CN113205210A - 复杂地形风电场风速与功率预测方法、系统、设备及存储介质 - Google Patents

复杂地形风电场风速与功率预测方法、系统、设备及存储介质 Download PDF

Info

Publication number
CN113205210A
CN113205210A CN202110476669.8A CN202110476669A CN113205210A CN 113205210 A CN113205210 A CN 113205210A CN 202110476669 A CN202110476669 A CN 202110476669A CN 113205210 A CN113205210 A CN 113205210A
Authority
CN
China
Prior art keywords
wind
wind speed
power plant
meteorological
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110476669.8A
Other languages
English (en)
Other versions
CN113205210B (zh
Inventor
韩毅
韩斌
李颖峰
王迪
王忠杰
冯仰敏
刘瑞
童博
宋子琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Original Assignee
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Thermal Power Research Institute Co Ltd filed Critical Xian Thermal Power Research Institute Co Ltd
Priority to CN202110476669.8A priority Critical patent/CN113205210B/zh
Publication of CN113205210A publication Critical patent/CN113205210A/zh
Application granted granted Critical
Publication of CN113205210B publication Critical patent/CN113205210B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2462Approximate or statistical queries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Educational Administration (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Probability & Statistics with Applications (AREA)
  • Wind Motors (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)

Abstract

本发明提供一种复杂地形风电场风速与功率预测方法、系统、设备及存储介质。方法包括获取目标风电场区域轮毂高度处的中尺度气象预报历史数据;由不同来流风向扇区下,风电场区域性中尺度气象历史风速与各机组机舱风速计测得的同期风速数据的相关关系,建立整场气象风速与各机组点位风速之间的拟合函数;根据短期气象预报风速和拟合函数预测出风电场离散机位处的精确风速,并结合各机组实际功率曲线得到功率预测。本发明从数理统计的角度对复杂地形风电场的精细化风速与功率输出进行了预测,简化了传统物理模型的复杂程度,同时可减少短期功率预测与实际功率输出存在的偏差,为在役复杂地形风电场运维中的能效预测环节提供了有效的解决方法。

Description

复杂地形风电场风速与功率预测方法、系统、设备及存储介质
技术领域
本发明属于风力发电的能效评估技术领域,具体涉及一种复杂地形风电场风速与功率预测方法、系统、设备及存储介质。
背景技术
随着近年来持续进行的风电大规模开发,陆上适合风电开发的风资源丰富、地形简单的区域越来越少,风资源相对丰富、地形复杂的区域成为当前和进后陆上风电开发的重点。复杂地形风电场中高低起伏的地形地貌,加剧了地表对大气边界层流动的撞击、环绕、分离、阻滞作用,很大程度上改变了不同高度层面的平均流速与湍流强度,其风况直接影响着各风电机组的功率输出和发电量。由于风能本身属于随机波动的不稳定能源,加之在复杂地形下,各机组所在位置的风况与风质量存在着一定程度的差异,大规模的风电并入电网系统,必将会对系统的稳定性带来新的挑战。故风电场在生产、运维的过程中,通常需要对风场区域的平均风速进行预测,进而根据机组容量对未来一段时间内风电场所能输出的功率大小进行预测,以便电力生产调度机构需要对未来数小时的风电输出功率有所了解,合理安排调度计划,减轻风电的出力波动对电网电压稳定与功率平衡的影响,同时实现风能的科学与最有利用,提升风电场的运行效益。
目前,在役复杂地形风电场的风功率预测,主要是基于风电场所在区域中尺度气象信息中的风速与风向预报数据,利用物理模拟计算和统计分析方法,对装机位置附近的风速进行短期预测,进而结合风电机组的功率曲线计算出实际输出风电功率,预测出整个风电场的功率。然而,由于受到测风装置的安装数量以及维护成本等条件限制,复杂地形风电场通常只在1~2处代表性地理位置进行实地测风,模拟计算和统计分析得到的风电场中各风机点位处的风况信息难以得到验证与校核,加之风机风速和风电功率之间存在非线性关系,使得风速预测值微小误差将产生较大的功率值误差,从而给电网系统的安全性、稳定性和可控性造成一定程度的影响。
发明内容
针对上述背景技术中提到的难点问题,本发明的目的在于提供一种复杂地形风电场风速与功率预测方法、系统、设备及存储介质,该方法简化了传统物理模拟预测模型的复杂程度,避免了工时较长的在线数值模拟,节省了风电场运维系统中的计算资源,从数理统计的角度为复杂地形风电场基于风机点位的精细化风速、功率预测提供了一种新的解决途径。
为了达到上述目的,本发明采用的技术方案是:
一种复杂地形风电场风速与功率预测方法,包括以下步骤:
获取目标风电场区域轮毂高度处的中尺度气象预报历史数据;
由不同来流风向扇区下,风电场区域性中尺度气象历史风速与各机组机舱风速计测得的同期风速数据的相关关系,建立整场气象风速与各机组点位风速之间的拟合函数;
根据短期气象预报风速和拟合函数预测出风电场离散机位处的精确风速,并结合各机组实际功率曲线得到功率预测。
作为本发明的进一步改进,所述获取目标风电场区域轮毂高度处的中尺度气象预报历史数据具体是:
获取目标风电场区域轮毂高度处的中尺度气象预报历史数据,并从中提取风电场运行投产以来至今的平均风速与风向的时间序列数据,建立气象历史风况数据集。
作为本发明的进一步改进,对气象历史风况数据进行不同来流风向扇区下的筛选与归类得到每个来流扇区方位下的子数据集;
根据获得的每个来流扇区方位下子数据集中的日期和时间序列,获取风电场中各风电机组的同期SCADA运行数据,并从中提取机舱风速计测量得到风速数据,建立相应的整场机组风速数据集;
将每个来流扇区方位下气象子数据集与同期整场风电机组风速数据集合并,建立相应的整场气象预报与机组风速测量数据集;
针对整场气象预报与机组风速测量数据集计算得到气象预报各来流风向下,整场气象预报风速与各风机点位风速之间的相关关系;
根据各风机点位风速与整场气象预报风速之间的相关关系,建立基于气象预报风向与风速的各机组预测风速函数关系库。
作为本发明的进一步改进,对气象历史风况数据进行不同来流风向扇区下的筛选与归类得到每个来流扇区方位下的子数据集,具体包括以下步骤:
来流风向扇区依照经典风向玫瑰图,建立十六方位来流风向,每个方位所代表的风向扇区中心角度,及各角度所代表的来流扇区角度范围的相互关系;
以气象历史风况数据集M中的气象预报轮毂高度处风向数据为基础,所划分的16方位来流风向进行数据筛选,获得每个来流扇区方位下的子数据集。
作为本发明的进一步改进,整场气象预报风速与各风机点位风速之间的相关关系采用函数关系进行拟合,最终根据各拟合函数的均方差与确定系数的优劣程度,建立最优的风速拟合函数:
Di_Vj=fi(Vp)
式中,Di_Vj为各风力机(其中j取1至风机总数)点位处的风速,Vp为整场气象预报风速。
作为本发明的进一步改进,根据短期气象预报风速和拟合函数预测出风电场离散机位处的精确风速具体为:
结合风电场运维系统接入的未来数小时实时气象预报风向与风速数据,从得到各机组预测风速函数关系,计算当前气象预报风况下,各机组点位未来数小时相应的预测风速。
作为本发明的进一步改进,结合各机组实际功率曲线得到功率预测具体为:
根据计算得到的预报风向下,各机组点位未来数小时相应的预测风速,结合各机组的风速-功率曲线表,采用风速内部差值法,得到各机组预测风速下对应的功率预测值,进而对各机组功率预测值进行加和,得到整场的功率输出预测值。
一种复杂地形风电场风速与功率预测系统,包括:
获取模块,用于获取目标风电场区域轮毂高度处的中尺度气象预报历史数据;
计算模块,用于由不同来流风向扇区下,风电场区域性中尺度气象历史风速与各机组机舱风速计测得的同期风速数据的相关关系,建立整场气象风速与各机组点位风速之间的拟合函数;
预测模块,用于根据短期气象预报风速和拟合函数预测出风电场离散机位处的精确风速,并结合各机组实际功率曲线得到功率预测。
一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述复杂地形风电场风速与功率预测方法的步骤。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现所述复杂地形风电场风速与功率预测方法的步骤。
与现有技术方法相比,本发明的有益效果是:
本发明提供的一种基于气象数据与机组实测数据拟合的复杂地形风电场风速与功率预测方法,该方法以风电场所在区域气象预报中的历史风速与风向数据为基础,结合各风电机组机舱风速计所测量的相应风机点位处的同期风速与风向数据,研究不同来流风向扇区下,区域气象预报风速与各个风机点位处风速的拟合函数关系,通过该函数关系预测未来一段时间内各机组位置的风速,进而根据功率曲线精确预测各机组以及整场的功率输出,以降低风电场生产运维中短期预测功率与实际功率存在的偏差。通过历史数据建立整场气象风速与各机组点位风速之间的拟合函数关系,进而根据不同风向下短期气象预报风速预测出风电场离散机位处的风速,并结合各机组实际功率曲线得到功率预测。与传统物理模拟方法相比,该方法简化了的预测模型的复杂程度,避免了工时较长的在线数值模拟,节省了风电场运维系统中的计算资源。本发明从数理统计的角度对复杂地形风电场的精细化风速与功率输出进行了预测,简化了传统物理模型的复杂程度,同时可减少短期功率预测与实际功率输出存在的偏差,为在役复杂地形风电场运维中的能效预测环节提供了有效的解决方法。
进一步地,该方法有效地降低了采用物理模型进行计算时,由于复杂地形引起的湍流效应对流场风速模拟结果的不确定性问题,减少了风电场生产运维中短期预测功率与实际功率存在的偏差,从数理统计的角度为复杂地形风电场基于风机点位的精细化风速、功率预测提供了一种新的解决方法。
附图说明
图1为本发明所涉及的一种基于气象数据与机组实测数据拟合的复杂地形风电场风速与功率预测方法的流程图;
图2为气象预报“东北(D3)”风向下,整场轮毂高度处的预报风速与第1台风机(WT1)轮毂高度处的风速相关关系分布与一阶多项式函数拟合曲线图;
图3为气象预报“东北(D3)”风向下,整场轮毂高度处的预报风速与第10台风机(WT10)轮毂高度处的风速相关关系分布与一阶指数函数拟合曲线图;
图4为本发明复杂地形风电场风速与功率预测系统结构示意图;
图5为本发明电子设备结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚明白,下面结合附图和具体实施例对本发明进一步详细说明:
结合图1,本发明第一个目的在于提供一种基于气象数据与机组实测数据拟合的复杂地形风电场风速与功率预测方法,具体包括以下步骤:
步骤一:获取目标风电场区域轮毂高度处的中尺度气象预报历史数据,并从中提取风电场运行投产以来至今的平均风速与风向的时间序列数据,建立气象历史风况数据集M,其数据结构如表1所示;
表1
日期 时间 气象预报轮毂高度处风向(°) 气象预报轮毂高度处风速(m/s)
2020-10-01 00:00 81 7.29
2020-10-01 00:10 89 7.85
2020-10-01 00:20 80 7.53
2020-10-01 00:30 82 6.87
步骤二:对步骤1建立的气象历史风况数据集M进行不同来流风向扇区下的筛选与归类。
2.1)所述来流风向扇区,可依照经典风向玫瑰图,选用十六方位来流风向,其中每个方位所代表的风向扇区中心角度Di(其中i取1至16),及各角度所代表的来流扇区角度范围如表2所示;
表2 16方位来流风向对应的风向扇区中心角度与扇区角度范围
Figure BDA0003047304010000071
2.2)以气象历史风况数据集M中的气象预报轮毂高度处风向数据为基础,按照2.1)中所划分的16方位来流风向进行数据筛选,获得每个来流扇区方位下的子数据集M_Di(其中i取1至16)。
例如,气象历史风况数据集M中,落于“东北”风扇区内的数据组成了相应的子数据集M_D3,其数据结构如表3所示。
表3
日期 时间 “东北”风向扇区(45°±11.25°) 气象预报轮毂高度处风速(m/s)
2020-10-01 02:00 55° 4.67
2020-10-01 02:10 52° 4.05
2020-10-01 02:20 48° 4.08
2020-10-01 02:30 44° 4.84
步骤三:根据步骤二中获得的每个来流扇区方位下子数据集(M_Di)中的日期和时间序列,获取风电场中各风电机组的同期SCADA运行数据,并从中提取机舱风速计测量得到风速数据,建立相应的整场机组风速数据集Di_WTs。
例如,东北风向扇区下气象风况子数据集M_D3对应的同期整场风电机组风速数据集为D3-WTs,其数据结构如表4所示:
表4
Figure BDA0003047304010000081
步骤四:将步骤二中获得的每个来流扇区方位下气象子数据集(M_Di)与步骤三中获得的同期整场风电机组风速数据集(Di_WTs)合并,建立相应的整场气象预报与机组风速测量数据集M_Di_WTs。例如,M_D3_WTs数据结构如表5所示:
表5
Figure BDA0003047304010000082
步骤五:针对步骤四建立的数据集M_Di_WTs,通过数理统计的方法,研究气象预报各来流风向Di下,整场气象预报风速与各风机点位风速之间的相关关系,可采用多项式、对数、指数等函数关系进行拟合,最终根据各拟合函数的均方差(root mean square error,RMSE)与确定系数(coefficient of determination,R2)的优劣程度,建立最优的风速拟合函数:
Di_Vj=fi(Vp) 式(1)
式(1)中,Di-Vj为各风力机(其中j取1至风机总数)点位处的风速,Vp为整场气象预报风速。
例如,本实施例中,气象预报“东北(D3)”风向下轮毂高度处的预报风速与第1台风机(WT1)轮毂高度处的风速相关关系如图2所示,综合评价各拟合曲线的均方差与确定系数,最终采用的最优曲线拟合为一阶多项式函数:
D3_V1=f3(Vp)=0.8709·Vp+0.587
气象预报“东北(D3)”风向下轮毂高度处的预报风速与第10台风机(WT10)轮毂高度处的风速相关关系如图3所示,综合评价各拟合曲线的均方差与确定系数,最终采用的最优曲线拟合为一阶指数函数:
Figure BDA0003047304010000091
步骤六:根据步骤五得到的各风机点位风速与整场气象预报风速之间的相关关系,建立基于气象预报风向与风速的各机组预测风速函数关系库。
例如,本实施例中,基于气象预报的风向扇区,建立得到的各机组位置预测风速与气象预报风速的关系库结构如表6所示。
表6
Figure BDA0003047304010000092
Figure BDA0003047304010000101
步骤七:结合风电场运维系统接入的未来数小时实时气象预报风向与风速数据,从步骤六中得到的各机组预测风速函数关系,计算当前气象预报风况下,各机组点位未来数小时相应的预测风速。
例如,若风电场当前接入的未来某时刻的气象预报风向为49.25°(属于东北风D3扇区)、预报风速为Vp=8.5m/s,则根据表6,采用D3_V1的计算公式,得到第1台机组轮毂高度处同期的预测风速为D3_V1=0.8709·Vp+0.587=7.99m/s;采用D3_V10的计算公式,得到第10台机组轮毂高度处同期的预测风速为
Figure BDA0003047304010000102
步骤八:根据步骤七中计算得到的预报风向下,各机组点位未来数小时相应的预测风速,结合各机组的风速-功率曲线表,采用风速内部差值法,得到各机组预测风速下对应的功率预测值,进而对各机组功率预测值进行加和,得到整场的功率输出预测值。
例如,对于风电场当前接入的未来某时刻区域性气象预报数据:Vp=8.5m/s来流风向49.25°,通过拟合函数计算得到第1台机组轮毂高度处在该时刻的预测风速为D3_V1=7.99m/s,根据该机型风速-功率曲线表查得:7.5m/s风速对应1212kW输出功率,8.0m/s风速对应1418kW输出功率,采用风速内部差值法,得到D3_V1对应的输出功率为:
Figure BDA0003047304010000103
通过拟合函数计算得到第10台机组轮毂高度处在该时刻的预测风速为D3_V10=8.01m/s,根据该机型风速-功率曲线表查得:8.0m/s风速对应1418kW输出功率,8.5m/s风速对应1604kW输出功率,采用风速内部差值法,得到D3_V10对应的输出功率为:
Figure BDA0003047304010000111
如图4所示,本发明第二个目的是提供一种复杂地形风电场风速与功率预测系统,包括:
获取模块,用于获取目标风电场区域轮毂高度处的中尺度气象预报历史数据;
计算模块,用于由不同来流风向扇区下,风电场区域性中尺度气象历史风速与各机组机舱风速计测得的同期风速数据的相关关系,建立整场气象风速与各机组点位风速之间的拟合函数;
预测模块,用于根据短期气象预报风速和拟合函数预测出风电场离散机位处的精确风速,并结合各机组实际功率曲线得到功率预测。
如图5所示,本发明第三个目的是提供一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现所述复杂地形风电场风速与功率预测方法的步骤。
本发明第四个目的是提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现所述复杂地形风电场风速与功率预测方法的步骤。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

1.一种复杂地形风电场风速与功率预测方法,其特征在于,包括以下步骤:
获取目标风电场区域轮毂高度处的中尺度气象预报历史数据;
由不同来流风向扇区下,风电场区域性中尺度气象历史风速与各机组机舱风速计测得的同期风速数据的相关关系,建立整场气象风速与各机组点位风速之间的拟合函数;
根据短期气象预报风速和拟合函数预测出风电场离散机位处的精确风速,并结合各机组实际功率曲线得到功率预测。
2.根据权利要求1所述的方法,其特征在于,
所述获取目标风电场区域轮毂高度处的中尺度气象预报历史数据具体是:
获取目标风电场区域轮毂高度处的中尺度气象预报历史数据,并从中提取风电场运行投产以来至今的平均风速与风向的时间序列数据,建立气象历史风况数据集。
3.根据权利要求1所述的方法,其特征在于,
对气象历史风况数据进行不同来流风向扇区下的筛选与归类得到每个来流扇区方位下的子数据集;
根据获得的每个来流扇区方位下子数据集中的日期和时间序列,获取风电场中各风电机组的同期SCADA运行数据,并从中提取机舱风速计测量得到风速数据,建立相应的整场机组风速数据集;
将每个来流扇区方位下气象子数据集与同期整场风电机组风速数据集合并,建立相应的整场气象预报与机组风速测量数据集;
针对整场气象预报与机组风速测量数据集计算得到气象预报各来流风向下,整场气象预报风速与各风机点位风速之间的相关关系;
根据各风机点位风速与整场气象预报风速之间的相关关系,建立基于气象预报风向与风速的各机组预测风速函数关系库。
4.根据权利要求3所述的方法,其特征在于,
对气象历史风况数据进行不同来流风向扇区下的筛选与归类得到每个来流扇区方位下的子数据集,具体包括以下步骤:
来流风向扇区依照经典风向玫瑰图,建立十六方位来流风向,每个方位所代表的风向扇区中心角度,及各角度所代表的来流扇区角度范围的相互关系;
以气象历史风况数据集M中的气象预报轮毂高度处风向数据为基础,所划分的16方位来流风向进行数据筛选,获得每个来流扇区方位下的子数据集。
5.根据权利要求3所述的方法,其特征在于,
整场气象预报风速与各风机点位风速之间的相关关系采用函数关系进行拟合,最终根据各拟合函数的均方差与确定系数的优劣程度,建立最优的风速拟合函数:
Di-Vj=fi(Vp)
式中,Di-j为各风力机点位处的风速,Vp为整场气象预报风速,其中j取1至风机总数。
6.根据权利要求1所述的方法,其特征在于,
根据短期气象预报风速和拟合函数预测出风电场离散机位处的精确风速具体为:
结合风电场运维系统接入的未来数小时实时气象预报风向与风速数据,从得到各机组预测风速函数关系,计算当前气象预报风况下,各机组点位未来数小时相应的预测风速。
7.根据权利要求1所述的方法,其特征在于,
结合各机组实际功率曲线得到功率预测具体为:
根据计算得到的预报风向下,各机组点位未来数小时相应的预测风速,结合各机组的风速-功率曲线表,采用风速内部差值法,得到各机组预测风速下对应的功率预测值,进而对各机组功率预测值进行加和,得到整场的功率输出预测值。
8.一种复杂地形风电场风速与功率预测系统,其特征在于,包括:
获取模块,用于获取目标风电场区域轮毂高度处的中尺度气象预报历史数据;
计算模块,用于由不同来流风向扇区下,风电场区域性中尺度气象历史风速与各机组机舱风速计测得的同期风速数据的相关关系,建立整场气象风速与各机组点位风速之间的拟合函数;
预测模块,用于根据短期气象预报风速和拟合函数预测出风电场离散机位处的精确风速,并结合各机组实际功率曲线得到功率预测。
9.一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现权利要求1-7任一项所述复杂地形风电场风速与功率预测方法的步骤。
10.一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-7任一项所述复杂地形风电场风速与功率预测方法的步骤。
CN202110476669.8A 2021-04-29 2021-04-29 复杂地形风电场风速与功率预测方法、系统、设备及存储介质 Active CN113205210B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110476669.8A CN113205210B (zh) 2021-04-29 2021-04-29 复杂地形风电场风速与功率预测方法、系统、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110476669.8A CN113205210B (zh) 2021-04-29 2021-04-29 复杂地形风电场风速与功率预测方法、系统、设备及存储介质

Publications (2)

Publication Number Publication Date
CN113205210A true CN113205210A (zh) 2021-08-03
CN113205210B CN113205210B (zh) 2023-07-21

Family

ID=77027848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110476669.8A Active CN113205210B (zh) 2021-04-29 2021-04-29 复杂地形风电场风速与功率预测方法、系统、设备及存储介质

Country Status (1)

Country Link
CN (1) CN113205210B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113723683A (zh) * 2021-08-30 2021-11-30 西安热工研究院有限公司 一种风电场利润预测方法及系统
CN115271262A (zh) * 2022-09-26 2022-11-01 南京图德科技有限公司 一种广域风力发电功率预测方法、装置及存储介质
CN116341420A (zh) * 2023-05-22 2023-06-27 西安鑫风动力科技有限公司 一种用于机组的地貌与风场的地-风耦合方法及系统
WO2023063888A3 (en) * 2021-10-14 2023-07-20 Envision Digital International Pte. Ltd. Method and apparatus for predicting wind power, and device and storage medium thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103473621A (zh) * 2013-09-29 2013-12-25 中能电力科技开发有限公司 风电场短期功率预测方法
CN103489046A (zh) * 2013-09-29 2014-01-01 中能电力科技开发有限公司 风电场短期功率预测方法
CN104699936A (zh) * 2014-08-18 2015-06-10 沈阳工业大学 基于cfd短期风速预测风电场的扇区管理方法
CN105160060A (zh) * 2015-07-17 2015-12-16 中国电力科学研究院 一种基于实际功率曲线拟合的风电场理论功率确定方法
CN106650977A (zh) * 2015-10-29 2017-05-10 中能电力科技开发有限公司 应用于新建风电场的短期功率预测方法
CN111861023A (zh) * 2020-07-28 2020-10-30 南方电网科学研究院有限责任公司 基于统计学的混合风电功率预测方法、装置
CN112580900A (zh) * 2021-02-23 2021-03-30 国能日新科技股份有限公司 一种基于单风机建模的短期功率预测方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103473621A (zh) * 2013-09-29 2013-12-25 中能电力科技开发有限公司 风电场短期功率预测方法
CN103489046A (zh) * 2013-09-29 2014-01-01 中能电力科技开发有限公司 风电场短期功率预测方法
CN104699936A (zh) * 2014-08-18 2015-06-10 沈阳工业大学 基于cfd短期风速预测风电场的扇区管理方法
CN105160060A (zh) * 2015-07-17 2015-12-16 中国电力科学研究院 一种基于实际功率曲线拟合的风电场理论功率确定方法
CN106650977A (zh) * 2015-10-29 2017-05-10 中能电力科技开发有限公司 应用于新建风电场的短期功率预测方法
CN111861023A (zh) * 2020-07-28 2020-10-30 南方电网科学研究院有限责任公司 基于统计学的混合风电功率预测方法、装置
CN112580900A (zh) * 2021-02-23 2021-03-30 国能日新科技股份有限公司 一种基于单风机建模的短期功率预测方法及系统

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
RAJA M. ASIM FEROZ ET AL.: "Wind speed and power forecasting of a utility-scale wind farm with inter-farm wake interference and seasonal variation", vol. 42 *
彭怀午等: "基于趋势分析的风电功率超短期预测系统研究", 《内蒙古大学学报(自然科学版)》 *
彭怀午等: "基于趋势分析的风电功率超短期预测系统研究", 《内蒙古大学学报(自然科学版)》, no. 01, 15 January 2016 (2016-01-15) *
王健等: "风电功率预测技术综述", 《东北电力大学学报》 *
王健等: "风电功率预测技术综述", 《东北电力大学学报》, no. 03, 15 June 2011 (2011-06-15) *
韩毅等: "复杂地形风场的风资源评估方法与展望", 《热力发电》 *
韩毅等: "复杂地形风场的风资源评估方法与展望", 《热力发电》, vol. 49, no. 11, 30 November 2020 (2020-11-30) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113723683A (zh) * 2021-08-30 2021-11-30 西安热工研究院有限公司 一种风电场利润预测方法及系统
WO2023063888A3 (en) * 2021-10-14 2023-07-20 Envision Digital International Pte. Ltd. Method and apparatus for predicting wind power, and device and storage medium thereof
CN115271262A (zh) * 2022-09-26 2022-11-01 南京图德科技有限公司 一种广域风力发电功率预测方法、装置及存储介质
CN116341420A (zh) * 2023-05-22 2023-06-27 西安鑫风动力科技有限公司 一种用于机组的地貌与风场的地-风耦合方法及系统
CN116341420B (zh) * 2023-05-22 2023-08-15 华能新疆青河风力发电有限公司 一种用于机组的地貌与风场的地-风耦合方法及系统

Also Published As

Publication number Publication date
CN113205210B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US11408399B2 (en) Forecasting output power of wind turbine in wind farm
CN113205210B (zh) 复杂地形风电场风速与功率预测方法、系统、设备及存储介质
CN103268366B (zh) 一种适用于分散式风电场的组合风电功率预测方法
US10914291B2 (en) Annual energy production of wind turbine sites
CN107507097A (zh) 一种风电功率短期预测方法
CN106505631B (zh) 智能风电风功率预测系统
CN107292514B (zh) 风电场生产运行测风塔选址方法及装置
CN110929459B (zh) 一种复杂地形风电场测风塔选址方法
CN104699936A (zh) 基于cfd短期风速预测风电场的扇区管理方法
CN104299044A (zh) 基于聚类分析的风功率短期预测系统及预测方法
CN103489046A (zh) 风电场短期功率预测方法
CN110264002B (zh) 基于聚类分析的风电场微观选址方案评价方法
CN105389634A (zh) 一种组合式短期风电功率预测系统及方法
CN101794996A (zh) 风电场出力实时预测方法
CN115358606B (zh) 一种平缓地形下在役风电场能效评估方法及系统
US20210312101A1 (en) Method for determining a wind turbine layout
CN110991701A (zh) 一种基于数据融合的风电场风机风速预测方法及系统
CN109146192A (zh) 一种考虑风电机组运行工况的风电功率预测方法
CN109636019B (zh) 基于神经网络算法的测风塔布置方案确定方法
CN111666725A (zh) 一种适应非复杂地形风电场的测风塔规划选址方法及系统
CN113051845B (zh) 在役山地风电场实时风资源可视化评估方法、系统、设备及存储介质
CN113344252A (zh) 一种基于虚拟气象技术的风功率预测方法
CN106779202B (zh) 一种考虑空气湿度的风电功率预测方法
CN112884601A (zh) 一种基于天气区划策略的电力系统运行风险评估方法
CN113610285A (zh) 一种分散式风电的功率预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant