CN113203734A - 一种散粒体颗粒料剪切破坏实验方法 - Google Patents

一种散粒体颗粒料剪切破坏实验方法 Download PDF

Info

Publication number
CN113203734A
CN113203734A CN202110467372.5A CN202110467372A CN113203734A CN 113203734 A CN113203734 A CN 113203734A CN 202110467372 A CN202110467372 A CN 202110467372A CN 113203734 A CN113203734 A CN 113203734A
Authority
CN
China
Prior art keywords
granular
particles
dough
freezing
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110467372.5A
Other languages
English (en)
Inventor
郑星
张胜
宋晓伟
耿传浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerChina Guiyang Engineering Corp Ltd
Original Assignee
PowerChina Guiyang Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerChina Guiyang Engineering Corp Ltd filed Critical PowerChina Guiyang Engineering Corp Ltd
Priority to CN202110467372.5A priority Critical patent/CN113203734A/zh
Publication of CN113203734A publication Critical patent/CN113203734A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明提供了一种散粒体颗粒料剪切破坏实验方法,包括如下步骤:定型:将散粒体颗粒料封装成团状物;冰冻:向团状物中注水填充至饱和状态,将饱和状态的团状物冰冻成型;切割:在低温环境下,将团状物从封装材料中取出并进行切割,对切割形成的剪切带进行观察和测量。本发明可用于对散粒状粗颗粒材料的大型三轴剪切试验后的剪切破坏带进行观察与测量,研究破坏带上粗颗粒的破坏情况,对于更好地理解粗粒料的抗剪强度及破坏机理有重要意义。

Description

一种散粒体颗粒料剪切破坏实验方法
技术领域
本发明涉及一种散粒体颗粒料剪切破坏实验方法。
背景技术
由于土是由无数不同大小的颗粒构成的,这一性质决定了土体的受力破坏为剪切破坏。粗粒土由于其广泛的应用,对其抗剪性质的研究具有很大的实际意义。研究粗粒土的抗剪性质包括对其剪切破坏带及带上的颗粒形状进行研究。
粗粒土分为黏质粗粒土及散粒体粗粒土,前者由于含黏土质细粒较多,土体本身具有一定的黏性而在受力时颗粒之间不至于分散开来呈散粒体状,因此研究黏质粗粒土的剪切破坏带成为可能。工程中一般采用大型三轴试验研究粗粒土的抗剪强度,当黏质粗粒土受剪破坏时,整个试件由于黏性的存在能保持完整性,因此能把剪切带保持住,当试样被压力室中取出后,从外观上即可观察剪切破坏带的发育情况,通过外力沿着剪切带将试件分离后,仍然可以较清楚的观察到剪切破坏面上的情况如起伏程度、擦痕分布等。这是当前研究黏质粗粒土的剪切破坏面的方法。
非黏质的散粒体粗粒料则不然,当剪切试验完成后,将试件从压力室中取出,由于颗粒之间不具有黏性而会分散开,不能保持剪切破坏时的状态,因此无法对其进行研究。
发明内容
为解决上述技术问题,本发明提供了一种散粒体颗粒料剪切破坏实验方法,该散粒体颗粒料剪切破坏实验方法可以研究非黏性的散粒体粗颗粒材料受剪破坏后的剪切带,对其观察并进行测量。
本发明通过以下技术方案得以实现。
本发明提供的一种散粒体颗粒料剪切破坏实验方法,包括如下步骤:
定型:将散粒体颗粒料封装成团状物;
冰冻:向团状物中注水填充至饱和状态,将饱和状态的团状物冰冻成型;
切割:在低温环境下,将团状物从封装材料中取出并进行切割,对切割形成的剪切带进行观察和测量。
所述散粒体颗粒料的颗粒粒径为13~17mm。
所述散粒体颗粒料的颗粒粒径为15mm。
所述定型步骤之后、冷冻步骤之前,将散粒体颗粒料装入至三轴仪中进行三轴剪切试验。
所述冰冻成型是将团状物放到冷冻库中进行。
所述封装材料为橡皮膜。
所述散粒体颗粒料以水泥和石粉混合而成。
所述水泥为球状。
本发明的有益效果在于:可用于对散粒状粗颗粒材料的大型三轴剪切试验后的剪切破坏带进行观察与测量,研究破坏带上粗颗粒的破坏情况,对于更好地理解粗粒料的抗剪强度及破坏机理有重要意义。
附图说明
图1是本发明的流程图。
具体实施方式
下面进一步描述本发明的技术方案,但要求保护的范围并不局限于所述。
实施例1
如图1所示的一种散粒体颗粒料剪切破坏实验方法,包括如下步骤:
定型:将散粒体颗粒料封装成团状物;
冰冻:向团状物中注水填充至饱和状态,将饱和状态的团状物冰冻成型;
切割:在低温环境下,将团状物从封装材料中取出并进行切割,对切割形成的剪切带进行观察和测量。
实施例2
基于实施例1,并且,散粒体颗粒料的颗粒粒径为13~17mm。
实施例3
基于实施例2,并且,散粒体颗粒料的颗粒粒径为15mm。
实施例4
基于实施例1,并且,定型步骤之后、冷冻步骤之前,将散粒体颗粒料装入至三轴仪中进行三轴剪切试验。
实施例5
基于实施例1,并且,冰冻成型是将团状物放到冷冻库中进行。
实施例6
基于实施例1,并且,封装材料为橡皮膜。
实施例7
基于实施例1,并且,散粒体颗粒料以水泥和石粉混合而成。
实施例8
基于实施例7,并且,水泥为球状。
实施例9
基于上述实施例,具体的,试验材料为球状的水泥与石粉混合而成的颗粒,具有一定的强度,颗粒粒径在15mm左右;将颗粒材料按照一定的密度装入大型三轴仪,进行正常的三轴剪切试验;当试验结束后,由于散粒体材料是封装在橡皮膜中的,从试件的底部可以向试样材料内部注水,让水填充整个试件中的空隙,使试件饱和。将饱和的试件放到冷冻库中进行低温冷冻,待试件完全冻住后,将试件从橡皮膜中取出,用切割机在低温下对试件进行纵向切割,将试件的剪切带暴露在切割面上,从而可以对剪切带进行观察和测量,并对剪切带上颗粒的运动及破碎情况进行描述。

Claims (8)

1.一种散粒体颗粒料剪切破坏实验方法,其特征在于:包括如下步骤:
定型:将散粒体颗粒料封装成团状物;
冰冻:向团状物中注水填充至饱和状态,将饱和状态的团状物冰冻成型;
切割:在低温环境下,将团状物从封装材料中取出并进行切割,对切割形成的剪切带进行观察和测量。
2.如权利要求1所述的散粒体颗粒料剪切破坏实验方法,其特征在于:所述散粒体颗粒料的颗粒粒径为13~17mm。
3.如权利要求2所述的散粒体颗粒料剪切破坏实验方法,其特征在于:所述散粒体颗粒料的颗粒粒径为15mm。
4.如权利要求1所述的散粒体颗粒料剪切破坏实验方法,其特征在于:所述定型步骤之后、冷冻步骤之前,将散粒体颗粒料装入至三轴仪中进行三轴剪切试验。
5.如权利要求1所述的散粒体颗粒料剪切破坏实验方法,其特征在于:所述冰冻成型是将团状物放到冷冻库中进行。
6.如权利要求1所述的散粒体颗粒料剪切破坏实验方法,其特征在于:所述封装材料为橡皮膜。
7.如权利要求1所述的散粒体颗粒料剪切破坏实验方法,其特征在于:所述散粒体颗粒料以水泥和石粉混合而成。
8.如权利要求7所述的散粒体颗粒料剪切破坏实验方法,其特征在于:所述水泥为球状。
CN202110467372.5A 2021-04-28 2021-04-28 一种散粒体颗粒料剪切破坏实验方法 Pending CN113203734A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110467372.5A CN113203734A (zh) 2021-04-28 2021-04-28 一种散粒体颗粒料剪切破坏实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110467372.5A CN113203734A (zh) 2021-04-28 2021-04-28 一种散粒体颗粒料剪切破坏实验方法

Publications (1)

Publication Number Publication Date
CN113203734A true CN113203734A (zh) 2021-08-03

Family

ID=77029230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110467372.5A Pending CN113203734A (zh) 2021-04-28 2021-04-28 一种散粒体颗粒料剪切破坏实验方法

Country Status (1)

Country Link
CN (1) CN113203734A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230856A (zh) * 2011-03-21 2011-11-02 中国科学院寒区旱区环境与工程研究所 一种用于高含冰冻土试样的制备方法
US20130050431A1 (en) * 2011-08-29 2013-02-28 Shiseido Company, Ltd. Method of observing cross-section of cosmetic material
CN103852371A (zh) * 2014-03-12 2014-06-11 中国水电顾问集团贵阳勘测设计研究院有限公司 一种粗粒土直剪试验可视化剪切装样盒
CN104634734A (zh) * 2015-02-11 2015-05-20 绍兴文理学院 一种无粘性土最优粘聚冷冻含水率的测定方法
CN104713758A (zh) * 2015-02-11 2015-06-17 绍兴文理学院 一种无粘性土三轴试样的制样方法
CN105115834A (zh) * 2015-06-26 2015-12-02 中国科学院地质与地球物理研究所 一种低温条件下粗粒土抗剪强度测试方法
CN106769410A (zh) * 2016-12-20 2017-05-31 盐城工学院 一种冻土旋转剪切装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102230856A (zh) * 2011-03-21 2011-11-02 中国科学院寒区旱区环境与工程研究所 一种用于高含冰冻土试样的制备方法
US20130050431A1 (en) * 2011-08-29 2013-02-28 Shiseido Company, Ltd. Method of observing cross-section of cosmetic material
CN103852371A (zh) * 2014-03-12 2014-06-11 中国水电顾问集团贵阳勘测设计研究院有限公司 一种粗粒土直剪试验可视化剪切装样盒
CN104634734A (zh) * 2015-02-11 2015-05-20 绍兴文理学院 一种无粘性土最优粘聚冷冻含水率的测定方法
CN104713758A (zh) * 2015-02-11 2015-06-17 绍兴文理学院 一种无粘性土三轴试样的制样方法
CN105115834A (zh) * 2015-06-26 2015-12-02 中国科学院地质与地球物理研究所 一种低温条件下粗粒土抗剪强度测试方法
CN106769410A (zh) * 2016-12-20 2017-05-31 盐城工学院 一种冻土旋转剪切装置

Similar Documents

Publication Publication Date Title
Verberne et al. Frictional properties and microstructure of calcite-rich fault gouges sheared at sub-seismic sliding velocities
Zhu et al. Numerical investigation on the fatigue failure characteristics of water-bearing sandstone under cyclic loading
AU2009357410B2 (en) Hydraulic fracturing system
Ovalle et al. Experimental data highlighting the role of surface fracture energy in quasi-static confined comminution
CN113203734A (zh) 一种散粒体颗粒料剪切破坏实验方法
CN104698138A (zh) 一种微震响应煤与瓦斯突出自触发模拟实验装置
CN105759011B (zh) 边坡爆破动力分析模型试验材料、其上下盘围岩体相似材料、其断层带相似材料及制备方法
JP5416661B2 (ja) 膨潤試験方法
Shi-chun et al. Modeling particle breakage of rockfill materials based on single particle strength
Chen et al. Fractal behavior of coral sand during creep
Ezaoui et al. Effects of various loading stress paths on the stress-strain properties and on crushability of an industrial soft granular material
Bons et al. Experimental deformation of two-phase rock analogues
Iravanian et al. Tensile strength properties of sand-bentonite mixtures enhanced with cement
CN204630996U (zh) 一种微震响应煤与瓦斯突出自触发模拟实验装置
Al-Homadhi Artificial sandstone cores production with a wide range of petrophysical properties
Walton et al. DEM simulations of the effects of particle shape, interparticle cohesion, and gravity on rotating drum flows of lunar regolith
CN106827172A (zh) 一种人工粗颗粒土成型仪及其成型方法
CN102911639B (zh) 一种磁敏性相似材料
Ashna et al. Experimental study on stress-strain behaviour of EPS beads-sand mixture
Jhuo et al. SHEAR STRENGTH AND VOLUME CHANGE BEHAVIOR OF BINARY GRANULAR MIXTURES.
Yu et al. Study of variation of pore properties in gravel soil under triaxial loading based on discrete element method
Wils et al. Laboratory testing issues related to crushable sands
Dai et al. Study on the state of internal stress and strain of TATB-based polymer bonded explosive using strain markers and cone-beam computed tomography
Gorbanpoor et al. Evaluation of the effect of shape of granular materials on uniaxial compressibility behavior by analytical and experimental methods
Ma et al. Simulation and Analysis of Shear Properties of Loess and Concrete Structures Based on the Discrete Element Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210803