CN113218403A publication Critical patent/CN113218403A/en
Application granted granted Critical
Publication of CN113218403B publication Critical patent/CN113218403B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Abstract

The invention provides an AGV system with an inertial vision combined positioning function.A control device comprises a camera group, an upper computer, a lower computer and a strapdown inertial navigation integrator which are sequentially connected; the upper computer collects data of the camera group in real time and plans a real-time path according to surrounding road conditions; the lower computer controls the vehicle body to move, and nearby elements are identified by using the gray level group and the OpenMV group; the upper computer and the lower computer are communicated with each other; the strapdown inertial navigation integrator is respectively connected with the capacitance-inductance pair, the OV7725 camera, the gray sensor, the gyroscope, the magnetometer and the Apriltag code. The invention adopts various sensors of different types, sets identification marks of various different types in a working scene, fully manufactures the optimal use environment of various sensors, and improves the positioning precision to the level which can be reached by a laser positioning technology under the condition of not increasing too much cost.

Description

AGV system of inertia vision combination formula location
Technical Field
The invention belongs to the technical field of unmanned driving, and particularly relates to an inertial vision combined positioning AGV system.
Background
An automated Guided vehicle agv (automated Guided vehicle) is an unmanned vehicle. The method is characterized in that position information of a vehicle and a target object is obtained through a vehicle-mounted sensor or communication equipment, and an automatic driving carrier is manufactured along a target driving route and a parking position according to a programmed algorithm or a control instruction sent by a central dispatching system. The AGV is widely applied to docks, warehouses, factory workshops, flexible production systems (FMS), flexible handling systems and automatic warehouses and serves as key equipment for logistics system modernization.
There are two navigation ways for an AGV: a fixed path and a free path.
Currently, AGV systems can be classified into electromagnetic guidance and tape guidance according to the guidance mode.
In foreign countries, mobile robots based on mecanum wheels have certain achievements through researches of colleges and scientific research institutions, and all robot companies also develop omnidirectional mobile robots on the basis of original double-wheel differential robots. The related research on the Mecanum wheel mainly focuses on the fields of omnidirectional motion modeling, damping suspension design, omnidirectional mobile robot platform research and development, intelligent control and the like.
The research on omnidirectional mobile robots such as Mecanum wheels is relatively late in China, the main research fields comprise omnidirectional mobile robot design, vibration reduction suspension design, motion control and error elimination, fuzzy PID control, accurate control and the like, and the intelligent navigation is less involved.
The conventional AGV system with a fixed path often cannot solve the problems of sudden road blockage in the actual environment and junction congestion during combined operation of a plurality of AGV systems because the traveling path is limited; however, the laser SLAM and the visual SLAM are not mature, the laser SLAM is not good at positioning in a dynamic environment, has poor repositioning capability and lacks loop detection capability, and the visual SLAM needs to use a complex algorithm to process an actual image at present. In short, a high-precision positioning component is expensive, and a low-cost sensor has a large error.
Disclosure of Invention
The invention aims to provide an AGV based on a strapdown inertial navigation system, which can integrate data of various sensors, complete positioning and navigation work of high-cost and high-precision sensors by using relatively low cost, perform optimal path planning by using an automatic control program and complete cargo transportation and logistics transfer.
The specific technical scheme is as follows:
the AGV system with the inertial vision combined positioning comprises a control device, a power supply device and a physical execution part;
the control device comprises a camera group, an upper computer, a lower computer and a strapdown inertial navigation integrator which are sequentially connected;
the upper computer collects data of the camera group in real time and plans a real-time path according to surrounding road conditions;
the lower computer controls the vehicle body to move, and nearby elements are identified by using the gray level group and the OpenMV group;
the upper computer and the lower computer are communicated with each other;
the strapdown inertial navigation integrator is respectively connected with the capacitance-inductance pair, the OV7725 camera, the gray sensor, the gyroscope, the magnetometer and the Apriltag code;
the capacitive inductance pair on the vehicle collects an electric signal through an exciting electromagnetic field and judges the position of the vehicle body relative to the electromagnetic wire to complete the tracking of the electromagnetic wire so as to realize electromagnetic guidance;
the OV7725 camera is used for collecting road surface visual information, feeding the road surface visual information back to the lower computer and controlling the road surface visual information;
the gray sensor is an analog sensor for detecting black markers on the ground by utilizing different light reflection intensities of grounds with different colors, and is used for positioning within 1cm in precision;
the gyroscope, the accelerometer and the magnetometer are integrated on the MPU9250 chip, and real-time three-axis attitude angles are calculated by reading three-axis acceleration, three-axis angular acceleration and three-axis magnetic field original data;
an Apriltag code for identifying a designated marker during operation;
the power supply device comprises a power module and a 6S lithium battery, and the power module and the 6S lithium battery are used for respectively supplying power to electric equipment;
the physical execution part is connected with the lower computer and comprises a motor driving circuit, and the motor driving circuit respectively provides power for the motor, the Mecanum wheel and the electric dragging device.
Wherein the camera group comprises a plurality of OV2710 cameras; the model of the upper computer is i.MX6Q; the lower computer is MK66 FX.
The motor driving circuit adopts a 8701 driving circuit, builds a half-bridge motor driving circuit, supplies electromagnet energy, further comprises a 3V3 voltage acquisition circuit, a voltage stabilizing diode BZT52C3V3 and a 74HC125 buffer circuit, and plays a role of a grating.
Compared with the prior art, the invention has the advantages that:
1. the sensors of various types are adopted, and the identification marks of various different forms are arranged in a working scene, so that the optimal use environment of various types of sensors is fully manufactured.
2. The method avoids using expensive positioning and measuring modules, and improves the positioning precision to the order of magnitude which can be reached by the laser positioning technology under the condition of not increasing too much cost. For example, Apriltag codes and logo recognition of a grayscale sensor can effectively solve the problem of drift caused by long-time operation of a gyroscope and an accelerometer.
Drawings
FIG. 1 is a schematic diagram of the system architecture of the present invention;
figure 2 is a schematic diagram of a power supply network of the present invention;
FIG. 3 is a schematic view of a Mecanum wheel of the present invention;
FIG. 4 is a block diagram of the closed-loop control of the motor speed of the present invention.
Detailed Description
As shown in FIG. 1, the AGV system with inertial vision combined positioning comprises a control device, a power supply device and a physical execution part;
the control device comprises a camera group, an upper computer, a lower computer and a strapdown inertial navigation integrator which are sequentially connected;
the camera group comprises a plurality of OV2710 cameras;
the upper computer is i.MX6Q; the lower computer is MK66 FX; MX 6Quad series is a platform with four cores, the operating frequency is up to 1.2GHz, and the LPDDR2 is supported by 1MB L2 cache and 64-bit DDR3 or 2 channel 32; the upper computer collects data of the camera group in real time and plans a real-time path according to surrounding road conditions; the lower computer controls the vehicle body to move, and nearby elements are identified by using the gray level group and the OpenMV group;
the upper computer and the lower computer are communicated with each other, if a single controller fails, the vehicle body can be directly stabilized through communication, the alarm is given, the vehicle body is locked automatically, and precautionary measures are designed for emergency situations of the vehicle body;
the strapdown inertial navigation integrator is respectively connected with the capacitance-inductance pair, the OV7725 camera, the gray sensor, the gyroscope, the magnetometer and the Apriltag code;
the capacitive inductance pairs are laid on the ground and are electrified to exchange current, so that the capacitive inductance pairs on the vehicle can acquire electric signals through exciting an electromagnetic field and judge the position of the vehicle body relative to the electromagnetic wire to complete the tracking of the electromagnetic wire, thereby realizing electromagnetic guidance;
the OV7725 camera is used for collecting road surface visual information, feeding the road surface visual information back to the lower computer and controlling the road surface visual information;
the gray sensor is an analog sensor for detecting black markers on the ground by utilizing different light reflection intensities of different colors of ground, and is used for positioning within 1cm in precision.
The gyroscope, the accelerometer and the magnetometer are integrated on the MPU9250 chip, and real-time three-axis attitude angles are calculated by reading three-axis acceleration, three-axis angular acceleration and three-axis magnetic field original data;
the recognition of the Apriltag code is fast and error-free compared with the method that a camera is used for judging the designated marker in the operation process. By predefining the information of each Apriltag code and placing the corresponding two-dimensional code beside a special element, the Apriltag codes can play the roles of a road sign and a direction board when the AGV system works, for example, if the X two-dimensional code is defined as a storage place N, when the AGV system is far away from the N place, if the destination is N, the task can be set to detect the X two-dimensional code and consider the X two-dimensional code as the destination.
The power supply device comprises a power module and a 6S lithium battery, the working voltage is 22.2V-24.8V, the discharge rate is 25C, the LM2596 module is used for stabilizing 6V voltage for the steering engine, the 3.3V voltage is used for the minimum system and the camera, and the MP1584 module is used for stabilizing 5V voltage for the encoder and part of the sensors.
The physical execution part is connected with the lower computer and comprises a motor driving circuit which respectively provides power for the motor, the Mecanum wheel and the electric dragging device;
the physical execution part is powered by motor drive and electromagnet drive. As shown in fig. 2, a 8701 driving circuit is used, which is used for supplying power to the electromagnet to draw the object to be transported by building a half-bridge motor driving circuit; a 3V3 voltage acquisition circuit; a zener diode BZT52C3V3 for enabling the DRV8701nSLEEP pin; the 74HC125 buffer circuit plays the role of a light grating, namely, the current of the working circuit is prevented from flowing backwards to influence the power supply circuit.
The electric driving device is mainly used for carrying goods and is realized by using an electromagnet, and a DRV8701 is used as an electromagnet driving chip. The exercise device uses mecanum wheels that allow for omnidirectional movement and is equipped with a shock absorbing system to address the case where the four wheel redundant structure is virtually grounded.
When the AGV system carries goods, a carrying path can be generated according to an upper computer algorithm or two-dimensional code information on the goods is read, and then the goods are transported to a specified place through the strapdown inertial navigation system.
And (3) control algorithm aspect:
the system adopts a distributed control mode based on serial ports, namely, an upper layer algorithm and a bottom layer control respectively use different single-chip microcomputers, namely an upper computer and a lower computer, and the functions are mutually independent and dispersed. The method has the advantages of improving the control efficiency, shortening the control time, reducing the configuration requirement and the cost of the single chip microcomputer, increasing data encryption and verification during communication, and ensuring the safety and the accuracy of centralized control.
The system uses a scheme in which four wheels are Mecanum wheels, as shown in U of FIG. 31234Showing the component velocity, V, provided to the vehicle by each wheel as the AGV system advances1234Indicating the deviated wheel component speed due to the non-ideal characteristics of the wheel; the four-wheel vehicle has the advantages of capability of carrying out omnidirectional control, small turning radius, no need of turning space and saving of turning time of the common four-wheel vehicle. The implementation mode is as follows, under the ideal condition, all wheels rotate clockwise and can let the AGV system advance, at this moment, change upper left and lower right wheel into anticlockwise rotation and can let the AGV system translate left, and translation right and retreat control mode will be the direction of rotation and translation left and advance the reverse of every wheel. The process is realized on codes, firstly, the output duty ratio of each drive and the actual rotating speed of a motor are normalized during joint debugging, the rotating speeds of the four wheels are ensured to be the same, and then the rotating speeds of the four wheels are recorded and recorded by taking forward, backward and left-right translation as routines. And finally, debugging the rotating speed of the four wheels by taking clockwise rotation and anticlockwise rotation as a routine and recording. In actual use, the required rotating speed of each wheel can be obtained through decomposition of the motion process, and the omnidirectional control can be achieved through a wheel encoder and a drive and a PID control algorithm of a single chip microcomputer.
In the aspect of motor speed control: an incremental photoelectric encoder using the AB term is used. The function of which is to determine the direction and angle of rotation of the wheel (typically measured in turns). The motor rotating speed closed-loop control block diagram is shown in fig. 4, the upper computer gives a motor rotating speed set value, and a signal of the motor rotating speed set value enters a direct current motor driver after being subjected to PI correction. The current is amplified through driving and supplied to the direct current motor, and meanwhile, the speed of the direct current motor is collected and fed back to the PI controller for speed correction.
Angle resolving aspect: the JY-901 module is used for measuring 9 data in total of the acceleration, the angular acceleration and the magnetometer, each group of data can obtain a function curve along with time, after Kalman filtering processing is carried out, integration processing is carried out, the speed and the angular velocity can be obtained, and the acceleration and the angular acceleration can be obtained by integration again. But inexpensive low-precision measurement modules tend to suffer from drift phenomena. In order to solve the problem, the system is provided with a photoelectric pair tube and a camera with an Apriltag code identification function. The ground and the track are specially processed, and a beacon is arranged per unit length (for example, 1m), so that the drift of the odometer is corrected.
In the aspect of camera processing: an OV7725 camera is used, and in order to increase the processing speed, the system uses a single MCU to process the image, and the image information is stored in GRAM in the LCD. Four OV7725 cameras are arrayed on the circumference of the system and used for realizing omnibearing visual field identification. The image processing mode mainly uses a jump detection algorithm and a jump detection algorithm after differentiation. The jump detection algorithm can obviously capture the contour lines in the image and is used for assisting in calculating the terrain and the size of the conveyed object.
And (3) path planning:
the time of each transport task can be roughly determined according to the path bit vector and the transport type, and when the task quantity is small, the problem can be solved by using a linked list processing mode of 'processing while receiving'.
When the transport is multitasking and there is one AGV system operating. The system gives variable values according to the task urgency degree, and then selects the task closest to the conveying point or the most urgent task for processing through weighting.
When the transport tasks are multiple and a plurality of AGV systems operate simultaneously, the system can adopt a token control method to carry out central regulation and control. Each trunk road and the regions with dense and repeated carrying lines have a token value, and when the AGV system executes a carrying task, all the token values of the moving lines are transmitted to the central processing unit through the Bluetooth module. When the token value is repeated, the fact that the planned path of the AGV system is repeated and collision is possible is shown, and at the moment, the central control allocates the accounting times of the AGV system to avoid in turn. The method has the advantages that the same-level communication module is not needed, and the conditions of collision avoidance and even collision danger are avoided. In particular, when the task size is extremely large or an emergency task occurs, the low-priority AGV system will actively avoid the high-priority AGV system.

Claims (3)

1. The AGV system with the inertial vision combined positioning is characterized by comprising a control device, a power supply device and a physical execution part;
the control device comprises a camera group, an upper computer, a lower computer and a strapdown inertial navigation integrator which are sequentially connected;
the upper computer collects data of the camera group in real time and plans a real-time path according to surrounding road conditions;
the lower computer controls the vehicle body to move, and nearby elements are identified by using the gray level group and the OpenMV group;
the upper computer and the lower computer are communicated with each other;
the strapdown inertial navigation integrator is respectively connected with the capacitance-inductance pair, the OV7725 camera, the gray sensor, the gyroscope, the magnetometer and the Apriltag code;
the capacitive inductance pair on the vehicle collects an electric signal through an exciting electromagnetic field and judges the position of the vehicle body relative to the electromagnetic wire to complete the tracking of the electromagnetic wire so as to realize electromagnetic guidance;
the OV7725 camera is used for collecting road surface visual information, feeding the road surface visual information back to the lower computer and controlling the road surface visual information;
the gray sensor is an analog sensor for detecting black markers on the ground by utilizing different light reflection intensities of grounds with different colors, and is used for positioning within 1cm in precision;
the gyroscope, the accelerometer and the magnetometer are integrated on the MPU9250 chip, and real-time three-axis attitude angles are calculated by reading three-axis acceleration, three-axis angular acceleration and three-axis magnetic field original data;
an Apriltag code for identifying a designated marker during operation;
the power supply device comprises a power module and a 6S lithium battery, and the power module and the 6S lithium battery are used for respectively supplying power to electric equipment;
the physical execution part is connected with the lower computer and comprises a motor driving circuit, and the motor driving circuit respectively provides power for the motor, the Mecanum wheel and the electric dragging device.
2. An inertial vision based modular positioned AGV system according to claim 1, characterised in that said camera group comprises a plurality of OV2710 cameras; the model of the upper computer is i.MX6Q; the lower computer is MK66 FX.
3. An inertial vision combined positioning AGV system according to claim 1, characterised in that said motor drive circuit, using a 8701 drive circuit, builds a half bridge motor drive circuit to power the electromagnets, and further comprises a 3V3 voltage acquisition circuit, a zener diode BZT52C3V3, and a 74HC125 buffer circuit to function as a grating.
CN202110528533.7A 2021-05-14 2021-05-14 AGV system of inertia vision combination formula location Active CN113218403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110528533.7A CN113218403B (en) 2021-05-14 2021-05-14 AGV system of inertia vision combination formula location

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110528533.7A CN113218403B (en) 2021-05-14 2021-05-14 AGV system of inertia vision combination formula location

Publications (2)

Publication Number Publication Date
CN113218403A true CN113218403A (en) 2021-08-06
CN113218403B CN113218403B (en) 2022-09-09

Family

ID=77091961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110528533.7A Active CN113218403B (en) 2021-05-14 2021-05-14 AGV system of inertia vision combination formula location

Country Status (1)

Country Link
CN (1) CN113218403B (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589547A (en) * 2012-03-22 2012-07-18 哈尔滨工程大学 Electric control rotating platform and position measuring method for inertial navigation instrument
CN103645736A (en) * 2013-12-05 2014-03-19 哈尔滨工程大学 Non-linear H infinite inverse optimization output feedback controller-based ship course motion control method
CN104848858A (en) * 2015-06-01 2015-08-19 北京极智嘉科技有限公司 Two-dimensional code and vision-inert combined navigation system and method for robot
CN105928514A (en) * 2016-04-14 2016-09-07 广州智能装备研究院有限公司 AGV composite guiding system based on image and inertia technology
CN106774335A (en) * 2017-01-03 2017-05-31 南京航空航天大学 Guiding device based on multi-vision visual and inertial navigation, terrestrial reference layout and guidance method
US20170357270A1 (en) * 2016-06-09 2017-12-14 X Development Llc Sensor Trajectory Planning for a Vehicle
CN107918445A (en) * 2017-11-17 2018-04-17 哈尔滨工程大学 A kind of pipeline detection robot data storage time synchronization realization device and method
CN108571971A (en) * 2018-05-17 2018-09-25 北京航空航天大学 A kind of AGV vision positioning systems and method
CN109189073A (en) * 2018-09-28 2019-01-11 华南理工大学 A kind of robot and patrol method based on apriltag positioning
CN110244727A (en) * 2019-06-17 2019-09-17 金陵科技学院 A kind of AGV system and its method based on two dimensional code location navigation
CN110989688A (en) * 2019-12-09 2020-04-10 台州学院 Automatic following system and method based on AprilTag code recognition
CN111123954A (en) * 2020-01-19 2020-05-08 湖北师范大学 Intelligent vehicle control system and method based on gray level camera detection
CN111197984A (en) * 2020-01-15 2020-05-26 重庆邮电大学 Vision-inertial motion estimation method based on environmental constraint
CN111208820A (en) * 2020-01-09 2020-05-29 哈尔滨工程大学 Particle unmanned vehicle group under artificial intelligence big data, control method and medium
WO2020211565A1 (en) * 2019-04-14 2020-10-22 炬星科技(深圳)有限公司 Rapid warehouse configuration method, apparatus, and storage medium
CN112033400A (en) * 2020-09-10 2020-12-04 西安科技大学 Intelligent positioning method and system for coal mine mobile robot based on combination of strapdown inertial navigation and vision
CN112149555A (en) * 2020-08-26 2020-12-29 华南理工大学 Multi-storage AGV tracking method based on global vision
CN112364766A (en) * 2020-11-11 2021-02-12 南京音飞储存设备(集团)股份有限公司 Pose identification method and system based on structured light and AprilTag

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589547A (en) * 2012-03-22 2012-07-18 哈尔滨工程大学 Electric control rotating platform and position measuring method for inertial navigation instrument
CN103645736A (en) * 2013-12-05 2014-03-19 哈尔滨工程大学 Non-linear H infinite inverse optimization output feedback controller-based ship course motion control method
CN104848858A (en) * 2015-06-01 2015-08-19 北京极智嘉科技有限公司 Two-dimensional code and vision-inert combined navigation system and method for robot
CN105928514A (en) * 2016-04-14 2016-09-07 广州智能装备研究院有限公司 AGV composite guiding system based on image and inertia technology
US20170357270A1 (en) * 2016-06-09 2017-12-14 X Development Llc Sensor Trajectory Planning for a Vehicle
CN106774335A (en) * 2017-01-03 2017-05-31 南京航空航天大学 Guiding device based on multi-vision visual and inertial navigation, terrestrial reference layout and guidance method
CN107918445A (en) * 2017-11-17 2018-04-17 哈尔滨工程大学 A kind of pipeline detection robot data storage time synchronization realization device and method
CN108571971A (en) * 2018-05-17 2018-09-25 北京航空航天大学 A kind of AGV vision positioning systems and method
CN109189073A (en) * 2018-09-28 2019-01-11 华南理工大学 A kind of robot and patrol method based on apriltag positioning
WO2020211565A1 (en) * 2019-04-14 2020-10-22 炬星科技(深圳)有限公司 Rapid warehouse configuration method, apparatus, and storage medium
CN110244727A (en) * 2019-06-17 2019-09-17 金陵科技学院 A kind of AGV system and its method based on two dimensional code location navigation
CN110989688A (en) * 2019-12-09 2020-04-10 台州学院 Automatic following system and method based on AprilTag code recognition
CN111208820A (en) * 2020-01-09 2020-05-29 哈尔滨工程大学 Particle unmanned vehicle group under artificial intelligence big data, control method and medium
CN111197984A (en) * 2020-01-15 2020-05-26 重庆邮电大学 Vision-inertial motion estimation method based on environmental constraint
CN111123954A (en) * 2020-01-19 2020-05-08 湖北师范大学 Intelligent vehicle control system and method based on gray level camera detection
CN112149555A (en) * 2020-08-26 2020-12-29 华南理工大学 Multi-storage AGV tracking method based on global vision
CN112033400A (en) * 2020-09-10 2020-12-04 西安科技大学 Intelligent positioning method and system for coal mine mobile robot based on combination of strapdown inertial navigation and vision
CN112364766A (en) * 2020-11-11 2021-02-12 南京音飞储存设备(集团)股份有限公司 Pose identification method and system based on structured light and AprilTag

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANGLONG WANG等: "Autonomous Landing of Multi-rotors UAV with Monocular", 《2017 13TH IEEE INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA)》 *
杜文浩等: "自平衡跟随机器人的目标识别及预测重拾策略", 《计算机与现代化》 *

Also Published As

Publication number Publication date
CN113218403B (en) 2022-09-09

Similar Documents

Publication Publication Date Title
CN105045268B (en) A kind of AGV laser tape hybrid navigation system
CN105468001B (en) A kind of submersible AGV navigation dollies and its control method
CN108052107B (en) AGV indoor and outdoor composite navigation system and method integrating magnetic stripes, magnetic nails and inertial navigation
USRE47108E1 (en) Automated warehousing using robotic forklifts
CN107272008A (en) A kind of AGV Laser navigation systems with inertia compensation
CN106774335A (en) Guiding device based on multi-vision visual and inertial navigation, terrestrial reference layout and guidance method
CN205375188U (en) Formula AGV navigation dolly slips into
CN110307850A (en) Reckoning localization method and automated parking system
CN107065873B (en) Multi-curvature circumferential path tracking control method based on tape guidance AGV
CN107421518A (en) A kind of trackless navigation AGV passes in and out lorry method automatically
CN105946548A (en) Automatic guiding type carrying device
CN108594800A (en) A kind of AGV complex navigation system and methods of fusion Magnetic Sensor and gyro data
CN205950750U (en) Transformer station inspection robot control system that navigates based on inertial navigation
CN110763224A (en) Navigation method and navigation system for automatic guided transport vehicle
CN106200648A (en) There is the intelligence cargo transport dolly of path memory function
CN111679676A (en) AGV movement track control method
CN108958269B (en) Inertial navigation magnetic stripe hybrid navigation AGV system
CN112454352B (en) Self-leveling, navigation and moving method, system, electronic equipment and medium
CN113218403B (en) AGV system of inertia vision combination formula location
CN113703446A (en) Magnetic nail-based guidance vehicle navigation method and scheduling system
CN109677312A (en) The AGV and control method of bilayer conveying two-dimension code navigation
CN112666934A (en) Control system, scheduling system and control method for automobile carrying AGV
CN207540557U (en) A kind of device pinpoint in short-term for AGV trolleies
CN110641690A (en) Estuary wetland sediment sample intelligent acquisition device based on unmanned aerial vehicle
Chen et al. Design of magnetic navigation automatic guided vehicle system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant