CN113204243B - 可重构无人车自主对接过程远端接近方法 - Google Patents

可重构无人车自主对接过程远端接近方法 Download PDF

Info

Publication number
CN113204243B
CN113204243B CN202110754762.0A CN202110754762A CN113204243B CN 113204243 B CN113204243 B CN 113204243B CN 202110754762 A CN202110754762 A CN 202110754762A CN 113204243 B CN113204243 B CN 113204243B
Authority
CN
China
Prior art keywords
unmanned vehicle
point
steering
points
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110754762.0A
Other languages
English (en)
Other versions
CN113204243A (zh
Inventor
倪俊
吴家枫
袁昊
姜旭
马明昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202110754762.0A priority Critical patent/CN113204243B/zh
Publication of CN113204243A publication Critical patent/CN113204243A/zh
Application granted granted Critical
Publication of CN113204243B publication Critical patent/CN113204243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/24Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions
    • B60D1/36Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions for facilitating connection, e.g. hitch catchers, visual guide means, signalling aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/58Auxiliary devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Mechanical Engineering (AREA)
  • Economics (AREA)
  • Transportation (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供一种可重构无人车自主对接过程远端接近方法,不仅能够解决无人车远端接近时的轨迹规划问题,满足可重构无人车自主动态重构过程的要求,且能够提高对接效率。为了提高可重构无人车的对接效率,本发明在可重构无人车对接过程的远端接近过程中采用了考虑转向模式切换的远端接近轨迹实时规划算法,采用该算法能够规划出所需时间短的接近轨迹。

Description

可重构无人车自主对接过程远端接近方法
技术领域
本发明涉及一种无人车接近方法,具体涉及一种无人车重构过程远端接近方法,属于无人车技术领域。
背景技术
无人车可自主执行物流、运输、配送、巡逻、公交、零售、清扫、接驳、救援等功能型任务,是未来智能交通与智慧城市建设的核心要素。可以预见,在未来交通出行与人类生活中,大部分任务将由无人车替代人类完成,车辆将由传统的载运工具演变成为执行功能型任务的智慧载体,并对人类社会发展产生重大影响。与传统智能网联汽车相比,无人车以执行功能型任务为目的,不具有人类驾驶机构,颠覆传统汽车以人为中心的基本设计理念,构型创新且灵活多变。因此,无人车的基础理论及关键技术必须实现原始突破,是智能汽车时代所带来的全新挑战,是国际国内的研究热点。
随着未来智能交通与智慧城市内涵的不断拓展,无人车的发展面临着执行任务繁杂多变、行驶环境立体多维、功能需求不断拓展、载体构型单一局限等重大挑战。显然,传统固定构型的无人车已难以应对上述挑战,无法满足未来智能交通与智慧城市中对新型智能载运工具的需要。可重构无人车技术彻底突破传统固定构型无人车形态约束,可以自主实现功能重构、拓扑重构等复杂功能,实现多无人车单元间的自主组合、拼接、解体,全面拓展无人车的功能任务执行边界,有望成为未来颠覆性创新技术。无人车单元在接收到对接指令后如何进行轨迹规划以快速接近是无人车单元后续能够实现对接的基础。
发明内容
有鉴于此,本发明提供一种可重构无人车自主对接过程远端接近方法,不仅能够解决无人车远端接近时的轨迹规划问题,满足可重构无人车自主动态重构过程的要求,且能够提高对接效率。
可重构无人车具有两个以上无人车单元;两个以上所述无人车单元通过对接实现无人车的重构;
所述无人车单元具有蟹型转向及原地转向模式;
可重构无人车自主重构过程远端接近方法指,两个无人车单元收到对接指令中包含了设定的目标位置,收到对接指令的无人车单元首先通过轨迹规划算法,得到一条该算法下的最短路径作为初始接近轨迹;
然后再通过转向模式的选用对所述初始接近轨迹进行优化,得到所需时间较短的远端接近轨迹;
所述转向模式的选用是所述无人车单元根据不同工况对蟹型转向及原地转向模式进行选用。
作为本发明的一种优选方式,转向模式选用时,依次对获得的初始接近轨迹中的路径点进行如下判断:
令当前判断的路径点为n点,依次判断初始接近轨迹中n点后续其它路径点与n点是否满足设定条件,令初始接近轨迹中n点后续的任一路径点为m点,设定条件如下:
Figure 33590DEST_PATH_IMAGE001
其中:以初始接近轨迹中的第一个轨迹点为坐标原点,正北方向为y向,以正东方向为x向建立全局坐标系;(x n y n ψ n )分别为路径点n点在该坐标系下的横向坐标、纵向坐标和斜率;(x m y m ψ m )分别为路径点m点在该坐标系下的横向坐标、纵向坐标和斜率;
当m点和n点满足上述条件1时,无人车单元选用原地转向从n点行驶到m点;
当m点和n点满足条件2时,则进一步判断是否可采用蟹型转向从n点行驶到m点,判断条件如下:
Figure 366482DEST_PATH_IMAGE002
其中θ max 为蟹型转向时无人车单元的最大转角,为已知值;令n点到m点连接的直线段上有M个障碍物,d i 表示第i个障碍物到线段n-m的最短距离,i=1,…,M;d min 为无人车单元与障碍物之间的安全距离,为设定值,l nm 为线段(n-m)的长度,l max 为蟹型转向最大距离;
当m点与n点之间满足以上判断条件时,无人车单元采用蟹型转向从n点驶向m点;
确定从n点行驶到m点的转向模式后,后续从m点开始判断,获得从m点行驶到下一路径点的转向模式。
作为本发明的一种优选方式,两个所述无人车单元分别通过远端接近轨迹行进至间隔设定距离。
作为本发明的一种优选方式,所述无人车单元为具有两个车轮的无人车,两个所述车轮具有独立转向功能;无人车单元内部集成有自动驾驶模块、线控执行模块、动力电池模块和综合控制模块
有益效果:
为了提高可重构无人车的对接效率,本发明在可重构无人车对接过程的远端接近过程中采用了考虑转向模式切换的远端接近轨迹实时规划算法,采用该算法能够规划出所需时间短的接近轨迹。
附图说明
图1为本发明的可重构无人车自主对接过程远端接近路径全局规划示意图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
为了解决可重构无人车拓扑重构过程远端接近过程中,两个无人车单元接近时的轨迹规划问题,本实施例提供一种可重构无人车自主对接过程远端接近方法,该远端接近方法采用考虑转向模式切换的远端接近轨迹实时规划算法,能够规划出所需时间较短的接近轨迹,无人车单元通过对该轨迹进行轨迹跟踪,可快速完成拓扑重构远端接近。
可重构无人车的拓扑重构是指:当需要两个以上无人车单元共同工作时,两个以上无人车单元依据实际使用需求首尾对接,实现无人车的重构。无人车单元为具有两个车轮的无人车,两个车轮具有独立转向功能,因此无人车单元能够实现双桥转向、蟹型转向及原地转向等转向模式。无人车单元内部集成有无人车的自动驾驶模块、线控执行模块、动力电池模块和综合控制模块。
为实现两个无人车单元的精准对接,两个无人车单元在接收到外部对接指令后,需先进行交汇。两个无人车单元收到的对接指令中包含了设定的目标位置,收到对接指令的两个无人车单元通过轨迹规划与轨迹跟踪快速接近目标位置进行交汇。
针对此阶段提出了一种考虑转向模式切换的远端接近轨迹实时规划算法,两个无人车单元依据该算法规划出所需时间较短的远端接近轨迹。远端接近轨迹实时规划算法的具体实施过程为:
收到对接指令的两个无人车单元首先通过常规轨迹规划算法(如A星算法),得到一条该算法下的最短路径作为初始接近轨迹,令该初始接近轨迹由N个路径点构成;定义初始接近轨迹中的第一个轨迹点为坐标原点,在第一个轨迹点处建立直角坐标系作为全局坐标系,该直角坐标系中以正北方向为y向,以正东方向为x向;则初始接近轨迹中路径点可表示为(xyψ),其中x指路径点的横向坐标,y指路径点的纵向坐标,ψ指该路径点在上述直角坐标系中的斜率;然后再通过转向模式的选用对该初始接近轨迹进行优化,以获得较短接近时间路径,将该较短接近时间路径作为远端接近轨迹。
转向模式的选用指根据不同工况对采用独立转向技术的无人车单元的双桥转向、蟹型转向及原地转向模式进行选用(即转向模式切换):其中双桥转向模式稳定性强,适用于长距离和长时间等工况;蟹型转向模式可在不改变车头朝向的情况下改变车辆位置,适用于快速换道等工况;原地转向可在不改变车辆位置的情况下改变车头朝向,适用于狭窄区域掉头等工况。针对不同的工况选择不同的转向模式,可减少远端接近过程所需的时间。
转向模式选用时,依次对获得的初始接近轨迹中的路径点进行判断,判断初始接近轨迹中的两个路径点是否满足设定条件。判断时,从初始接近轨迹中的初始点(即第一个轨迹点)开始,依次对初始接近轨迹中其后续路径点进行遍历搜索。
令当前进行判断的路径点为n点,依次判断初始接近轨迹中其后续其它点(令初始接近轨迹中n点后续任一点为m点)与n点是否满足以下两个条件其中之一:
Figure 305488DEST_PATH_IMAGE003
其中:(x n y n ψ n )分别为路径点n点的横向坐标、纵向坐标和斜率;(x m y m ψ m )分别为路径点m点的横向坐标、纵向坐标和斜率;
当m点和n点满足上述条件1时,选用原地转向控制无人车单元从n点行驶到m点,减少远端接近时间;
当m点和n点满足条件2时,则进一步判断是否可采用蟹型转向从n点行驶到m点,判断条件如下:
Figure 751119DEST_PATH_IMAGE002
其中θ max 为蟹型转向时无人车单元的最大转角,为已知值;令n点到m点连接的直线段上有M个障碍物,d i 表示第i个障碍物到线段n-m的最短距离,i=1,…,M;d min 为无人车单元与障碍物之间的安全距离,为设定值;l nm 为线段(n-m)的长度,l max 为蟹型转向最大距离。
上述判断条件用于判断从n点到m点的角度是否小于无人车单元的最大转角,从n点到m点连接的直线段与所有障碍点的最短距离是否大于安全距离,从n点到m点连接的直线段长度是否小于蟹型转向最大距离。
当m点与n点之间满足以上判断条件时,则认为无人车单元可以采用蟹型转向从n点驶向m点,从而减少远端接近所需时间。
确定好初始接近轨迹中n点行驶到m点的转向模式后,后续从m点继续采用上述方法进行遍历判断,直至无人车单元能够行驶至初始接近轨迹中的最后一个路径点(即目标位置);由此对初始接近轨迹中的转向模式进行选用,得到接近时间较短的远端接近轨迹。
如图1所示,当无人车单元需要从初始位置行驶到目标位置时,首先根据A星算法规划出得到实线路径(即初始接近轨迹),然后通过对初始接近轨迹进行上述判断,结合预设的θ max d min l max 的值进行转向模式的选用,得到适用于无人车远端接近的虚线路径,即远端接近轨迹。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.可重构无人车自主对接过程远端接近方法,其特征在于,所述可重构无人车具有两个以上无人车单元;两个以上所述无人车单元通过对接实现无人车的重构;
所述无人车单元具有蟹型转向及原地转向模式;
两个无人车单元收到对接指令中包含了设定的目标位置,收到对接指令的无人车单元首先通过轨迹规划算法,得到一条该算法下的最短路径作为初始接近轨迹;
然后再通过转向模式的选用对所述初始接近轨迹进行优化,得到所需时间较短的远端接近轨迹;
所述转向模式的选用是所述无人车单元根据不同工况对蟹型转向及原地转向模式进行选用;
转向模式选用时,依次对获得的初始接近轨迹中的路径点进行如下判断:
令当前进行判断的路径点为n点,依次判断初始接近轨迹中n点后续其它路径点与n点是否满足设定条件,令初始接近轨迹中n点后续的任一路径点为m点,设定条件如下:
Figure 447384DEST_PATH_IMAGE001
其中:以初始接近轨迹中的第一个轨迹点为坐标原点,正北方向为y向,以正东方向为x向建立全局坐标系;(x n y n ψ n )分别为路径点n点在该坐标系下的横向坐标、纵向坐标和斜率;(x m y m ψ m )分别为路径点m点在该坐标系下的横向坐标、纵向坐标和斜率;
当m点和n点满足上述条件1时,无人车单元选用原地转向从n点行驶到m点;
当m点和n点满足条件2时,则进一步判断是否可采用蟹型转向从n点行驶到m点,判断条件如下:
Figure 771049DEST_PATH_IMAGE002
其中θ max 为蟹型转向时无人车单元的最大转角,为已知值;令n点到m点连接的直线段上有M个障碍物,d i 表示第i个障碍物到线段n-m的最短距离,i=1,…,M;d min 为无人车单元与障碍物之间的安全距离,为设定值,l nm 为线段(n-m)的长度,l max 为蟹型转向最大距离;
当m点与n点之间满足以上判断条件时,无人车单元采用蟹型转向从n点驶向m点;
确定从n点行驶到m点的转向模式后,后续从m点开始判断,获得从m点行驶到下一路径点的转向模式。
2.如权利要求1所述的可重构无人车自主对接过程远端接近方法,其特征在于,两个所述无人车单元分别通过远端接近轨迹行进至间隔设定距离。
3.如权利要求1所述的可重构无人车自主对接过程远端接近方法,其特征在于,所述无人车单元为具有两个车轮的无人车,两个所述车轮具有独立转向功能。
4.如权利要求3所述的可重构无人车自主对接过程远端接近方法,其特征在于,所述无人车单元内部集成有自动驾驶模块、线控执行模块、动力电池模块和综合控制模块。
CN202110754762.0A 2021-07-05 2021-07-05 可重构无人车自主对接过程远端接近方法 Active CN113204243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110754762.0A CN113204243B (zh) 2021-07-05 2021-07-05 可重构无人车自主对接过程远端接近方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110754762.0A CN113204243B (zh) 2021-07-05 2021-07-05 可重构无人车自主对接过程远端接近方法

Publications (2)

Publication Number Publication Date
CN113204243A CN113204243A (zh) 2021-08-03
CN113204243B true CN113204243B (zh) 2021-09-14

Family

ID=77022706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110754762.0A Active CN113204243B (zh) 2021-07-05 2021-07-05 可重构无人车自主对接过程远端接近方法

Country Status (1)

Country Link
CN (1) CN113204243B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795121A (zh) * 2004-02-25 2006-06-28 戴姆勒-克莱斯勒股份公司 用于车辆组合的控制系统
CN102661749A (zh) * 2012-05-11 2012-09-12 苏州大方特种车股份有限公司 动力平板运输车精确对接控制系统
CN103217978A (zh) * 2013-03-28 2013-07-24 燕山大学 一种实现液压载重车多车组协调作业的控制方法
CN111216141A (zh) * 2020-02-03 2020-06-02 北京邮电大学 一种可对接重构球形机器人
CN112363510A (zh) * 2020-11-23 2021-02-12 西南交通大学 一种自动驾驶编组车自动对接方法
CN113009912A (zh) * 2021-02-20 2021-06-22 中国重汽集团济南动力有限公司 一种基于混合a星的低速商用无人车路径规划算法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9709969B2 (en) * 2013-03-15 2017-07-18 Deere & Company Methods and apparatus to control machine configurations
US9233710B2 (en) * 2014-03-06 2016-01-12 Ford Global Technologies, Llc Trailer backup assist system using gesture commands and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1795121A (zh) * 2004-02-25 2006-06-28 戴姆勒-克莱斯勒股份公司 用于车辆组合的控制系统
CN102661749A (zh) * 2012-05-11 2012-09-12 苏州大方特种车股份有限公司 动力平板运输车精确对接控制系统
CN103217978A (zh) * 2013-03-28 2013-07-24 燕山大学 一种实现液压载重车多车组协调作业的控制方法
CN111216141A (zh) * 2020-02-03 2020-06-02 北京邮电大学 一种可对接重构球形机器人
CN112363510A (zh) * 2020-11-23 2021-02-12 西南交通大学 一种自动驾驶编组车自动对接方法
CN113009912A (zh) * 2021-02-20 2021-06-22 中国重汽集团济南动力有限公司 一种基于混合a星的低速商用无人车路径规划算法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
我国功能型无人车发展与可重构无人车技术;倪俊,等;《https://www.sohu.com/a/457839832_620780》;20210329;第1-6页 *
自行式可拼接重型平板车的设计;仝令胜,等;《工程机械》;20080430;第39卷;第17-20页 *

Also Published As

Publication number Publication date
CN113204243A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
CN108196536B (zh) 一种改进的无人车快速搜索随机树路径规划方法
Sekhavat et al. Topological property for collision-free nonholonomic motion planning: The case of sinusoidal inputs for chained form systems
CN110471426B (zh) 基于量子狼群算法的无人驾驶智能车自动避碰方法
US20100299013A1 (en) Using topological structure for path planning in semi-structured environments
CN111174797B (zh) 一种封闭区域全局路径规划方法
CN110609547A (zh) 一种基于可视图引导的移动机器人规划方法
CN111309004A (zh) 一种基于改进的跳点搜索算法移动机器人路径规划方法
Klančar et al. Optimal constant acceleration motion primitives
CN111982142A (zh) 一种基于改进a星算法的智能车全局路径规划方法
Zhang et al. Hybrid A-based curvature continuous path planning in complex dynamic environments
Huang et al. Research on path planning algorithm of autonomous vehicles based on improved RRT algorithm
Tazaki et al. Parking trajectory planning using multiresolution state roadmaps
Fuji et al. Trajectory planning for automated parking using multi-resolution state roadmap considering non-holonomic constraints
CN113204243B (zh) 可重构无人车自主对接过程远端接近方法
Yang et al. AGV path planning based on smoothing A* algorithm
Li et al. Real-time local path planning for intelligent vehicle combining tentacle algorithm and B-spline curve
US20240004395A1 (en) Intelligent mowing system and intelligent mowing device
Zeng et al. A unified optimal planner for autonomous parking vehicle
Zeng et al. A steerable curvature approach for efficient executable path planning for on-road autonomous vehicle
CN113253743B (zh) 可重构无人车自主对接过程近端捕获方法
Mandala et al. The BARN Challenge 2023--Autonomous Navigation in Highly Constrained Spaces--Inventec Team
Hu et al. Decision-making system based on finite state machine for low-speed autonomous vehicles in the park
Wang et al. A hierarchical planning framework of the intersection with blind zone and uncertainty
CN111427346B (zh) 适用于车型机器人的局部路径规划与追踪方法
Shi et al. Local path planning of unmanned vehicles based on improved RRT algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant