CN113208624A - 一种基于卷积神经网络的疲劳检测方法、系统 - Google Patents

一种基于卷积神经网络的疲劳检测方法、系统 Download PDF

Info

Publication number
CN113208624A
CN113208624A CN202110372671.0A CN202110372671A CN113208624A CN 113208624 A CN113208624 A CN 113208624A CN 202110372671 A CN202110372671 A CN 202110372671A CN 113208624 A CN113208624 A CN 113208624A
Authority
CN
China
Prior art keywords
neural network
convolutional neural
eeg signal
detection method
eeg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110372671.0A
Other languages
English (en)
Inventor
马鹏程
卢树强
王晓岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Brain Up Technology Co ltd
Original Assignee
Beijing Brain Up Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Brain Up Technology Co ltd filed Critical Beijing Brain Up Technology Co ltd
Priority to CN202110372671.0A priority Critical patent/CN113208624A/zh
Publication of CN113208624A publication Critical patent/CN113208624A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Psychiatry (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种基于卷积神经网络的疲劳检测方法及系统,该方法包括EEG信号采集设备采集用户的EEG信号,对EEG信号进行预处理后传输到数据分析系统;数据分析系统根据提取EEG信号的特征,传输至判断识别系统;判断识别系统通过卷积神经网络算法识别用户疲劳状态。该方法实现对脑波疲劳状态检测的智能化,提高了检测准确率,降低检测时间,拓宽了检测的应用场景。

Description

一种基于卷积神经网络的疲劳检测方法、系统
技术领域
本发明涉及EEG信号识别技术领域,特别是涉及一种基于卷积神经网络的疲劳检测方法、系统。
背景技术
目前市场上常用的疲劳检测方法是通过摄像头捕捉人的眨眼图像,通过分析眨眼次数和眨眼时长,检测是否疲劳;也有通过佩戴体积较大、操作繁琐的脑电采集设备来获取脑电生理信号,并辅以图像检测算法,进行疲劳检测。这些方法操作繁琐,效率低下,且误差也较大,同时由于检测设备体积较大而使得应用场景受到限制。
因此,如何,提高识别准确率,降低识别时间是亟待解决的问题。
发明内容
本发明的目的是提供一种基于卷积神经网络的疲劳检测方法、系统,以实现智能化分析脑电信号从而判断疲劳状态,提高识别准确率,降低识别时间。
为解决上述技术问题,本发明提供一种基于卷积神经网络的疲劳检测方法,包括:
EEG信号采集设备采集用户的EEG信号,对EEG信号进行预处理后传输到数据分析系统;
数据分析系统根据提取EEG信号的特征,传输至判断识别系统;
判断识别系统通过卷积神经网络算法识别用户疲劳状态。
优选的,所述EEG信号采集设备采集的是用户在静息和疲劳状态下的EEG信号。
优选的,所述预处理包括工频滤波和带通滤波。
优选的,所述预处理步骤后,还包括对信号进行数据归一化操作。
优选的,所述EEG信号的特征包括EEG信号的时域特征、频域特征、时频特征。
优选的,所述时域特征包括均值、方差和一阶差分特征。
优选的,所述频域特征为信号在不同频带的功率能量值。
优选的,采用短时傅里叶变换STFT和小波变换得到所述时频特征。
本发明还提供一种基于卷积神经网络的疲劳检测系统,用于实现上述方法,包括:
EEG信号采集设备,用于采集用户的EEG信号,对EEG信号进行预处理后传输到数据分析系统;
数据分析系统,用于根据提取EEG信号的特征,传输至判断识别系统;
判断识别系统,用于通过卷积神经网络算法识别用户疲劳状态。
本发明所提供的一种基于卷积神经网络的疲劳检测方法、系统,通过EEG信号采集设备采集用户脑电信号,提取出特征值,计算出不同频带的功率值从而通过卷积神经算法模型自动检测疲劳状态。本发明可以实时获取人的疲劳状态,并及时做出判断,提升了分析的效率和准确性,且拓宽了检测的应用场景。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明所提供的一种基于卷积神经网络的疲劳检测方法的流程图;
图2为本发明所提供的静息状态下EEG信号频率能量分布示意图;
图3为本发明所提供的疲劳状态下EEG信号频率能量分布示意图;
图4为本发明所提供的一种基于卷积神经网络的疲劳检测系统的结构示意图。
具体实施方式
本发明的核心是提供一种基于卷积神经网络的疲劳检测方法、系统,以实现智能化分析脑电信号从而判断疲劳状态,提高识别准确率,降低识别时间。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明所提供的一种基于卷积神经网络的疲劳检测方法的流程图。该方法中获取脑电信号步骤中,本实施例所采用的设备电极优选采用干电极,主要对称分布于前额叶或者额叶,电极点位左右对称分布,单通道电极具有较高的采样率,能够满足对脑电信号的精确刻画。所述设备采集的是用户在静息和疲劳状态下脑电信号,信号采样率优选为250Hz,以满足实验和数据分析要求。EEG信号采集设备具体为便捷式BCI设备。
结合图1所示,本实施例采用的基于卷积神经网络的疲劳检测方法包括以下流程:
1.EEG信号采集设备采集用户的脑电信号,对信号进行预处理后传输到数据分析系统。
其中,预处理步骤中,包括了对原始信号进行工频滤波和带通滤波。对采集到的EEG信号,采用滤波算法去除工频干扰,另外还可以去除眼电、肌电和心电伪迹,以获取干净的脑电信号。
由于EEG信号存在个体差异性,本实施例还可以增加采取数据归一化操作,来保证信号的一致性。
2.数据分析系统提取EEG信号的特征,并将其传输至判断识别系统。
其中,常用的EEG特征提取方法有:(1)时域特征、(2)频域特征、(3)时频特征等。本实施例根据任务需要,选取适合的方法提取EEG信号特征。
信号的时域特征采用均值、方差和一阶差分特征;计算信号的频域特征采用快速傅里叶(FFT)算法计算信号在delta、theta、alpha、beta和gamma频带的功率能量值。计算信号的时频特征采用短时傅里叶变换STFT算法和小波变换方法计算得出。根据疲劳任务的特点,计算信号在不同频带内的功率能量值,并通过公式:(alpha+theta)/beta计算各频带能量的比值。
其中,根据计算脑电信号在频域上的特征,可以发现人在静息非疲劳状态时,delta和theta低频带的功率能量较低,相应的,beta和gamma等高频带功率能量较高,如图2所示;而人处于疲劳状态时,delta和theta低频带的功率能量升高,相应的,beta和gamma高频带的功率能量降低,如图3所示。
由此可见,脑电信号的频域特征区分明显,可以通过后续进一步加工以判断疲劳状态和非疲劳状态。
3.判断识别系统通过分类算法识别用户疲劳状态。
其中,本方法使用K-卷积神经网络算法训练算法模型,以准确识别疲劳和非疲劳两种状态。卷积神经网络算法(convolutional neural networks,CNN)由卷积convolution,激活activation,and池化pooling三种结构组成。CNN输出的结果是每幅图像的特定特征空间。当处理图像分类任务时,把CNN输出的特征空间作为全连接层或全连接神经网络(fully connected neural network,FCN)的输入,用全连接层来完成从输入图像到标签集的映射,即分类,得出用户疲劳与否的判断结果。
上述步骤最重要的是如何通过训练数据迭代调整网络权重,也就是后向传播算法。除了本实施例采用的CNN算法外,还可以适用目前主流的卷积神经网络(CNNs),比如VGG,ResNet等,这些算法都是由简单的CNN调整,组合而来。本方法将原始EEG信号经过去伪迹预处理,对数据做归一化操作,提取频域特征,直接送入CNN网络进行分类。
本方法通过EEG信号采集设备采集用户脑电信号,提取出特征值,计算出不同频带的功率值从而通过卷积神经算法模型自动检测疲劳状态。本方法可以实时获取人的疲劳状态,并及时做出判断,提升了分析的效率和准确性,且拓宽了检测的应用场景。
脑电信号是人大脑的特定放电活动,EEG脑电图是常用的分析方法。EEG具有获取方式的便捷性、信号的稳定性和较低的成本等优势。EEG信号根据频率分布可以分为delta、theta、alpha、beta和gamma频带信号。当人处于疲劳状态时,可以观察到EEG信号中频即alpha波和beta波的活动增强现象。使用便携式EEG采集设备,可以实时获取人的脑电信号,计算脑电信号在不同频段内的功率值和不同频带能量的比值。以频谱能量作为特征,通过机器学习算法准确检测疲劳状态。如果慢波频带的功率值高于高频带的功率值,则判定处于疲劳状态,否则为不疲劳。
请参考图4,图4为本发明所提供的一种基于卷积神经网络的疲劳检测系统的结构示意图,该系统用于实现上述方法,包括:
EEG信号采集设备101,用于采集用户的EEG信号,对EEG信号进行预处理后传输到数据分析系统;
数据分析系统102,用于根据提取EEG信号的特征,传输至判断识别系统;
判断识别系统103,用于通过卷积神经网络算法识别用户疲劳状态。
可见,该系统通过EEG信号采集设备采集用户脑电信号,提取出特征值,计算出不同频带的功率值从而通过算法模型自动检测疲劳状态。本系统可以实时获取人的疲劳状态,并及时做出判断,提升了分析的效率和准确性,且拓宽了检测的应用场景。
对于本发明提供的基于卷积神经网络的疲劳检测系统的介绍请参照前述的基于卷积神经网络的疲劳检测方法的实施例,本发明实施例在此不再赘述。本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本发明所提供的一种基于卷积神经网络的疲劳检测方法、系统进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (9)

1.一种基于卷积神经网络的疲劳检测方法,其特征在于,包括:
EEG信号采集设备采集用户的EEG信号,对EEG信号进行预处理后传输到数据分析系统;
数据分析系统根据提取EEG信号的特征,传输至判断识别系统;
判断识别系统通过卷积神经网络算法识别用户疲劳状态。
2.如权利要求1所述的基于卷积神经网络的疲劳检测方法,其特征在于,所述EEG信号采集设备采集的是用户在静息和疲劳状态下的EEG信号。
3.如权利要求1所述的基于卷积神经网络的疲劳检测方法,其特征在于,所述预处理包括工频滤波和带通滤波。
4.如权利要求1所述的基于卷积神经网络的疲劳检测方法,其特征在于,所述预处理步骤后,还包括对信号进行数据归一化操作。
5.如权利要求1所述的基于卷积神经网络的疲劳检测方法,其特征在于,所述EEG信号的特征包括EEG信号的时域特征、频域特征、时频特征。
6.如权利要求5所述的基于卷积神经网络的疲劳检测方法,其特征在于,所述时域特征包括均值、方差和一阶差分特征。
7.如权利要求5所述的基于卷积神经网络的疲劳检测方法,其特征在于,所述频域特征为信号在不同频带的功率能量值。
8.如权利要求5所述的基于卷积神经网络的疲劳检测方法,其特征在于,采用短时傅里叶变换STFT和小波变换得到所述时频特征。
9.一种基于卷积神经网络的疲劳检测系统,其特征在于,用于实现如权利要求1至8中任意一项所述的方法,包括:
EEG信号采集设备,用于采集用户的EEG信号,对EEG信号进行预处理后传输到数据分析系统;
数据分析系统,用于根据提取EEG信号的特征,传输至判断识别系统;
判断识别系统,用于通过卷积神经网络算法识别用户疲劳状态。
CN202110372671.0A 2021-04-07 2021-04-07 一种基于卷积神经网络的疲劳检测方法、系统 Pending CN113208624A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110372671.0A CN113208624A (zh) 2021-04-07 2021-04-07 一种基于卷积神经网络的疲劳检测方法、系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110372671.0A CN113208624A (zh) 2021-04-07 2021-04-07 一种基于卷积神经网络的疲劳检测方法、系统

Publications (1)

Publication Number Publication Date
CN113208624A true CN113208624A (zh) 2021-08-06

Family

ID=77086612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110372671.0A Pending CN113208624A (zh) 2021-04-07 2021-04-07 一种基于卷积神经网络的疲劳检测方法、系统

Country Status (1)

Country Link
CN (1) CN113208624A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109645989A (zh) * 2018-12-10 2019-04-19 燕山大学 一种麻醉深度估计方法及系统
CN110367967A (zh) * 2019-07-19 2019-10-25 南京邮电大学 一种基于数据融合的便携型轻量化人脑状态检测方法
CN111329497A (zh) * 2020-02-21 2020-06-26 华南理工大学 基于前额脑电信号的可穿戴式疲劳驾驶监测系统及方法
CN111839508A (zh) * 2020-07-30 2020-10-30 陕西科技大学 基于精神状态检测与控制的车辆安全驾驶系统
US20200364539A1 (en) * 2020-07-28 2020-11-19 Oken Technologies, Inc. Method of and system for evaluating consumption of visual information displayed to a user by analyzing user's eye tracking and bioresponse data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109645989A (zh) * 2018-12-10 2019-04-19 燕山大学 一种麻醉深度估计方法及系统
CN110367967A (zh) * 2019-07-19 2019-10-25 南京邮电大学 一种基于数据融合的便携型轻量化人脑状态检测方法
CN111329497A (zh) * 2020-02-21 2020-06-26 华南理工大学 基于前额脑电信号的可穿戴式疲劳驾驶监测系统及方法
US20200364539A1 (en) * 2020-07-28 2020-11-19 Oken Technologies, Inc. Method of and system for evaluating consumption of visual information displayed to a user by analyzing user's eye tracking and bioresponse data
CN111839508A (zh) * 2020-07-30 2020-10-30 陕西科技大学 基于精神状态检测与控制的车辆安全驾驶系统

Similar Documents

Publication Publication Date Title
CN110811609B (zh) 基于自适应模板匹配与机器学习算法融合的癫痫棘波智能检测装置
CN107157477B (zh) 脑电信号特征识别系统及方法
CN103019383B (zh) 一种稳态视觉诱发电位脑—机接口信号识别方法
CN108577834B (zh) 一种用于癫痫间期棘波自动检测的方法
CN113180704A (zh) 一种基于eeg脑波的睡眠纺锤波检测方法、系统
CN104586387A (zh) 一种时、频、空域多参数脑电特征提取与融合方法
CN113208634A (zh) 一种基于eeg脑波的注意力检测方法、系统
CN105942974A (zh) 一种基于低频脑电的睡眠分析方法及系统
CN109770900B (zh) 基于卷积神经网络的脑机接口指令下发方法、系统、装置
CN107361765B (zh) 脑波分析方法及其装置
CN114886388A (zh) 一种麻醉深度监测过程中脑电信号质量的评估方法及装置
CN113208632A (zh) 一种基于卷积神经网络的注意力检测方法、系统
CN114190944A (zh) 基于脑电信号的鲁棒情绪识别方法
CN113907709B (zh) 一种基于耳部eeg的便携式睡眠监测系统
CN107865638A (zh) 计算机可读存储介质、入耳式耳塞检测装置
CN108260012B (zh) 电子装置、视频播放控制方法及相关产品
CN113208631A (zh) 一种基于eeg脑波的眨眼检测方法及系统
CN103816007A (zh) 一种基于脑电频域特征指标化算法的耳鸣治疗设备及方法
CN113208629A (zh) 一种基于eeg信号的阿尔兹海默症筛查方法及系统
CN113180663A (zh) 一种基于卷积神经网络的情绪识别方法、系统
CN113180705A (zh) 一种基于eeg脑波的疲劳检测方法、系统
CN113208633A (zh) 一种基于eeg脑波的情绪识别方法、系统
CN113208624A (zh) 一种基于卷积神经网络的疲劳检测方法、系统
CN111643076A (zh) 一种基于多通道脑电信号的bect棘波智能检测方法
CN114781461B (zh) 一种基于听觉脑机接口的目标探测方法与系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210806