CN113191672B - 基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统 - Google Patents

基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统 Download PDF

Info

Publication number
CN113191672B
CN113191672B CN202110551707.1A CN202110551707A CN113191672B CN 113191672 B CN113191672 B CN 113191672B CN 202110551707 A CN202110551707 A CN 202110551707A CN 113191672 B CN113191672 B CN 113191672B
Authority
CN
China
Prior art keywords
garbage
transportation
vrptw
time
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110551707.1A
Other languages
English (en)
Other versions
CN113191672A (zh
Inventor
田禹
赵天瑞
张军
左薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110551707.1A priority Critical patent/CN113191672B/zh
Publication of CN113191672A publication Critical patent/CN113191672A/zh
Application granted granted Critical
Publication of CN113191672B publication Critical patent/CN113191672B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0835Relationships between shipper or supplier and carriers
    • G06Q10/08355Routing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/103Workflow collaboration or project management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/30Administration of product recycling or disposal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Data Mining & Analysis (AREA)
  • Processing Of Solid Wastes (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

基于空间数据和VRPTW的村镇垃圾分类转运规划方法及系统,属于环境工程、环境系统模拟预测技术与计算机技术交叉领域。本发明解决了生活垃圾空间分布数据缺乏、运输方案不优化,而导致垃圾运输成本高,运输效率低的问题。本发明方法包括:获取基础空间数据集;根据基础空间数据集确定垃圾产量时空分布;获取待规划区域的空间矢量数据集;建立线性回归算法,计算得到垃圾的日均产量值,得到垃圾日均收运负荷;设置运输频率;根据运输频率和开放时间设立工作时间窗口;获取垃圾转运总成本,根据以上数据建立VRP分析图层,加入时间窗形成VRPTW模型;将以上数据输入VRPTW模型,得到垃圾对应运输路径和运输时间,计算得出日运输成本。本发明用于垃圾分类运输规划。

Description

基于空间数据和VRPTW的村镇垃圾分类转运规划方法及系统
技术领域
本发明属于环境工程、环境系统模拟预测技术与计算机技术交叉领域,具体涉及基于空间数据和VRPTW的村镇垃圾分类转运规划方法及系统。
背景技术
伴随着我国城镇化水平的高速发展与人口数量的增长,截至2019年,生活垃圾年产量已经上升到了1.79亿吨的规模,我国村镇的环境卫生发展面临垃圾产生量增长快、运输处理能力不协调、运维成本欠优化、填埋导致二次污染严重等现实挑战,亟待推广先进理念,进行精细化管理与全局的资源整合,无废城市建设计划应运而生。结合生态环境部于2019年6月印发的《“无废城市”建设指标体系(试行)》中生活垃圾管理中对生活垃圾分类收运系统覆盖率的控制需求,需要将数据的量级与时间尺度上进行细化,配合当地市政部门的精准环境管理,形成符合现实状况的精细化生活垃圾运输方法。生活垃圾的生命周期过程规划管理,已经在国内外发展为重要的新兴产业,作为社会的生态文明建设重要课题,引发了越来越多的关注。不仅是处理设备的更新换代,更有处理流程的现代化、系统化水平的日益提升,地理信息系统(Geo-Information system,简称GIS)技术作为重要工具,也广泛应用于固体废物的综合管控。
面向我国未来基于无废城市各项指标的建设需求与广大村镇的发展需要,首先,将GIS相关算法与当地的环卫建设结合,并不能照搬照抄经验,需要结合当地垃圾产生的空间特点进行分析,对服务规模的扩充进行动态化的考量;其次,GIS软件与空间地理分析技术的结合,可以使其获得更好的研究成果,以空间地理数据的引入,增加路径生成过程的精准性;最后,由于当地村镇建设的需要,应当切合当地源头减量要求以及无害化处理的现状,制定可以覆盖当地全域的无害化生活垃圾分类运输路线。
针对我国村镇场景下生活垃圾空间分布数据缺乏、运输方案不够优化散,而导致运输成本高的问题,现需一种村镇垃圾分类转运方法来降低运输成本。
发明内容
本发明的目的是为了解决针对我国村镇场景下生活垃圾空间分布数据缺乏、运输方案不够优化,而导致垃圾运输成本高,运输效率低的问题,现提出基于空间数据和VRPTW的村镇垃圾分类转运规划方法及系统。
基于空间数据和VRPTW的村镇垃圾分类转运规划方法,包括:
步骤一、获取基础空间数据集,所述基础空间数据集包括人口数值和土地利用类型数值,以栅格为单位对基础空间数据集进行划分,得到多个数据网格;
步骤二、根据基础空间数据集确定网格内部不同种类垃圾的产量时空分布;
步骤三、获取待规划区域的空间矢量数据集,所述空间矢量数据集包括垃圾收集站点、转运站点、村镇多级路网、垃圾处置站点;
步骤四、根据每个网格内的人口数值、土地利用类型数值和网格内部不同种类垃圾的产量时空分布,建立线性回归算法,通过线性回归算法计算得到每一个网格的不同种类垃圾的日均产量值;将网格内所有不同种类垃圾的日均产量值加和,得到转运站点所承担的每种垃圾日平均收运负荷;
步骤五、设置不同种类垃圾运输频率;
步骤六、根据车辆的运输频率,以及垃圾转运点和处理点的开放时间,设立工作时间窗口;
步骤七、获取时间成本、运输成本和固定成本,作为垃圾转运的总成本,
步骤八、根据转运站点所承担的每种垃圾日平均收运负荷,空间矢量数据集,垃圾转运的总成本,不同种类垃圾运输频率、车辆运输起点、转运站点、运输终点,建立VRP分析图层,并加入步骤六设立的时间窗口,形成VRPTW模型;将转运站点所承担的每种垃圾日平均收运负荷,空间矢量数据集,垃圾转运的总成本,不同种类垃圾运输频率、车辆运输起点、转运站点、运输终点输入VRPTW模型中,基于VRP运算,输出得到不同种类垃圾对应的运输路径和运输时间,根据不同种类垃圾对应的运输路径和运输时间计算得出日运输运本;
步骤九、将各类垃圾的日运输成本进行加和,乘以时间单位,得到待规划区域的垃圾运输最低总成本。
基于空间数据和VRPTW的村镇垃圾分类转运规划系统,所述系统用于执行基于空间数据和VRPTW的村镇垃圾分类转运规划方法。
有益效果
本发明运用计算机技术,结合了空间地理数据,构建了面向村镇生活垃圾产量与运输要求相适应的创新生活垃圾运输路径规划方法;根据生活垃圾源头产量空间分布不明的现状,提出了使用空间地理数据基于最小二乘法的农村分类生活垃圾产量计算方式,解决了生活垃圾空间分布数据缺乏的问题;根据生活垃圾分类收运系统未覆盖全境的现状;基于ArcGIS软件,建立了带有时间窗的多路径运输问题分析模型,形成了不同种类生活垃圾的运输路径,保证生活垃圾可以通过VRPTW分析在时间窗口设置条件内从收集点运输到处理点,提升了生活垃圾收运系统的可行性与经济性,在转运站点所承担的每种垃圾日平均收运负荷下,计算得到最佳运输路径和运输时间,使整体运输方案的成本降到最低,且极大提高了运输效率。
附图说明
图1为本发明的流程图;
图2为生活垃圾运输负荷总量分布地图示意图;
图3为生活垃圾运输路径生成示意图。
具体实施方式
具体实施方式一:本发明为村镇场景下的生活垃圾全域运输的提出运输成本优化方案,利用人口密度分布、GDP密度分布图,网格化分析了地理单元中生活垃圾的产生情况,明确了不同种类生活垃圾的运输负荷;基于网络分析功能,建立了生活垃圾运输专题网络数据集,用以方案生成与运输成本计算,基于ArcGIS软件VRP分析方法,构建VRPTW(VehicleRouting Problem with Time Windows)模型。可以获得同时满足最小环境影响的时间窗要求与最低总运行成本的运输路线规划方案;
结合图1-3具体说明本实施方式,本实施方式基于空间数据和VRPTW的村镇垃圾分类转运规划方法,包括:
步骤一、面向村镇场景下环卫数据不匹配、采集不齐全的情况,利用研究区域的行政边界矢量数据对联合国WorldPop(100m)的人口数据集与Globe Land30土地利用数据集进行裁剪,并将两种数据集同时使用重采样方法,赋值到多个网格中,得到基础空间数据集,此基础空间数据集包含人口数值以及土地利用类型数值;
步骤二、根据基础空间数据集确定网格内部不同种类垃圾的产量时空分布情况;
步骤三、获取待规划区域的空间矢量数据,所述空间矢量数据包括垃圾收集站点、转运站点、村镇多级鲁网以及垃圾处置点等多个空间矢量数据;
步骤四、根据每个网格内的人口数值、土地利用数值和网格内不同种类垃圾的产量时空分布,建立线性回归算法,通过线性回归算法计算得到每一个网格内不同种类垃圾的日均产量值,将网格内的所有不同种类垃圾的日均产量值加和,得到转运站点所承担的每种垃圾日平均收运负荷;
步骤五、设置不同种类垃圾的运输频率;
步骤六、获取垃圾转运站点和处理点的开放时间(开放时间即转运点-中转站店-处理点-垃圾填埋场等,有固定的的工作时间,比如某区域的转运站的工作时间为早六点至晚六点),根据不同种类垃圾的运输频率、垃圾转运站点和处理点的开放时间,设立工作时间窗口;
步骤七、获取时间成本、运输成本和固定成本,作为垃圾转运的总成本;
步骤八、根据转运站点所承担的每种垃圾日平均收运负荷、空间矢量数据集、垃圾转运的总成本、不同种类垃圾的运输频率以及车辆的运输起点、转运站点和运输终点,建立VRP(Vehicle Routing Problem)分析图层;将设立的时间窗口加入VRP分析图层中,形成VRPTW模型,将转运站点所承担的每种垃圾日平均收运负荷,空间矢量数据集,垃圾转运的总成本,不同种类垃圾运输频率、车辆运输起点、转运站点、运输终点输入VRPTW模型中,基于VRP运算,输出得到不同种类垃圾对应的运输路径和运输时间,根据不同种类垃圾对应的运输路径和运输时间计算得出日运输成本;
步骤九、将各类垃圾的日运输成本进行加和,乘以时间单位,得到待规划区域的垃圾运输最低总成本。
具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤二根据基础空间数据集确定不同种类垃圾的产量时空分布情况;具体过程为:
从多个数据网格中随机选取一个数据网格,对其进行垃圾采样,得到该网格区域内每天的垃圾产量和垃圾种类比例分布;基于每天的垃圾产量和垃圾种类比例分布,利用最小二乘法建立线性回归模型,对线性回归模型进行拟合,并优化参数权重,得到优化后的线性回归模型;将所有数据网格内的人口数值和土地利用类型数值输入优化后的线性回归模型,计算得到每个网格内的垃圾产量和垃圾种类比例分布;根据每个网格内的垃圾产量和垃圾种类比例分布确定垃圾的产量时空分布。
其它步骤及参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述不同种垃圾的产量时空分布情况为在不同时间场景下,每个网格内部不同种垃圾的产量。
其它步骤及参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述不同种类垃圾包括干垃圾、湿垃圾、可回收垃圾和有害垃圾。
其它步骤及参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至三之一不同的是,所述步骤五设置不同种类垃圾的运输频率;具体过程为:
对于湿垃圾,由于湿垃圾较为易腐,且因餐厨、畜牧等原因产生较多,故需要利用密闭车辆运输,并保证车辆有渗滤液收集功能,运输湿垃圾的运输频率为至少一天一次;
对于干垃圾,虽然生活垃圾中干垃圾占比较大,但易于存储,设置较湿垃圾相对低的运输频次,运输干垃圾运输频率为至少两天一次;
对于可回收垃圾,将在转运点采用机械与人工结合的方式,进行分选预处理,便于后续资源化回用,部分村镇转运站设备不满足回收需求,应选择满足实际机器装备要求的转运点作为其转运点,设置较低的运输频次,保证至少三天一次的运输频率;
对于医疗,工业等有害垃圾,需要相关产生单位,结合单位资质与报备情况,进行针对性的收集处理,避免造成负面环境影响,在农村场景下有害垃圾产量最少,应保证至少五天一次的运输频率。
其它步骤及参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,所述时间成本包括车辆转运时间和车辆在转运点的停留时间;所述运输成本包括单位时间内车辆所耗油量对应价格;所述固定成本包括垃圾装卸中的固定电量对应价格和运输人员工资。
其它步骤及参数与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是,所述步骤二中的空间矢量数据通过ArcMap10.7获取得到。
其它步骤及参数与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是,所述VRP分析图层通过Network Analysis建立得到。
其它步骤及参数与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是,所述数据网格为100m*100m。
其它步骤及参数与具体实施方式一至八之一相同。
具体实施方式十:本实施方式基于空间数据和VRPTW的村镇垃圾分类转运规划系统,所述系统用于执行基于空间数据和VRPTW的村镇垃圾分类转运规划方法。
其它步骤及参数与具体实施方式一至九之一相同。
实施例
如图2所示,本次研究基于我国东南某县级市的乡镇一体化分类转运体系建立进行分析。
(1)采集研究区域的GDP与人口分布情况:
为了进行生活垃圾产量的空间分布情况预测,对全国的人口密度分布图与土地利用图进行收集,基于研究区域的行政边界进行数据提取划分;对数据进行基于人口栅格的重采样,形成服务于研究区域城乡一体垃圾收运服务范围内生活垃圾产生强度分析的专题基础空间数据集。
(2)进行不同种类的生活垃圾日产量计算:
将当地人口密度分布情况、土地利用与生活垃圾产量建立了线性相关关系,形成了如图1所示的不同种类的生活垃圾运输负荷总量的时空分布地图。
(3)建立网络数据集:
利用ArcGIS Network Analyst功能,可以对研究区域的路网、车队位置、垃圾转运点位置、处理终点位置进行网络关系构建,进行二维拓扑关系的空间建模,生成网络数据集。为了形成用于多路径配给分析的网络数据集,需要完成数据的输入准备,网络数据集的必备要素如表1和表2所示。
表1线状要素(路网)字段表
Figure BDA0003075740480000061
表2点状要素字段表
Figure BDA0003075740480000062
构建网络数据集后检查网络连通性,对孤立点进行调整(结合研究区域高精度地图,基于现实状况进行道路增补与转运点的位置手动移动调整)。
(4)设置车辆对应的收运方案:
实施生活垃圾的分类收集,需要结合实际源头减量情况,针对不同的生活垃圾建立独立的收运逻辑系统,作为路径确立的基础原则。根据不同种类垃圾的特点对于转运频次进行设计。
湿垃圾:在收运过程中,需要利用密闭车辆,并保证车辆的渗滤液收集功能,以及较高的运输频次。
干垃圾:干垃圾的收运可以酌情设置较低的运输频次。
可回收垃圾:对于未进行源头分拣的生活垃圾将在转运点采用机械与人工结合的方式,进行分选预处理,便于后续资源化回用。
有害垃圾:对于医疗,工业等有害垃圾,需要相关产生单位,结合公司资质与报备情况,进行针对性的收集处理,避免造成负面环境影响。
结合各种类垃圾的具体产量进行方案生成,在车辆有限的情况下,进行路径固定、种类轮换的收运。
(5)VRPTW模型的运算:
利用ArcMap软件的VRP功能,形成VRPTW模型,为时间属性与载荷属性进行赋值,完成问题属性设置后,可以进行模型运算与求解,获取路径分配情况与停靠点顺序。形成的生活垃圾运输效果图如图3;
(6)运输成本计算:
生活垃圾的收运过程,需要进行面向长期运行机制的优化,经过模型计算进行路径确立后,要确保长期时间内的时间效益、经济效益。基于GIS软件,仅能计划单一车次的时间、经济成本,无法计算保洁员与司机的人员工资、车辆损耗、点位投资等因素,以进行全局规划。本发明利用ArcGIS软件计算基础,结合现实管理需求,对上述经济支出进行一体化整合运算,提出总体成本整合范式,计算年月周不同时间尺度下成本的变化情况,对收运方案进行横向对比,建立基于遥感数据垃圾产量分配村镇场景下成本优化的VRPTW路线优化方法。
根据上述方案运算结果,计算出运行成本约为8357元/天,其路径与时间成本为基于VRP方法运算所得的最小值。

Claims (9)

1.基于空间数据和VRPTW的村镇垃圾分类转运规划方法,其特征在于,包括:
步骤一、获取基础空间数据集,所述基础空间数据集包括人口数值和土地利用类型数值,以栅格为单位对基础空间数据集进行划分,得到多个数据网格;
步骤二、根据基础空间数据集确定网格内部不同种类垃圾的产量时空分布;具体过程为:
从多个数据网格中选取一个数据网格进行垃圾采样,得到该网格内每天的垃圾产量和垃圾种类比例分布;基于每天的垃圾产量和垃圾种类比例分布,利用最小二乘法建立线性回归模型,对线性回归模型进行拟合,并优化参数权重,得到优化后的线性回归模型;将所有数据网格内的人口数值和土地利用类型数值输入优化后的线性回归模型,计算得到每个网格内的垃圾产量和垃圾种类比例分布;根据每个网格内的垃圾产量和垃圾种类比例分布确定垃圾的产量时空分布;
步骤三、获取待规划区域的空间矢量数据集,所述空间矢量数据集包括垃圾收集站点、转运站点、村镇多级路网、垃圾处置站点;
步骤四、根据每个网格内的人口数值、土地利用类型数值和网格内部不同种类垃圾的产量时空分布,建立线性回归算法,通过线性回归算法计算得到每一个网格的不同种类垃圾的日均产量值;将网格内所有不同种类垃圾的日均产量值加和,得到转运站点所承担的每种垃圾日平均收运负荷;
步骤五、设置不同种类垃圾运输频率;
步骤六、根据车辆的运输频率,以及垃圾转运点和处理点的开放时间,设立工作时间窗口;
步骤七、获取时间成本、运输成本和固定成本,作为垃圾转运的总成本,
步骤八、根据转运站点所承担的每种垃圾日平均收运负荷,空间矢量数据集,垃圾转运的总成本,不同种类垃圾运输频率、车辆运输起点、转运站点、运输终点,建立VRP分析图层,并加入步骤六设立的时间窗口,形成VRPTW模型;将转运站点所承担的每种垃圾日平均收运负荷,空间矢量数据集,垃圾转运的总成本,不同种类垃圾运输频率、车辆运输起点、转运站点、运输终点输入VRPTW模型中,基于VRP运算,输出得到不同种类垃圾对应的运输路径和运输时间,根据不同种类垃圾对应的运输路径和运输时间计算得出日运输成本;
步骤九、将各类垃圾的日运输成本进行加和,乘以时间单位,得到待规划区域的垃圾运输最低总成本。
2.根据权利要求1所述基于空间数据和VRPTW的村镇垃圾分类转运规划方法,其特征在于,所述产量时空分布为不同时间场景下每个网格内部的不同种垃圾产量。
3.根据权利要求2所述基于空间数据和VRPTW的村镇垃圾分类转运规划方法,其特征在于,所述垃圾种类包括:干垃圾、湿垃圾、可回收垃圾和有害垃圾。
4.根据权利要求3所述基于空间数据和VRPTW的村镇垃圾分类转运规划方法,其特征在于,所述步骤五中对垃圾设置的运输频率具体为:
运输湿垃圾的运输频率为至少一天一次;
运输干垃圾的运输频率为至少两天一次;
运输可回收垃圾的运输频率为至少三天一次;
运输有害垃圾的运输频率为至少五天一次。
5.根据权利要求4所述基于空间数据和VRPTW的村镇垃圾分类转运规划方法,其特征在于,所述时间成本包括车辆转运时间和车辆在转运点的停留时间;所述运输成本包括单位时间内车辆所耗油量对应价格;所述固定成本包括垃圾装卸中的固定电量对应价格和运输人员工资。
6.根据权利要求1所述基于空间数据和VRPTW的村镇垃圾分类转运规划方法,其特征在于,所述空间矢量数据通过ArcMap10.7获取。
7.根据权利要求1所述基于空间数据和VRPTW的村镇垃圾分类转运规划方法,其特征在于,每个数据网格为100m*100m。
8.根据权利要求1所述基于空间数据和VRPTW的村镇垃圾分类转运规划方法,其特征在于,所述VRP分析图层通过Network Analysis建立得到。
9.基于空间数据和VRPTW的村镇垃圾分类转运规划系统,其特征在于:该系统用于执行权利要求1至权利要求8之一的基于空间数据和VRPTW的村镇垃圾分类转运规划方法。
CN202110551707.1A 2021-05-20 2021-05-20 基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统 Active CN113191672B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110551707.1A CN113191672B (zh) 2021-05-20 2021-05-20 基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110551707.1A CN113191672B (zh) 2021-05-20 2021-05-20 基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统

Publications (2)

Publication Number Publication Date
CN113191672A CN113191672A (zh) 2021-07-30
CN113191672B true CN113191672B (zh) 2022-01-04

Family

ID=76982725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110551707.1A Active CN113191672B (zh) 2021-05-20 2021-05-20 基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统

Country Status (1)

Country Link
CN (1) CN113191672B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113408918B (zh) * 2021-06-28 2022-04-19 哈尔滨工业大学 基于多时相遥感分析的村镇垃圾降尺度时空分布反演方法
CN113627689B (zh) * 2021-09-03 2022-05-27 哈尔滨工业大学 基于critic与熵值的村镇垃圾移动化处理设备调度寻优方法
CN114037189A (zh) * 2022-01-06 2022-02-11 武汉新城美洁环保技术服务有限公司 通过垃圾转运量以人口聚集密度确定垃圾车辆分配系统
CN117592769B (zh) * 2024-01-19 2024-04-05 四川绿豆芽信息技术有限公司 一种碳小屋站点管理方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106326998A (zh) * 2015-06-29 2017-01-11 株式会社日立制作所 路径规划方法和路径规划装置
CN108805494A (zh) * 2018-05-30 2018-11-13 合肥学院 基于物联网技术的固体废弃物收运系统及其收运方法
CN110516870A (zh) * 2019-08-22 2019-11-29 安庆师范大学 一种基于协同进化的多回收站点垃圾收运方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101169843A (zh) * 2007-11-29 2008-04-30 上海交通大学 基于地理信息的垃圾收运方法
CN106384540B (zh) * 2016-10-20 2019-04-19 深圳市元征科技股份有限公司 车辆实时轨迹预测方法及预测系统
CN107578132B (zh) * 2017-09-11 2020-09-08 天津工业大学 一种基于免疫优化的垃圾车路径获取方法
CN110363455A (zh) * 2018-04-09 2019-10-22 株式会社日立制作所 一种物品收集的路线规划方法及系统
US20210081894A1 (en) * 2019-09-13 2021-03-18 NEC Laboratories Europe GmbH Constrained vehicle routing using clusters
CN112580864B (zh) * 2020-12-14 2021-11-19 哈尔滨工业大学 结合多元数据应用价值提升的村镇生活垃圾产量预测系统
CN112798002A (zh) * 2020-12-29 2021-05-14 佛山市金净创环保技术有限公司 一种智能车辆自主路径规划方法、系统及可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106326998A (zh) * 2015-06-29 2017-01-11 株式会社日立制作所 路径规划方法和路径规划装置
CN108805494A (zh) * 2018-05-30 2018-11-13 合肥学院 基于物联网技术的固体废弃物收运系统及其收运方法
CN110516870A (zh) * 2019-08-22 2019-11-29 安庆师范大学 一种基于协同进化的多回收站点垃圾收运方法

Also Published As

Publication number Publication date
CN113191672A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
CN113191672B (zh) 基于空间数据和vrptw的村镇垃圾分类转运规划方法及系统
Kuznetsova et al. Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design
Khan et al. Optimal siting of solid waste-to-value-added facilities through a GIS-based assessment
Ohnishi et al. A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy methods—Case of Kawasaki, Japan
Xue et al. Municipal solid waste collection optimization in Singapore
Khan et al. Development of a decision model for the techno-economic assessment of municipal solid waste utilization pathways
Lv et al. Optimization of recyclable MSW recycling network: A Chinese case of Shanghai
Chalkias et al. Benefits from GIS based modelling for municipal solid waste management
Cheng et al. Effect of spatial distribution and number of raw material collection locations on the transportation costs of biomass thermal power plants
CN113762793B (zh) 基于dea与核密度的移动农村垃圾处理设备布点方法
CN112966925B (zh) 一种基于遥感时序变化分析的村镇垃圾增量风险分析系统
Richter et al. An iterative tessellation-based analytical approach to the design and planning of waste management regions
Shi et al. Multi-objective agent-based modeling of single-stream recycling programs
Monzambe et al. Statistical analysis of determinant factors and framework development for the optimal and sustainable design of municipal solid waste management systems in the context of industry 4.0
Yu et al. Optimization of long-term performance of municipal solid waste management system: A bi-objective mathematical model
Cheng et al. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development
Sarptas et al. GIS supported solid waste management in coastal areas
Tornberg et al. A GIS energy model for the building stock of Goteborg
Karimipour et al. Vehicle routing optimization for improving fleet fuel efficiency: a case study in Sydney, Australia
Mitropoulos et al. Exact and heuristic approaches for the locational planning of an integrated solid waste management system
Economopoulos Planning tools and procedures for rational municipal solid wastes management
CN114239918B (zh) 基于e2sfca可达分析的移动式压缩装备巡逻寻优方法
Al-Refaie et al. A fuzzy optimization model for methane gas production from municipal solid waste
Xin et al. Reconfiguration of garbage collection system based on Voronoi graph theory: A simulation case of Beijing region
Hu et al. Reverse logistics of municipal solid waste------Study on the Location of transfer stations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant