CN113203931B - γ射线辐照后CCD饱和信号的原位测量系统及方法 - Google Patents

γ射线辐照后CCD饱和信号的原位测量系统及方法 Download PDF

Info

Publication number
CN113203931B
CN113203931B CN202110456924.2A CN202110456924A CN113203931B CN 113203931 B CN113203931 B CN 113203931B CN 202110456924 A CN202110456924 A CN 202110456924A CN 113203931 B CN113203931 B CN 113203931B
Authority
CN
China
Prior art keywords
ccd
signal
irradiation
light source
ccd sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110456924.2A
Other languages
English (en)
Other versions
CN113203931A (zh
Inventor
王祖军
焦仟丽
薛院院
贾同轩
马武英
何宝平
刘敏波
盛江坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Northwest Institute of Nuclear Technology
Original Assignee
Xiangtan University
Northwest Institute of Nuclear Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University, Northwest Institute of Nuclear Technology filed Critical Xiangtan University
Priority to CN202110456924.2A priority Critical patent/CN113203931B/zh
Publication of CN113203931A publication Critical patent/CN113203931A/zh
Application granted granted Critical
Publication of CN113203931B publication Critical patent/CN113203931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明提供一种γ射线辐照后CCD饱和信号的原位测量系统及方法,该系统和方法能够有效降低现有测量系统在开展γ射线辐照实验时测试的繁琐度和实验人员的危险性,提高实验效率;同时,该系统和方法能获取辐照完成后短时间内的饱和信号参数,为研究CCD的60Coγ射线辐照总剂量效应提供测试技术支撑。该原位测量系统包括光源单元、辐射源单元、CCD辐照单元、信号处理单元和上位机;辐射源单元用于诱发CCD辐照单元产生电离损伤;光源单元用于给CCD辐照单元提供均匀光源,使其达到饱和工作状态;信号处理单元用于采集CCD辐照单元的图像数据,并将图像数据无线长距离的传输至上位机;上位机接收图像数据并对其进行处理,获得饱和信号的变化曲线。

Description

γ射线辐照后CCD饱和信号的原位测量系统及方法
技术领域
本发明涉及辐射效应测试领域,具体涉及一种γ射线辐照后电荷耦合器件饱和信号的原位测量系统及方法。
背景技术
电荷耦合器件(charge coupled device,CCD)是一种MOS结构的固态光电转换式图像传感器,它是以电荷作为信号,通过栅压在氧化层下形成转移势垒,把耗尽层中的光生电荷转移到输出放大器而输出电学信号,具有成像、信号处理、通信等功能。因电荷耦合器件具有噪声低、重量轻、动态范围广、工作稳定和量子效率高等优点,被广泛应用在对地遥感、遥测以及空间科学探测等领域。然而,CCD在空间辐射或核辐射环境中会受到电离损伤的影响,会产生总剂量效应,导致CCD性能退化,严重时甚至功能失效,进而影响到在轨航天系统的性能和运行寿命。
空间环境中的高能电子、质子等均会诱发CCD产生电离损伤,导致CCD饱和信号减小,从而影响CCD性能,因此饱和信号是CCD抗辐照损伤性能考核的一个重要辐射敏感参数。目前,大量的理论计算和科学实践表明,60Coγ源是开展元器件电离总剂量效应地面模拟试验研究最理想的辐射源。在对CCD抗辐射性能进行地面评估与验证时,通常采用60Coγ射线开展CCD的总剂量效应研究。目前由于USB、IEEE1394等常用传输方式的传输距离有限,绝大多数60Coγ射线辐照实验饱和信号参数的提取均为移位测量,即辐照剂量累积某个剂量点后需降源取出器件,完成测试后再次放入,这样给辐照实验带来极大的不便且无法获取辐照完成后短时间内饱和信号的变化规律。
发明内容
本发明的目的是提供一种γ射线辐照后CCD饱和信号的原位测量系统及方法,该系统和方法能够有效降低现有测量系统在开展γ射线辐照实验时测试的繁琐度和实验人员的危险性,从而提高实验效率;同时,该系统和方法能获取辐照完成后短时间内的饱和信号参数,为研究CCD的60Coγ射线辐照总剂量效应提供测试技术支撑。
为实现上述目的,本发明采用以下技术方案:
一种γ射线辐照后CCD饱和信号的原位测量系统,包括光源单元、辐射源单元、CCD辐照单元、信号处理单元和上位机;所述辐射源单元包括辐射源和辐射源升降装置,所述辐射源用于诱发CCD辐照单元产生电离损伤,所述辐射源升降装置与辐射源连接,用于控制辐射源的位置;所述光源单元包括光源、光源升降装置和光源屏蔽盒,所述光源用于给CCD辐照单元提供均匀光源,使其达到饱和工作状态;所述光源升降装置与光源连接,用于控制光源的位置,所述光源屏蔽盒设置在光源的下方,辐照时光源位于光源屏蔽盒内,避免辐射源对光源的影响;所述CCD辐照单元包括CCD传感器,所述光源的出射光、辐射源的γ射线垂直照射在CCD传感器上;所述信号处理单元包括CCD驱动电路模块、A/D转换模块、FPGA主控模块、无线传输模块和电源模块;所述CCD驱动电路模块分别与CCD传感器、FPGA主控模块连接,将FPGA主控模块产生的TTL时序驱动信号转换为满足CCD传感器电压要求的驱动信号,所述CCD传感器在驱动信号的驱动下完成图像采集,并输出图像模拟量信号;所述A/D转换模块分别与CCD传感器、FPGA主控模块连接,对图像模拟量信号进行前级滤波、信号放大、暗电平钳位、去噪声相关双采样处理,并将该图像模拟量信号转化为数字量信号;所述FPGA主控模块用于产生CCD传感器正常工作的TTL时序驱动信号,提供A/D转换模块所需的嵌位和采样/保持脉冲信号,同时利用内置存储缓存图像数据;所述无线传输模块与FPGA主控模块连接,将缓存于FPGA主控模块的图像数据无线长距离的传输至上位机;所述上位机接收保存无线传输模块传输的图像数据并对其进行处理,获得饱和信号的变化曲线;所述电源模块分别与CCD传感器、FPGA主控模块、CCD驱动电路模块、A/D转换模块、无线传输模块连接,为各模块提供稳定的电压。
进一步地,所述信号处理单元设置在信号单元屏蔽盒中,信号单元屏蔽盒用于屏蔽辐射源对信号处理单元的影响,使得信号处理单元设置在辐照室内,减小CCD辐照单元和信号处理单元的传输距离,确保系统的稳定运行。
进一步地,所述CCD传感器通过杜邦线与电源模块、A/D转换模块以及CCD驱动电路模块相连。
进一步地,所述无线传输模块包括发送端和接收端,发送端主要由单片机STM32和433MHz无线发送单元构成,所述接收端主要由无线接收单元和USB转TTL模块构成,通过USB接口实现与上位机的无线通信。
进一步地,所述A/D转换模块包括模拟信号预处理电路和模数转换电路,所述模拟信号预处理电路对输入的图像模拟量信号进行前级滤波、信号放大、暗电平钳位、去噪声相关双采样处理,所述模数转换电路将图像模拟量信号转化为数字量信号。
进一步地,所述模拟信号预处理电路包括恒流驱动电路和滤波放大电路,所述FPGA主控模块包括现场逻辑可编辑阵列和FLASH存储电路。
进一步地,所述上位机包括数据接收上位机和外部远程控制上位机,所述数据接收上位机通过USB接口接收无线传输模块接收端发送的图像数据,并将该图像数据通过网线传输给外部远程控制上位机,外部远程控制上位机接收保存图像数据,并对图像数据进行处理,获得饱和信号的变化曲线,获得CCD辐照前后饱和输出信号变化规律。
进一步地,所述辐射源出射的射线为60Coγ射线,无线接收单元采用工作频率为433MHz的XL08-232AP1,USB转TTL模块采用CH340转换模块。
同时,本发明还提供一种基于上述γ射线辐照后CCD饱和信号的原位测量系统的测量方法,该方法包括以下步骤:
步骤一、将CCD传感器的感光面擦拭干净并放置于辐照点,使辐射源的γ射线束流方向与CCD传感器的感光面垂直;
步骤二、在辐照室内搭建可升降的光源单元,使光源的出射光能够垂直照射到CCD传感器的感光面,确保测试时CCD传感器工作于均匀光照条件下;
步骤三、将实验环境温度控制在设定温度,控制温度对饱和信号的影响;
步骤四、将信号处理单元与CCD传感器连接,并将信号处理单元放置于信号单元屏蔽盒中避免辐照对其造成影响;
步骤五、将上位机与无线传输模块连接,随后打开光源;
步骤六、上位机发送采集指令以及调整光源强度,完成辐照前CCD传感器饱和信号的采集,并保存数据;
步骤七、重复步骤六多次,获取CCD传感器辐照前的饱和信号数据;
步骤八、在步骤七获取的饱和信号数据中,剔除每帧数据中所有像素的极值后再求平均值,根据处理后的饱和信号数据判断CCD传感器是否工作稳定并处于饱和状态,当CCD传感器工作稳定且处于饱和状态后,关闭光源,并将光源设置在光源屏蔽盒中,记录光源强度;
步骤九、辐射源开启,开始辐照,辐照完成后,辐射源升降至一定位置;
步骤十、上位机发送采集指令,CCD传感器进行数据采集,根据采集的数据判断CCD传感器是否失效,若CCD传感器采集的数据有效,执行下一步;
步骤十一、将光源上升,使光源的出射光能够垂直照射到CCD传感器的感光面,开启辐照前同等强度的光源,每间隔一定时间,上位机发送采集指令,多次采集CCD传感器辐照后的饱和信号数据,并保存该饱和信号数据;
步骤十二、对步骤十一采集的数据计算每帧像素的平均值,再剔除多组数据中的极值,获得辐照后的饱和信号的变化曲线,将该数据与辐照前的饱和信号数据进行对比,分析辐照对CCD传感器饱和输出信号的影响。
进一步地,步骤三中,设定温度为25度;步骤七中,重复步骤六20次;步骤十一中,上位机发送采集指令,共100次采集CCD传感器辐照后的饱和信号数据,并保存该饱和信号数据。
与现有技术相比,本发明系统和方法具有如下显著优点:
1.本发明系统和方法能够有效避免现有测量系统在开展γ射线辐照实验时测试繁琐度的问题,从而提高实验效率,并且能获取辐照完成后短时间内的饱和信号参数,为研究CCD的γ射线辐照总剂量效应提供测试技术支撑。
2.本发明系统采用CCD辐照单元和信号处理单元分离的子母板设计方式,实验时信号处理单元设置在信号单元屏蔽盒中,减小辐射源对信号处理单元的影响,确保系统的稳定运行。
3.本发明系统和方法通过无线传输的方式实现与上位机实现通信,简化系统连接方式,可以避免因长线连接造成系统的不稳定性,可以使接收数据的上位机处以安全的位置避免辐照的影响,并通过上位机之间的远程控制功能实现实验人员在安全环境中对测试系统远程操作,减少实验人员进入辐照室的频率,有效降低了实验人员的危险性,解决60Coγ射线辐照实验后CCD原位测量的问题。
附图说明
图1为本发明γ射线辐照后CCD饱和信号的原位测量系统的示意图;
图2为本发明信号处理单元的组成示意图;
图3为本发明γ射线辐照后CCD饱和信号的原位测量方法流程图。
附图标记:1-光源,2-光源升降装置,3-光源屏蔽盒,4-辐射源,5-辐射源升降装置,6-CCD传感器,7-辐照板,8-杜邦线,9-信号单元屏蔽盒,10-信号处理单元,11-数据接收上位机,12-网线,13-外部远程控制上位机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明提供一种60Coγ射线辐照后CCD饱和信号的原位测量系统及方法,该系统及方法能够有效降低现有测量系统在开展60COγ射线辐照实验时测试的繁琐度和实验人员的危险性,从而提高实验效率,并且能获取辐照完成后短时间内的饱和信号参数;同时,该系统采用CCD辐照单元和信号处理单元分离的子母板设计方案,能有效减小辐射源对信号处理单元的影响,确保系统的稳定运行;此外,该系统通过无线传输的方式与上位机实现长距离无线传输,实验人员可以在安全环境中对测试系统远程控制,减少实验人员进入辐照室的频率,有效降低了实验人员的危险性,解决60Coγ射线辐照实验后CCD原位测量的问题。
如图1所示,本发明提供的γ射线辐照后CCD饱和信号的原位测量系统包括设置在辐照室内的光源单元、辐射源单元、CCD辐照单元、信号处理单元10和设置在辐照室外的上位机。辐射源单元包括辐射源4和辐射源升降装置5,辐射源4用于诱发CCD辐照单元产生电离损伤,辐射源4具体可采用60Coγ射线,辐射源升降装置5与辐射源4连接,用于控制辐射源4的位置,使得辐射源4能够上下移动。光源单元包括光源1、光源升降装置2和光源屏蔽盒3,光源1为CCD辐照单元提供稳定均匀光源1,使其达到饱和工作状态;光源升降装置2用于控制光源1的位置,使得光源1能够上下移动,光源屏蔽盒3设置在光源1的下方,辐照时将光源1降至光源屏蔽盒3内,避免辐射源4对光源1造成影响。CCD辐照单元包括CCD传感器6,可将CCD传感器6安装于辐照板7上,光源1、辐射源4与CCD传感器6保持同一水平位置,使得光源1的出射光、辐射源4的γ射线垂直照射在CCD传感器6上。
如图2所示,信号处理单元10包括CCD驱动电路模块、A/D转换模块、FPGA主控模块、无线传输模块和电源模块;电源模块分别与CCD传感器6、FPGA主控模块、CCD驱动电路模块、A/D转换模块、无线传输模块连接,为系统各模块提供稳定的电压。CCD驱动电路模块分别与FPGA主控模块、CCD传感器6相连,将FPGA主控模块产生的TTL时序驱动信号转换为满足CCD传感器6电压要求的驱动信号;CCD传感器6在驱动信号的驱动下完成图像采集,并输出图像模拟量信号;A/D转换模块分别与CCD传感器6、FPGA主控模块连接,对输入的原始CCD模拟信号(即图像模拟量信号)进行前级滤波、信号放大、暗电平钳位、去噪声相关双采样处理,并通过A/D转换器将CCD输出的原始模拟量信号(即图像模拟量信号)转化为数字量信号传输至FPGA主控模块;A/D转换模块包括模拟信号预处理电路和模数转换电路;模拟信号预处理电路包括恒流驱动电路和滤波放大电路,对输入的图像模拟量信号进行前级滤波、信号放大、暗电平钳位、去噪声相关双采样处理,模数转换电路将图像模拟量信号转化为数字量信号。FPGA主控模块为系统的核心,包括现场逻辑可编辑阵列和FLASH存储电路,负责用于产生CCD传感器6正常工作的TTL时序驱动信号,提供原始模拟信号A/D处理所需的嵌位和采样/保持脉冲信号,同时利用内置存储资源缓存图像数据并传输给无线传输模块。
本发明无线传输模块包括发送端和接收端两部分,发送端主要由控制单元单片机STM32和433MHz无线发送单元构成,接收端主要由无线接收单元以及USB转TTL模块构成,发送端与FPGA主控模块相连,将缓存于FPGA主控模块中的图像数据无线长距离的传输至接收端,接收端通过USB转TTL模块完成数据格式转换,通过USB接口将接收的数据传输给数据接收上位机11;数据接收上位机11与无线传输模块的接收端通过USB相连。外部远程控制上位机13通过网线12连接数据接收上位机11,外部远程控制上位机13接收保存图像数据,并对图像数据进行处理,获得饱和信号的变化曲线,获得CCD辐照前后饱和输出信号变化规律。
开展辐照实验时,本发明信号处理单元10设置在信号单元屏蔽盒9中,信号单元屏蔽盒9用于屏蔽辐射源4对信号处理单元10的影响,使得信号处理单元10设置在辐照室内,减小CCD辐照单元和信号处理单元10的传输距离,确保系统的稳定运行。CCD传感器6通过杜邦线8与电源模块、A/D转换模块以及CCD驱动电路模块相连,在FPGA主控模块提供的TTL时序信号驱动下,经电平驱动器转换得到满足CCD电压要求的驱动时序信号,输出CCD图像信号的原始模拟量。
如图2所示,本发明信号处理单元10中,CCD驱动时序和A/D转换处理所需的嵌位和采样/保持脉冲信号均由FPGA主控模块通过Verilog硬件描述语言编程实现,CCD驱动时序以FPGA主控模块内部系统时钟为参考时钟,利用计数器分频得到各路满足时序要求的驱动信号;A/D转换模块需FPGA主控模块提供正确的寄存器赋值和满足时序要求的采样时钟信号,才能保证其正常工作,内部寄存器由FPGA通过串行接口进行设置,实现对VGA增益、黑电平校正、输入时钟极性等功能的设定,以FPGA内部系统时钟为参考时钟,利用计数器分频得到各路驱动时序信号;无线传输模块是通过串口方式实现数据互传,将发送端和接收端的波特率、数据位、停止位和奇偶校验等参数设置相同,并且约定数据帧协议,才能正确通信。
本发明60COγ射线辐照后CCD饱和信号的原位测量系统中,FPGA主控模块产生的TTL时序经CCD驱动电路模块得到满足CCD电压要求的驱动信号,CCD传感器6在驱动信号的作用下输出原始模拟信号,A/D转换模块对该原始模拟信号进行滤波、去噪以及模数转换,得到的数字信号缓存于FPGA的内部存储资源中,再通过单片机STM32控制无线传输单元发送端发送至接收端,接收端通过USB转TTL模块完成数据格式转换,通过USB接口将接收的数据传输给上位机,得到饱和信号参数;其中无线传输收发单元具体可采用工作频率为433MHz的XL08-232AP1,USB转TTL具体可采用CH340转换模块。
基于上述系统,本发明提供一种γ射线辐照后CCD饱和信号的原位测量方法,在该方法中,每完成某个累积剂量点辐照后,辐射源升降装置5执行降源操作,光源升降装置2将光源1从光源屏蔽盒3中提升至水平照射点,打开光源1调整到辐照前饱和强度,采集CCD传感器6的饱和信号,获取短时间内饱和信号的变化规律。
如图3所示,本发明提供的射线辐照后CCD饱和信号的原位测量方法具体包括如下步骤:
步骤一、将CCD传感器6的感光面擦拭干净并放置于辐照点,使辐射源4的γ射线束流方向与CCD传感器6的感光面垂直;
步骤二、在辐照室内搭建可升降的光源1系统,搭建好后,打开光源1,使光源1的水平照射点能垂直照射CCD传感器6的感光面,确保测试时CCD传感器6工作于均匀光照条件下;
步骤三、将实验环境温度控制在25℃左右,控制温度对饱和信号的影响;
步骤四、将信号处理单元10与CCD传感器6连接,并将信号处理单元10放置于信号单元屏蔽盒中避免辐照对其造成影响;
步骤五、将数据接收上位机11与无线传输模块接收端连接,并放置于辐照室安全过道中,避免辐照对上位机造成影响,用网线12将辐照室数据接收上位机11与外部远程控制上位机13连接,对辐照室内的数据接收上位机11进行远程控制,打开电源模块供电;
步骤六、通过外部远程控制上位机13发送采集指令,同时调整光源1强度,完成辐照前CCD传感器饱和信号的采集,并保存数据;
步骤七、重复步骤六20次,完成辐照前饱和信号的测量,获取CCD传感器6辐照前的饱和信号数据;
步骤八、在步骤七获取的饱和信号数据中,剔除每帧数据中所有像素的极值后再求平均值,根据处理后的饱和信号数据判断CCD是否工作稳定并处于饱和状态,当CCD工作稳定且处于饱和状态后,关闭光源1,并将光源1降至光源屏蔽盒3中,记录光源1强度;
步骤九、辐射源4开启,开始辐照,辐照完成后,辐射源升降装置5执行降源操作,将辐射源4下降至一定位置;
步骤十、外部远程控制上位机13发送采集指令,信号处理单元10完成数据采集,根据采集的数据判断CCD传感器6是否失效,若CCD传感器6采集数据有效,执行下一步;
步骤十一、打开光源升降装置2,使光源1上升至水平照射点,开启辐照前同等强度的光源1,每间隔一定时间,外部远程控制上位机13发送开始采集指令,采集CCD传感器6辐照后饱和信号数据,共采集100次,并保存该饱和信号数据;
步骤十二、对步骤十一采集的数据计算每帧像素的平均值,再剔除100组数据中的极值,获得饱和信号的变化曲线,与步骤七中辐照前数据进行对比,分析辐照对CCD传感器6饱和输出信号的影响。

Claims (10)

1.一种γ射线辐照后CCD饱和信号的原位测量系统,其特征在于:包括光源单元、辐射源单元、CCD辐照单元、信号处理单元(10)和上位机;
所述辐射源单元包括辐射源(4)和辐射源升降装置(5),所述辐射源(4)用于诱发CCD辐照单元产生电离损伤,所述辐射源升降装置(5)与辐射源(4)连接,用于控制辐射源(4)的位置;
所述光源单元包括光源(1)、光源升降装置(2)和光源屏蔽盒(3),所述光源(1)用于给CCD辐照单元提供均匀光源,使其达到饱和工作状态;所述光源升降装置(2)与光源(1)连接,用于控制光源(1)的位置,所述光源屏蔽盒(3)设置在光源(1)的下方,辐照时光源(1)位于光源屏蔽盒(3)内,避免辐射源(4)对光源(1)的影响;
所述CCD辐照单元包括CCD传感器(6),所述光源(1)的出射光、辐射源(4)的γ射线垂直照射在CCD传感器(6)上;
所述信号处理单元(10)包括CCD驱动电路模块、A/D转换模块、FPGA主控模块、无线传输模块和电源模块;所述CCD驱动电路模块分别与CCD传感器(6)、FPGA主控模块连接,将FPGA主控模块产生的TTL时序驱动信号转换为满足CCD传感器(6)电压要求的驱动信号,所述CCD传感器(6)在驱动信号的驱动下完成图像采集,并输出图像模拟量信号;所述A/D转换模块分别与CCD传感器(6)、FPGA主控模块连接,对图像模拟量信号进行前级滤波、信号放大、暗电平钳位、去噪声相关双采样处理,并将该图像模拟量信号转化为数字量信号;所述FPGA主控模块用于产生CCD传感器(6)正常工作的TTL时序驱动信号,提供A/D转换模块所需的嵌位和采样/保持脉冲信号,同时利用内置存储缓存图像数据;所述无线传输模块与FPGA主控模块连接,将缓存于FPGA主控模块的图像数据无线长距离的传输至上位机;
所述上位机接收保存无线传输模块传输的图像数据并对其进行处理,获得饱和信号的变化曲线;所述电源模块分别与CCD传感器(6)、FPGA主控模块、CCD驱动电路模块、A/D转换模块、无线传输模块连接,为各模块提供稳定的电压。
2.根据权利要求1中的γ射线辐照后CCD饱和信号的原位测量系统,其特征在于:所述信号处理单元(10)设置在信号单元屏蔽盒(9)中,信号单元屏蔽盒(9)用于屏蔽辐射源(4)对信号处理单元(10)的影响,使得信号处理单元(10)设置在辐照室内,减小CCD辐照单元和信号处理单元(10)的传输距离,确保系统的稳定运行。
3.根据权利要求2中的γ射线辐照后CCD饱和信号的原位测量系统,其特征在于:所述CCD传感器(6)通过杜邦线(8)与电源模块、A/D转换模块以及CCD驱动电路模块连接。
4.根据权利要求1或2或3中的γ射线辐照后CCD饱和信号的原位测量系统,其特征在于:所述无线传输模块包括发送端和接收端,发送端主要由单片机STM32和433MHz无线发送单元构成,所述接收端主要由无线接收单元和USB转TTL模块构成,接收端通过USB接口实现与上位机的无线通信。
5.根据权利要求4中的γ射线辐照后CCD饱和信号的原位测量系统,其特征在于:所述A/D转换模块包括模拟信号预处理电路和模数转换电路,所述模拟信号预处理电路对输入的图像模拟量信号进行前级滤波、信号放大、暗电平钳位、去噪声相关双采样处理,所述模数转换电路将图像模拟量信号转化为数字量信号。
6.根据权利要求5中的γ射线辐照后CCD饱和信号的原位测量系统,其特征在于:所述模拟信号预处理电路包括恒流驱动电路和滤波放大电路,所述FPGA主控模块包括现场逻辑可编辑阵列和FLASH存储电路。
7.根据权利要求6的γ射线辐照后CCD饱和信号的原位测量系统,其特征在于:所述上位机包括数据接收上位机(11)和外部远程控制上位机(13),所述数据接收上位机(11)通过USB接口接收无线传输模块接收端发送的图像数据,并将该图像数据通过网线(12)传输给外部远程控制上位机(13),外部远程控制上位机(13)接收保存图像数据,并对图像数据进行处理,获得饱和信号的变化曲线,获得CCD传感器辐照前后饱和输出信号变化规律。
8.根据权利要求7的γ射线辐照后CCD饱和信号的原位测量系统,其特征在于:所述辐射源(4)出射的射线为60Coγ射线,无线接收单元采用工作频率为433MHz的XL08-232AP1,USB转TTL模块采用CH340转换模块。
9.一种基于权利要求1至8任一所述γ射线辐照后CCD饱和信号的原位测量系统的测量方法,其特征在于,包括以下步骤:
步骤一、将CCD传感器的感光面擦拭干净并放置于辐照点,使辐射源的γ射线束流方向与CCD传感器的感光面垂直;
步骤二、在辐照室内搭建可升降的光源单元,使光源的出射光能够垂直照射到CCD传感器的感光面,确保测试时CCD传感器工作于均匀光照条件下;
步骤三、将实验环境温度控制在设定温度,控制温度对饱和信号的影响;
步骤四、将信号处理单元与CCD传感器连接,并将信号处理单元放置于信号单元屏蔽盒中避免辐照对其造成影响;
步骤五、将上位机与无线传输模块连接,随后打开光源;
步骤六、上位机发送采集指令以及调整光源强度,完成辐照前CCD传感器饱和信号的采集,并保存数据;
步骤七、重复步骤六多次,获取CCD传感器辐照前的饱和信号数据;
步骤八、在步骤七获取的饱和信号数据中,剔除每帧数据中所有像素的极值后再求平均值,根据处理后的饱和信号数据判断CCD传感器是否工作稳定并处于饱和状态,当CCD传感器工作稳定且处于饱和状态后,关闭光源,并将光源设置在光源屏蔽盒中,记录光源强度;
步骤九、辐射源开启,开始辐照,辐照完成后,辐射源升降至一定位置;
步骤十、上位机发送采集指令,CCD传感器进行数据采集,根据采集的数据判断CCD传感器是否失效,若CCD传感器采集的数据有效,执行下一步;
步骤十一、将光源上升,使光源的出射光能够垂直照射到CCD传感器的感光面,开启辐照前同等强度的光源,每间隔一定时间,上位机发送采集指令,多次采集CCD传感器辐照后的饱和信号数据,并保存该饱和信号数据;
步骤十二、对步骤十一采集的数据计算每帧像素的平均值,再剔除多组数据中的极值,获得辐照后的饱和信号的变化曲线,将该数据与辐照前的饱和信号数据进行对比,分析辐照对CCD传感器饱和输出信号的影响。
10.根据权利要求9所述的测量方法,其特征在于:步骤三中,设定温度为25度;步骤七中,重复步骤六20次;步骤十一中,上位机发送采集指令,共100次采集CCD传感器辐照后的饱和信号数据,并保存该饱和信号数据。
CN202110456924.2A 2021-04-25 2021-04-25 γ射线辐照后CCD饱和信号的原位测量系统及方法 Active CN113203931B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110456924.2A CN113203931B (zh) 2021-04-25 2021-04-25 γ射线辐照后CCD饱和信号的原位测量系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110456924.2A CN113203931B (zh) 2021-04-25 2021-04-25 γ射线辐照后CCD饱和信号的原位测量系统及方法

Publications (2)

Publication Number Publication Date
CN113203931A CN113203931A (zh) 2021-08-03
CN113203931B true CN113203931B (zh) 2022-05-03

Family

ID=77028870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110456924.2A Active CN113203931B (zh) 2021-04-25 2021-04-25 γ射线辐照后CCD饱和信号的原位测量系统及方法

Country Status (1)

Country Link
CN (1) CN113203931B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264620A (zh) * 2021-11-24 2022-04-01 淮阴工学院 一种基于python语言的便捷式光谱数据分析系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852708A (zh) * 2014-03-26 2014-06-11 中国科学院光电技术研究所 一种电荷耦合器件的电子增益倍数测量方法
CN105572486A (zh) * 2016-01-29 2016-05-11 西北核技术研究所 一种电荷耦合器件中子辐照后的电荷转移效率测试方法
CN105806362A (zh) * 2014-12-30 2016-07-27 上海新跃仪表厂 一种ccd探测器辐射效应试验装置
CN106405382A (zh) * 2016-08-22 2017-02-15 南京理工大学 低照度cmos芯片性能测试系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1271647B (it) * 1994-05-06 1997-06-04 Bts Srl Telecamera ad elevata frequenza di fotogramma e relativo metodo di fabbricazione

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852708A (zh) * 2014-03-26 2014-06-11 中国科学院光电技术研究所 一种电荷耦合器件的电子增益倍数测量方法
CN105806362A (zh) * 2014-12-30 2016-07-27 上海新跃仪表厂 一种ccd探测器辐射效应试验装置
CN105572486A (zh) * 2016-01-29 2016-05-11 西北核技术研究所 一种电荷耦合器件中子辐照后的电荷转移效率测试方法
CN106405382A (zh) * 2016-08-22 2017-02-15 南京理工大学 低照度cmos芯片性能测试系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CCD与CMOS图像传感器辐射效应测试系统;李豫东等;《光学精密工程》;20131115;第第21卷卷(第11期);第2778-2784页 *

Also Published As

Publication number Publication date
CN113203931A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Burian et al. Katherine: ethernet embedded readout interface for Timepix3
CN113203931B (zh) γ射线辐照后CCD饱和信号的原位测量系统及方法
AU706101B2 (en) Semiconductor gamma-ray camera and medical imaging system
US20160011323A1 (en) Photodetector and computed tomography apparatus
CN203775318U (zh) 基于像素级模数转换的紫外焦平面读出电路
US9513382B2 (en) Image-capturing device and electronic device
CN101888492B (zh) 用于具有多重数据读出机制的影像感测器的处理器
CN106501701A (zh) 一种星敏感器光电探测器抗辐照性能的定量检测装置及方法
KR102328116B1 (ko) 광계수 방법, 이를 이용한 광계수 장치, 및 방사선 촬영 장치
CN113038121B (zh) 中子辐照后电荷耦合器件暗信号的原位测量系统及方法
CN102256428A (zh) 自动曝光控制信号检测装置及自动曝光控制系统
CN103852708A (zh) 一种电荷耦合器件的电子增益倍数测量方法
CN110971796A (zh) 一种基于SiPM的超快相机及其成像方法
US20140061495A1 (en) Radiation imaging apparatus, method for driving the same and radiation imaging system
US8748839B2 (en) Radiation image capturing system and radiation image capturing apparatus
CN105806362B (zh) 一种ccd探测器辐射效应试验装置
CN108968992B (zh) 放射线摄像装置、放射线摄像方法及计算机可读存储介质
CN102224433B (zh) X射线探测器
CN102846328A (zh) 一种数字摄影自动曝光控制装置及控制方法
CN112925007B (zh) 一种pet探测器的测量方法、系统及计算机可读存储介质
CN114584757A (zh) 一种简易式ccd满阱测试方法
CN115211877A (zh) 一种x射线曝光控制装置及平板探测器
CN202003032U (zh) 便携式伽玛能谱仪
CN216978323U (zh) 一种光源灯强度自动检测校准装置
CN114554183B (zh) Cis辐照后像素单元电荷转移效率的测试系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant