CN113203187A - 基于部分线性模型的建筑暖通空调负荷优化控制方法 - Google Patents

基于部分线性模型的建筑暖通空调负荷优化控制方法 Download PDF

Info

Publication number
CN113203187A
CN113203187A CN202110465752.5A CN202110465752A CN113203187A CN 113203187 A CN113203187 A CN 113203187A CN 202110465752 A CN202110465752 A CN 202110465752A CN 113203187 A CN113203187 A CN 113203187A
Authority
CN
China
Prior art keywords
model
heating
building
time
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110465752.5A
Other languages
English (en)
Other versions
CN113203187B (zh
Inventor
钟海旺
何一鎏
谭振飞
夏清
康重庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202110465752.5A priority Critical patent/CN113203187B/zh
Publication of CN113203187A publication Critical patent/CN113203187A/zh
Application granted granted Critical
Publication of CN113203187B publication Critical patent/CN113203187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提出一种基于部分线性模型的建筑暖通空调负荷优化控制方法,属于电力需求响应的技术领域;该方法首先分别建立建筑的热惰性模型和暖通空调系统模型,对两个模型进行转化得到包含线性部分和数据驱动部分的暖通空调负荷预测模型,利用历史数据拟合得到负荷预测模型的参数;然后根据该荷预测模型,建立建筑室内温度的优化模型,对优化模型求解,计算得到下一个时间点的最优建筑室内温度,实现对建筑暖通空调负荷的优化控制。本方法通过结合物理模型与数据驱动模型使暖通空调预测模型同时具有可解释性与较高的预测精度,从而在实时电价下能够根据该模型对室内温度进行优化,在室内温度保持在一定舒适范围内的前提下降低建筑物能耗成本。

Description

基于部分线性模型的建筑暖通空调负荷优化控制方法
技术领域
本发明属于电力需求响应领域,特别提出了一种基于部分线性模型的建筑暖通空调负荷优化控制方法。
背景技术
随着全球城市化进程的加快,建筑业消耗着越来越多的能源,造成了全球近40%的温室气体排放。在建筑的能耗中,暖通空调系统的占比达到了近50%。由于建筑的热惰性,暖通空调是一种典型的电热耦合负荷,可以在短时间内调整用电需求而几乎不影响用户舒适度,具有向电网提供灵活性的潜力。适当的需求侧管理可以极大地提高电网运行的经济性,而这需要暖通空调负荷的建模与优化控制。
许多文献证实了暖通空调系统在需求响应方面的应用,如针对实时价格执行室内温度的最优控制(Hao H,Corbin C D,Kalsi K,et al.Transactive Control ofCommercial Buildings for Demand Response[J].IEEE Transactions on PowerSystems,2017:1-1.)。然而,现有文献大多是基于建筑物暖通空调负荷的电热特性已知的假设,且所使用的模型较为简单,难以描述真实建筑的暖通空调负荷。一些研究讨论了实际建筑物的监测和模型参数估计,例如基于卡尔曼滤波的建筑能耗模型参数和未知状态的双重估计(Baldi S,Yuan S,Endel P,et al.Dual estimation:Constructing buildingenergy models from data sampled at low rate[J].Applied Energy,2016,169:81-92.)。暖通空调负荷模型的参数可以通过分析或实验方法估算,但需要完整的建筑结构信息或者专门的实验。在大规模应用中,这两种方法都是难以实施的。一些研究采用数据驱动的方法进行建模和优化控制,如使用机器学习预测暖通空调负荷并将其作为虚拟电池进行控制(Wang J,Huang S,Wu D,et al.Operating a Commercial Building HVAC Load as aVirtual Battery through Airflow Control[J].IEEE Transactions on SustainableEnergy,2020,PP(99):1-1.),训练人工神经网络预测办公楼室内温度以实现暖通空调系统的最优需求响应(Kim Y J.A Supervised-Learning-Based Strategy for OptimalDemand Response of an HVAC System in a Multi-Zone Office Building[J].IEEETransactions on Smart Grid,2020,PP(99):1-1.)。这些数据驱动方法具有更好的预测性能,但通常缺乏可解释性,并且需要较大的计算量才能找到最优控制策略。
综上,已有的暖通空调负荷的简单模型无法应用于真实场景;数据驱动模型过于复杂,难以在此基础上进行优化控制。
发明内容
本发明的目的是为克服已有技术的不足之处,提出一种基于部分线性模型的建筑暖通空调负荷优化控制方法。本发明建立的暖通空调模型同时具有可解释性与较高的预测精度,该方法计算简便,得到的优化结果可在提升电网运行效率的同时降低建筑物的能耗成本。
本发明提出一种基于部分线性模型的建筑暖通空调负荷优化控制方法,其特征在于,该方法首先分别建立建筑的热惰性模型和暖通空调系统模型,对该两个模型进行转化后得到包含线性部分和数据驱动部分的暖通空调负荷预测模型,利用历史数据拟合得到该暖通空调负荷预测模型的参数;然后根据该暖通空调负荷预测模型,建立建筑室内温度的优化模型,对优化模型求解,计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。该方法包括以下步骤:
1)建立建筑暖通空调负荷预测模型;具体步骤如下:
1-1)建立物理模型;具体如下:
1-1-1)建立建筑的热惰性模型,如式(1)所示:
Figure BDA0003043869190000021
其中,
PT(t)=Ps(t)+PG(t) (2)
其中,C表示建筑内部空气的等效热容,Ti(t)表示t时刻室内空气的温度,PT(t)表示t时刻对空气的有效冷却或加热功率,To(t)表示t时刻室外温度,R表示建筑墙体的等效热阻;Ps(t)表示t时刻暖通空调供给的冷却或加热功率,PG(t)表示t时刻除暖通空调外其他因素的产热之和;
1-1-2)建立暖通空调系统模型,如式(3)-(5)所示:
Tm(t)=δTi(t)+(1-δ)To(t) (3)
Figure BDA0003043869190000022
Ps(t)=cpq(t)(Tc-Ti(t)) (5)
其中,Tm(t)表示经过回风混合后t时刻的空气温度,δ表示回风比例;Tc为空气温度的设定值,P(t)为t时刻暖通空调的冷却或制热机组的电负荷,cp表示空气的定压比热容,q(t)表示t时刻送风流量,COP表示暖通空调的冷却或制热机组的循环效率,制冷时Tc小于Tm(t),制热时Tc大于Tm(t);Ps(t)为t时刻送风给室内空气提供的冷却或加热功率,Ps(t)小于零表示制冷,Ps(t)大于零表示制热;
1-2)将步骤1-1)的物理模型转化为部分线性模型,建立暖通空调负荷预测模型;
将式(1)写成离散时间下的差分方程得到式(6),将式(2)写成离散时间形式得到式(7),其中下标k表示第k个离散时间点,
Figure BDA0003043869190000031
Figure BDA0003043869190000032
分别表示时间点k与时间点k+1的室内温度;将式(3)-(5)转化为离散时间形式,得到式(8),其中Pk表示时间点k暖通空调电负荷,a和b是常数;
Figure BDA0003043869190000033
Figure BDA0003043869190000034
Figure BDA0003043869190000035
结合式(6)-(8),得到暖通空调电负荷的表达式,如式(9)所示:
Figure BDA0003043869190000036
将式(9)进一步简化为式(10),得到最终的暖通空调负荷预测模型,该模型包含线性部分和数据驱动部分,其中a1,a2,a3,a4为模型中线性部分的系数;dk为影响
Figure BDA0003043869190000037
的因素,包括时间点k的太阳辐射强度
Figure BDA0003043869190000038
时间点k的湿度
Figure BDA0003043869190000039
时间点k对应的当前时间段
Figure BDA00030438691900000310
记为
Figure BDA00030438691900000311
f(dk)表示模型中用于拟合
Figure BDA00030438691900000312
的数据驱动部分;
Figure BDA00030438691900000313
式中,
Figure BDA00030438691900000314
表示时间点k对空气的有效冷却或加热功率,
Figure BDA00030438691900000315
表示时间点k室内空气的温度,
Figure BDA00030438691900000316
表示时间点k的室外温度,
Figure BDA00030438691900000317
表示时间点k暖通空调供给的冷却或加热功率,
Figure BDA00030438691900000318
表示时间点k除暖通空调外其他因素的产热之和;
1-3)利用历史数据拟合暖通空调负荷预测模型的参数;
从历史数据中选取一段长度为N用于训练的数据,将自变量矩阵记为X=[TD],其中T,D分别如式(11)(12)所示,分别表示线性部分的输入数据矩阵与数据驱动部分的输入数据矩阵;因变量矩阵记为Y=[P1P2…PN]T
任意指定A0与f0(dk)的参数以完成初始化,然后采用轮流拟合线性部分和数据驱动部分的方法进行多次迭代,其中,记第i次迭代完成后,线性部分的系数矩阵为
Figure BDA00030438691900000319
Figure BDA00030438691900000320
数据驱动部分的模型为fi(dk);每次迭代包括两个步骤:(a)使用线性回归拟合Y-[fi(d1)fi(d2)…fi(dN)]T对于T的关系,得到系数矩阵Ai+1;(b)使用选定的数据驱动方法拟合Y-TAi+1对于D的关系,得到模型fi+1(dk);重复迭代直到线性部分的系数与数据驱动部分的模型参数收敛,得到最终的系数矩阵为A=[a1 a2 a3 a4]T与数据驱动模型f(dk),暖通空调负荷预测模型的参数拟合完毕;
Figure BDA0003043869190000041
D=[d1 d2 … dN]T (12)
2)根据步骤1)得到的暖通空调负荷预测模型,对建筑室内温度进行优化;具体步骤如下:
2-1)建立建筑室内温度的优化模型,表达式如下:
Figure BDA0003043869190000042
Figure BDA0003043869190000043
其中,
Figure BDA0003043869190000044
Figure BDA0003043869190000045
Figure BDA0003043869190000046
其中,设定室内温度为一恒定值TB
Figure BDA0003043869190000047
为时间点k的负荷基值;
Figure BDA0003043869190000048
为时间点k暖通空调负荷相对基值的削减量;Ck为时间点k的温度舒适度惩罚项,c是常量;
rk表示时间点k的实时电价,Nk表示优化的时段长度,Tl和Tu分别为室内温度的下限和上限;
2-2)求解步骤2-1)建立的优化模型:
将步骤2-1)建立的优化模型简化为式(18):
Figure BDA0003043869190000049
for k∈{1,2,…,Nk}
Figure BDA00030438691900000410
如式(18)所示的模型存在解析解,如式(19)所示:
Figure BDA0003043869190000051
利用式(19),在每一个当前时间点计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。
本发明的特点及有益效果:
本发明填补能了兼顾准确性和可解释性的暖通空调负荷建模方法的技术空白,提出了一种基于物理模型和数据驱动模型相结合的部分线性化暖通空调负荷模型;本方法提出的模型分为线性部分和非线性部分,其中线性部分根据暖通空调负荷的物理特性推导,非线性部分采用数据驱动的方法预测环境因素的复杂影响;在此基础上,提出了一种模型预测控制策略以减少用电费用。本方法考虑了实际建筑暖通空调的物理特性,结合了物理模型与数据驱动模型,使预测模型同时具有可解释性与较高的预测精度,并能够在此基础上以较小的计算量得到最优的室内温度值,在室内温度保持在一定舒适范围内的前提下降低建筑物能耗成本;同时为电网提供削峰填谷的需求响应服务,提升了电网运行的效率。
附图说明
图1是本发明的基于部分线性模型的建筑暖通空调负荷优化控制方法的流程图。
具体实施方式
本发明提出的基于部分线性模型的建筑暖通空调负荷优化控制方法,下面结合附图及具体实施方式进一步详细的说明;应当理解,此处所描述的具体实施方式可用以解释本发明,但并不限定本发明;
本发明提出的基于部分线性模型的建筑暖通空调负荷优化控制方法,该方法首先分别建立建筑的热惰性模型和暖通空调系统模型,对该两个模型进行转化后得到包含线性部分和数据驱动部分的暖通空调负荷预测模型,利用历史数据拟合得到该暖通空调负荷预测模型的参数;然后根据该暖通空调负荷预测模型,建立建筑室内温度的优化模型,对优化模型求解,计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。该方法整体流程如图1所示,具体步骤如下:
1)建立建筑暖通空调负荷预测模型,包括3个部分:建立物理模型、将物理模型转化为部分线性模型、用历史数据拟合模型;具体步骤如下:
1-1)建立物理模型;具体如下:
1-1-1)建立建筑的热惰性模型:
由于建筑墙体以及内部物体的导热、储热特性非常复杂,因此使用等效热参数模型来简化地描述建筑的热惰性,如式(1)所示:
Figure BDA0003043869190000061
其中,
PT(t)=Ps(t)+PG(t) (2)
其中C表示建筑内部空气的等效热容,Ti(t)表示t时刻室内空气的温度,PT(t)表示t时刻对空气的有效冷却/加热功率,To(t)表示t时刻室外温度,R表示建筑墙体的等效热阻;PT(t)由式(2)给出,其中Ps(t)表示t时刻暖通空调供给的冷却/加热功率,PG(t)表示t时刻除暖通空调外其他因素的产热之和,如室内居民、电器、太阳辐射等;
1-1-2)建立暖通空调系统模型:
暖通空调系统的模型一般可以由式(3)-(5)给出;室内回风进入回风管道,一部分排出建筑,并替换为等量的室外空气,混合后t时刻的空气温度Tm(t)由式(3)所示,其中δ表示回风比例;混合后的空气进入冷却或制热机组,空气温度变化到设定值Tc,t时刻暖通空调的冷却或制热机组的电负荷P(t)如式(4)所示,其中cp表示空气的定压比热容,q(t)表示t时刻送风流量,COP表示暖通空调的冷却或制热机组的循环效率,制冷时Tc小于Tm(t),制热时Tc大于Tm(t);暖通空调冷却或加热后的空气通过风扇被送入建筑各个区域,t时刻送风给室内空气提供的冷却或加热功率Ps(t)由式(5)所示,Ps(t)小于零表示制冷,Ps(t)大于零表示制热;
Tm(t)=δTi(t)+(1-δ)To(t) (3)
Figure BDA0003043869190000062
Ps(t)=cpq(t)(Tc-Ti(t)) (5)
1-2)将步骤1-1)的物理模型转化为部分线性模型,建立暖通空调负荷预测模型:
将式(1)写成离散时间下的差分方程得到式(6),将式(2)写成离散时间形式得到式(7),其中下标k表示第k个离散时间点,
Figure BDA0003043869190000063
Figure BDA0003043869190000064
分别表示时间点k与时间点k+1的室内温度,其余各个变量所表示的含义与前面一致;结合式(3)-(5)并将式(3)-(5)转化为离散时间形式,忽略室内外温度波动对新风冷却电耗的影响,得到式(8),其中Pk表示时间点k暖通空调电负荷,a和b是由暖通空调工作特性决定的常数;结合式(6)-(8),可以得到暖通空调电负荷的表达式,如式(9)所示;
Figure BDA0003043869190000065
的解析表达式难以给出,因此使用数据驱动方法建模;将式(9)进一步简化为式(10),得到最终的模型,包含了线性部分和数据驱动部分,其中a1,a2,a3,a4为模型中线性部分的系数;dk为影响
Figure BDA0003043869190000071
的因素,包括时间点k的太阳辐射强度
Figure BDA0003043869190000072
时间点k的湿度
Figure BDA0003043869190000073
时间点k对应的当前时间段
Figure BDA0003043869190000074
记为
Figure BDA0003043869190000075
f(dk)表示模型中用于拟合
Figure BDA0003043869190000076
的数据驱动部分,可以依据实际情况选择支持向量机、决策树、神经网络等方法;
Figure BDA0003043869190000077
Figure BDA0003043869190000078
Figure BDA0003043869190000079
Figure BDA00030438691900000710
Figure BDA00030438691900000711
式中,
Figure BDA00030438691900000712
表示时间点k对空气的有效冷却/加热功率,
Figure BDA00030438691900000713
表示时间点k室内空气的温度,
Figure BDA00030438691900000714
示时间点kk室外温度,
Figure BDA00030438691900000715
表示时间点k暖通空调供给的冷却/加热功率,
Figure BDA00030438691900000716
表示时间点k除暖通空调外其他因素的产热之和;
1-3)利用历史数据拟合暖通空调负荷预测模型的参数;
为了拟合式(10)表示的模型,采用轮流拟合线性部分和数据驱动部分的方法,进行多次迭代直至收敛;从历史数据中选取一段长度为N用于训练的数据(数据长度应至少覆盖一周以上的时间,一般数据量越多,模型的拟合效果越好;本例中数据长度覆盖三十天,时间颗粒度为一小时,则N=720),自变量矩阵记为X=[T D],其中T,D分别如式(11)(12)所示,分别表示线性部分的输入数据矩阵与数据驱动部分的输入数据矩阵;因变量矩阵记为Y=[P1P2…PN]T;记第i次迭代完成后,线性部分的系数矩阵为
Figure BDA00030438691900000717
数据驱动部分的模型为fi(dk);在迭代拟合之前需要任意指定A0与f0(dk)的参数以完成初始化;每次迭代包括两个步骤:(1)使用线性回归拟合Y-[fi(d1)fi(d2)…fi(dN)]T对于T的关系,得到系数矩阵Ai+1;(2)使用选定的数据驱动方法拟合Y-TAi+1对于D的关系,得到模型fi+1(dk);重复迭代直到线性部分的系数与数据驱动部分的模型参数收敛,得到最终的系数矩阵为A=[a1a2 a3 a4]T与数据驱动模型f(dk),暖通空调负荷预测模型的参数拟合完毕;
Figure BDA00030438691900000718
D=[d1 d2 … dN]T (12)
2)根据步骤1)得到的暖通空调负荷预测模型,在实时电价的激励下对建筑室内温度进行优化;具体步骤如下:
2-1)建立建筑室内温度的优化模型,表达式如下:
Figure BDA0003043869190000081
Figure BDA0003043869190000082
其中,
Figure BDA0003043869190000083
Figure BDA0003043869190000084
Figure BDA0003043869190000085
假定建筑暖通空调不参与需求响应时,室内温度为一恒定值TB,将此时的负荷作为时间点k的基值
Figure BDA0003043869190000086
室内温度在实时电价的激励下变化时,计算时间点k的暖通空调负荷相对基值的削减量
Figure BDA0003043869190000087
为了兼顾室内温度的舒适性,在室内温度偏离温度基值TB时,在成本中加入时间点k的温度舒适度惩罚项Ck,其中c是一个人为设定的常量(例如取一般情况下一个时间段内用电成本的九分之一,则温度偏离达到3摄氏度时舒适度惩罚与用电成本相等),较小的c值说明用户更愿意通过需求响应减少用电费用;
最优的室内温度可以通过求解式(13)和(14)所示的优化模型得到,其中rk表示时间点k的实时电价,Nk表示优化的时段长度,Tl和Tu分别为室内温度的下限和上限;
2-2)求解步骤2-1)建立的优化模型:
步骤2-1)建立的优化模型可以简化为式(18);该优化模型存在解析解,其解如式(19)所示。
Figure BDA0003043869190000088
for k∈{1,2,…,Nk}
Figure BDA0003043869190000089
Figure BDA00030438691900000810
利用式(19),可以在每一个当前时间点计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。

Claims (2)

1.一种基于部分线性模型的建筑暖通空调负荷优化控制方法,其特征在于,该方法首先分别建立建筑的热惰性模型和暖通空调系统模型,对该两个模型进行转化后得到包含线性部分和数据驱动部分的暖通空调负荷预测模型,利用历史数据拟合得到该暖通空调负荷预测模型的参数;然后根据该暖通空调负荷预测模型,建立建筑室内温度的优化模型,对优化模型求解,计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。
2.如权利要求1所述的方法,其特征在于,该方法包括以下步骤:
1)建立建筑暖通空调负荷预测模型;具体步骤如下:
1-1)建立物理模型;具体如下:
1-1-1)建立建筑的热惰性模型,如式(1)所示:
Figure FDA0003043869180000011
其中,
PT(t)=Ps(t)+PG(t) (2)
其中,C表示建筑内部空气的等效热容,Ti(t)表示t时刻室内空气的温度,PT(t)表示t时刻对空气的有效冷却或加热功率,To(t)表示t时刻室外温度,R表示建筑墙体的等效热阻;Ps(t)表示t时刻暖通空调供给的冷却或加热功率,PG(t)表示t时刻除暖通空调外其他因素的产热之和;
1-1-2)建立暖通空调系统模型,如式(3)-(5)所示:
Tm(t)=δTi(t)+(1-δ)To(t) (3)
Figure FDA0003043869180000012
Ps(t)=cpq(t)(Tc-Ti(t)) (5)
其中,Tm(t)表示经过回风混合后t时刻的空气温度,δ表示回风比例;Tc为空气温度的设定值,P(t)为t时刻暖通空调的冷却或制热机组的电负荷,cp表示空气的定压比热容,q(t)表示t时刻送风流量,COP表示暖通空调的冷却或制热机组的循环效率,制冷时Tc小于Tm(t),制热时Tc大于Tm(t);Ps(t)为t时刻送风给室内空气提供的冷却或加热功率,Ps(t)小于零表示制冷,Ps(t)大于零表示制热;
1-2)将步骤1-1)的物理模型转化为部分线性模型,建立暖通空调负荷预测模型;
将式(1)写成离散时间下的差分方程得到式(6),将式(2)写成离散时间形式得到式(7),其中下标k表示第k个离散时间点,
Figure FDA0003043869180000021
Figure FDA0003043869180000022
分别表示时间点k与时间点k+1的室内温度;将式(3)-(5)转化为离散时间形式,得到式(8),其中Pk表示时间点k暖通空调电负荷,a和b是常数;
Figure FDA0003043869180000023
Figure FDA0003043869180000024
Figure FDA0003043869180000025
结合式(6)-(8),得到暖通空调电负荷的表达式,如式(9)所示:
Figure FDA0003043869180000026
将式(9)进一步简化为式(10),得到最终的暖通空调负荷预测模型,该模型包含线性部分和数据驱动部分,其中a1,a2,a3,a4为模型中线性部分的系数;dk为影响
Figure FDA0003043869180000027
的因素,包括时间点k的太阳辐射强度
Figure FDA0003043869180000028
时间点k的湿度
Figure FDA0003043869180000029
时间点k对应的当前时间段
Figure FDA00030438691800000210
记为
Figure FDA00030438691800000211
f(dk)表示模型中用于拟合
Figure FDA00030438691800000212
的数据驱动部分;
Figure FDA00030438691800000213
式中,
Figure FDA00030438691800000214
表示时间点k对空气的有效冷却或加热功率,
Figure FDA00030438691800000215
表示时间点k室内空气的温度,
Figure FDA00030438691800000216
表示时间点k的室外温度,
Figure FDA00030438691800000217
表示时间点k暖通空调供给的冷却或加热功率,
Figure FDA00030438691800000218
表示时间点k除暖通空调外其他因素的产热之和;
1-3)利用历史数据拟合暖通空调负荷预测模型的参数;
从历史数据中选取一段长度为N用于训练的数据,将自变量矩阵记为X=[T D],其中T,D分别如式(11)(12)所示,分别表示线性部分的输入数据矩阵与数据驱动部分的输入数据矩阵;因变量矩阵记为Y=[P1 P2 ... PN]T
任意指定A0与f0(dk)的参数以完成初始化,然后采用轮流拟合线性部分和数据驱动部分的方法进行多次迭代,其中,记第i次迭代完成后,线性部分的系数矩阵为
Figure FDA00030438691800000219
Figure FDA00030438691800000220
数据驱动部分的模型为fi(dk);每次迭代包括两个步骤:(a)使用线性回归拟合Y-[fi(d1) fi(d2) ... fi(dN)]T对于T的关系,得到系数矩阵Ai+1;(b)使用选定的数据驱动方法拟合Y-TAi+1对于D的关系,得到模型fi+1(dk);重复迭代直到线性部分的系数与数据驱动部分的模型参数收敛,得到最终的系数矩阵为A=[a1 a2 a3 a4]T与数据驱动模型f(dk),暖通空调负荷预测模型的参数拟合完毕;
Figure FDA0003043869180000031
D=[d1 d2 ... dN]T (12)
2)根据步骤1)得到的暖通空调负荷预测模型,对建筑室内温度进行优化;具体步骤如下:
2-1)建立建筑室内温度的优化模型,表达式如下:
Figure FDA0003043869180000032
Figure FDA0003043869180000033
其中,
Figure FDA0003043869180000034
Figure FDA0003043869180000035
Figure FDA0003043869180000036
其中,设定室内温度为一恒定值TB
Figure FDA0003043869180000037
为时间点k的负荷基值;
Figure FDA0003043869180000038
为时间点k暖通空调负荷相对基值的削减量;Ck为时间点k的温度舒适度惩罚项,c是常量;
rk表示时间点k的实时电价,Nk表示优化的时段长度,Tl和Tu分别为室内温度的下限和上限;
2-2)求解步骤2-1)建立的优化模型:
将步骤2-1)建立的优化模型简化为式(18):
Figure FDA0003043869180000039
for k∈{1,2,...,Nk}
Figure FDA00030438691800000310
如式(18)所示的模型存在解析解,如式(19)所示:
Figure FDA00030438691800000311
利用式(19),在每一个当前时间点计算得到下一个时间点的最优建筑室内温度,从而实现对建筑暖通空调负荷的优化控制。
CN202110465752.5A 2021-04-28 2021-04-28 基于部分线性模型的建筑暖通空调负荷优化控制方法 Active CN113203187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110465752.5A CN113203187B (zh) 2021-04-28 2021-04-28 基于部分线性模型的建筑暖通空调负荷优化控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110465752.5A CN113203187B (zh) 2021-04-28 2021-04-28 基于部分线性模型的建筑暖通空调负荷优化控制方法

Publications (2)

Publication Number Publication Date
CN113203187A true CN113203187A (zh) 2021-08-03
CN113203187B CN113203187B (zh) 2022-03-01

Family

ID=77029183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110465752.5A Active CN113203187B (zh) 2021-04-28 2021-04-28 基于部分线性模型的建筑暖通空调负荷优化控制方法

Country Status (1)

Country Link
CN (1) CN113203187B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113483461A (zh) * 2021-09-07 2021-10-08 湖南大学 一种光伏直驱空调控制方法及装置
CN113757852A (zh) * 2021-08-27 2021-12-07 华中科技大学 基于数字孪生技术的多联机空调机组控制方法及控制系统
CN114222477A (zh) * 2021-12-13 2022-03-22 中国联合网络通信集团有限公司 数据中心的节能控制方法、装置、存储介质及程序产品
CN114543273A (zh) * 2022-02-28 2022-05-27 上海交通大学 一种集中空调供冷系统自适应深度学习优化节能控制算法
CN116561682A (zh) * 2023-05-19 2023-08-08 同济大学 一种城市海量建筑暖通空调系统组成及其性能系数高效预测方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443239A (ja) * 1990-06-11 1992-02-13 Takasago Thermal Eng Co Ltd 蓄熱式水熱源空調システムの運転方法
CN107062383A (zh) * 2017-04-27 2017-08-18 华电电力科学研究院 一种考虑建筑物热惰性及太阳辐射影响的实时负荷计算方法
CN107169606A (zh) * 2017-05-18 2017-09-15 天津大学 一种办公建筑冷负荷的预测方法
US20180004173A1 (en) * 2016-06-30 2018-01-04 Johnson Controls Technology Company Variable refrigerant flow system with multi-level model predictive control
CN107781947A (zh) * 2017-09-21 2018-03-09 新智能源系统控制有限责任公司 一种建筑空调系统冷热源预测控制方法和装置
CN108321793A (zh) * 2018-01-17 2018-07-24 东北电力大学 集成智能楼宇灵活负荷的主动配电网建模及优化调度方法
JP2019035531A (ja) * 2017-08-10 2019-03-07 株式会社大林組 空調システム選定装置、空調システム選定方法、プログラム及び記録媒体
CN109595742A (zh) * 2018-11-29 2019-04-09 天津大学 一种既有大型公共建筑空调系统的低成本调适方法
CN109871987A (zh) * 2019-01-28 2019-06-11 中建八局第三建设有限公司 一种智能建筑暖通设备综合节能控制方法
US20190360711A1 (en) * 2018-05-22 2019-11-28 Seokyoung Systems Method and device for controlling power supply to heating, ventilating, and air-conditioning (hvac) system for building based on target temperature
CN110864414A (zh) * 2019-10-30 2020-03-06 郑州电力高等专科学校 基于大数据分析的空调用电负荷智能控制调度方法
US20200080744A1 (en) * 2018-09-12 2020-03-12 Seokyoung Systems Method for creating demand response determination model for hvac system and method for implementing demand response
CN111623497A (zh) * 2020-02-20 2020-09-04 上海朗绿建筑科技股份有限公司 一种辐射空调预冷预热方法、系统、存储介质及辐射空调

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443239A (ja) * 1990-06-11 1992-02-13 Takasago Thermal Eng Co Ltd 蓄熱式水熱源空調システムの運転方法
US20180004173A1 (en) * 2016-06-30 2018-01-04 Johnson Controls Technology Company Variable refrigerant flow system with multi-level model predictive control
CN107062383A (zh) * 2017-04-27 2017-08-18 华电电力科学研究院 一种考虑建筑物热惰性及太阳辐射影响的实时负荷计算方法
CN107169606A (zh) * 2017-05-18 2017-09-15 天津大学 一种办公建筑冷负荷的预测方法
JP2019035531A (ja) * 2017-08-10 2019-03-07 株式会社大林組 空調システム選定装置、空調システム選定方法、プログラム及び記録媒体
CN107781947A (zh) * 2017-09-21 2018-03-09 新智能源系统控制有限责任公司 一种建筑空调系统冷热源预测控制方法和装置
CN108321793A (zh) * 2018-01-17 2018-07-24 东北电力大学 集成智能楼宇灵活负荷的主动配电网建模及优化调度方法
US20190360711A1 (en) * 2018-05-22 2019-11-28 Seokyoung Systems Method and device for controlling power supply to heating, ventilating, and air-conditioning (hvac) system for building based on target temperature
US20200080744A1 (en) * 2018-09-12 2020-03-12 Seokyoung Systems Method for creating demand response determination model for hvac system and method for implementing demand response
CN109595742A (zh) * 2018-11-29 2019-04-09 天津大学 一种既有大型公共建筑空调系统的低成本调适方法
CN109871987A (zh) * 2019-01-28 2019-06-11 中建八局第三建设有限公司 一种智能建筑暖通设备综合节能控制方法
CN110864414A (zh) * 2019-10-30 2020-03-06 郑州电力高等专科学校 基于大数据分析的空调用电负荷智能控制调度方法
CN111623497A (zh) * 2020-02-20 2020-09-04 上海朗绿建筑科技股份有限公司 一种辐射空调预冷预热方法、系统、存储介质及辐射空调

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113757852A (zh) * 2021-08-27 2021-12-07 华中科技大学 基于数字孪生技术的多联机空调机组控制方法及控制系统
CN113483461A (zh) * 2021-09-07 2021-10-08 湖南大学 一种光伏直驱空调控制方法及装置
CN114222477A (zh) * 2021-12-13 2022-03-22 中国联合网络通信集团有限公司 数据中心的节能控制方法、装置、存储介质及程序产品
CN114543273A (zh) * 2022-02-28 2022-05-27 上海交通大学 一种集中空调供冷系统自适应深度学习优化节能控制算法
CN114543273B (zh) * 2022-02-28 2022-12-02 上海交通大学 一种集中空调供冷系统自适应深度学习优化节能控制算法
CN116561682A (zh) * 2023-05-19 2023-08-08 同济大学 一种城市海量建筑暖通空调系统组成及其性能系数高效预测方法
CN116561682B (zh) * 2023-05-19 2023-12-19 同济大学 一种城市海量建筑暖通空调系统组成及其性能系数高效预测方法

Also Published As

Publication number Publication date
CN113203187B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
CN113203187B (zh) 基于部分线性模型的建筑暖通空调负荷优化控制方法
Platt et al. Adaptive HVAC zone modeling for sustainable buildings
Moon Performance of ANN-based predictive and adaptive thermal-control methods for disturbances in and around residential buildings
Wemhoff Calibration of HVAC equipment PID coefficients for energy conservation
CN109376912B (zh) 基于民用建筑物热惯性的冷热电联供系统运行优化方法
Cai et al. General approaches for determining the savings potential of optimal control for cooling in commercial buildings having both energy and demand charges
CN110543713A (zh) 考虑用户舒适度与建筑蓄热的热泵-地暖系统控制方法
Attia et al. Building performance optimization of net zero‐energy buildings
Dong Non-linear optimal controller design for building HVAC systems
CN111854063A (zh) 一种变频空调器控制方法
CN114896664B (zh) 园区建筑光伏一体化围护结构优化方法及系统
CN114623569A (zh) 一种基于深度强化学习的集群空调负荷差异化调控方法
Simon et al. Energy efficient smart home heating system using renewable energy source with fuzzy control design
CN111737857A (zh) 一种基于互动能力曲线的暖通空调集群协调控制方法
Dong et al. Novel PCM integration with electrical heat pump for demand response
Li et al. Thermal comfort control based on MEC algorithm for HVAC systems
Lachhab et al. An energy-efficient approach for controlling heating and air-conditioning systems
CN113757852B (zh) 基于数字孪生技术的多联机空调机组控制方法及控制系统
CN114936529A (zh) 一种温控负荷群聚合模型及建模方法、温控负荷群可调节潜力评估方法
CN113806995A (zh) 一种基于ibas算法的家庭设备用能多目标优化方法及系统
Chen et al. An Energy Optimization Model for Commercial Buildings with Renewable Energy Systems via Nonlinear MPC
Xu et al. A humidity integrated building thermal model
CN111222230A (zh) 热泵类电采暖设备的建模处理方法及装置
Kim et al. Model-based predictive control for buildings with decoupling and reduced-order modeling
CN116734424B (zh) 基于rc模型和深度强化学习的室内热环境的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant