CN113191150A - 一种多特征融合的中文医疗文本命名实体识别方法 - Google Patents
一种多特征融合的中文医疗文本命名实体识别方法 Download PDFInfo
- Publication number
- CN113191150A CN113191150A CN202110556687.7A CN202110556687A CN113191150A CN 113191150 A CN113191150 A CN 113191150A CN 202110556687 A CN202110556687 A CN 202110556687A CN 113191150 A CN113191150 A CN 113191150A
- Authority
- CN
- China
- Prior art keywords
- word
- dictionary
- formula
- vector
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000004927 fusion Effects 0.000 title abstract description 7
- 239000013598 vector Substances 0.000 claims abstract description 69
- 230000011218 segmentation Effects 0.000 claims abstract description 7
- 239000011159 matrix material Substances 0.000 claims description 54
- 230000006870 function Effects 0.000 claims description 26
- 238000011478 gradient descent method Methods 0.000 claims description 7
- 238000012549 training Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- YTAHJIFKAKIKAV-XNMGPUDCSA-N [(1R)-3-morpholin-4-yl-1-phenylpropyl] N-[(3S)-2-oxo-5-phenyl-1,3-dihydro-1,4-benzodiazepin-3-yl]carbamate Chemical compound O=C1[C@H](N=C(C2=C(N1)C=CC=C2)C1=CC=CC=C1)NC(O[C@H](CCN1CCOCC1)C1=CC=CC=C1)=O YTAHJIFKAKIKAV-XNMGPUDCSA-N 0.000 claims description 3
- 230000004913 activation Effects 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000017105 transposition Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 5
- 238000013528 artificial neural network Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/20—Natural language analysis
- G06F40/279—Recognition of textual entities
- G06F40/289—Phrasal analysis, e.g. finite state techniques or chunking
- G06F40/295—Named entity recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Machine Translation (AREA)
- Document Processing Apparatus (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110556687.7A CN113191150B (zh) | 2021-05-21 | 2021-05-21 | 一种多特征融合的中文医疗文本命名实体识别方法 |
PCT/CN2021/131596 WO2022242074A1 (zh) | 2021-05-21 | 2021-11-19 | 一种多特征融合的中文医疗文本命名实体识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110556687.7A CN113191150B (zh) | 2021-05-21 | 2021-05-21 | 一种多特征融合的中文医疗文本命名实体识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113191150A true CN113191150A (zh) | 2021-07-30 |
CN113191150B CN113191150B (zh) | 2022-02-25 |
Family
ID=76984598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110556687.7A Active CN113191150B (zh) | 2021-05-21 | 2021-05-21 | 一种多特征融合的中文医疗文本命名实体识别方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113191150B (zh) |
WO (1) | WO2022242074A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022242074A1 (zh) * | 2021-05-21 | 2022-11-24 | 山东省人工智能研究院 | 一种多特征融合的中文医疗文本命名实体识别方法 |
CN117195877A (zh) * | 2023-11-06 | 2023-12-08 | 中南大学 | 一种电子病历的词向量生成方法、系统、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111243699A (zh) * | 2020-01-14 | 2020-06-05 | 中南大学 | 基于字词信息融合的中文电子病历实体抽取方法 |
CN111444726A (zh) * | 2020-03-27 | 2020-07-24 | 河海大学常州校区 | 基于双向格子结构的长短时记忆网络的中文语义信息提取方法和装置 |
CN111523320A (zh) * | 2020-04-20 | 2020-08-11 | 电子科技大学 | 一种基于深度学习的中文病案分词方法 |
US20200302118A1 (en) * | 2017-07-18 | 2020-09-24 | Glabal Tone Communication Technology Co., Ltd. | Korean Named-Entity Recognition Method Based on Maximum Entropy Model and Neural Network Model |
CN112151183A (zh) * | 2020-09-23 | 2020-12-29 | 上海海事大学 | 一种基于Lattice LSTM模型的中文电子病历的实体识别方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109871538A (zh) * | 2019-02-18 | 2019-06-11 | 华南理工大学 | 一种中文电子病历命名实体识别方法 |
CN112329465B (zh) * | 2019-07-18 | 2024-06-25 | 株式会社理光 | 一种命名实体识别方法、装置及计算机可读存储介质 |
CN110866401A (zh) * | 2019-11-18 | 2020-03-06 | 山东健康医疗大数据有限公司 | 基于注意力机制的中文电子病历命名实体识别方法及系统 |
CN113191150B (zh) * | 2021-05-21 | 2022-02-25 | 山东省人工智能研究院 | 一种多特征融合的中文医疗文本命名实体识别方法 |
-
2021
- 2021-05-21 CN CN202110556687.7A patent/CN113191150B/zh active Active
- 2021-11-19 WO PCT/CN2021/131596 patent/WO2022242074A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200302118A1 (en) * | 2017-07-18 | 2020-09-24 | Glabal Tone Communication Technology Co., Ltd. | Korean Named-Entity Recognition Method Based on Maximum Entropy Model and Neural Network Model |
CN111243699A (zh) * | 2020-01-14 | 2020-06-05 | 中南大学 | 基于字词信息融合的中文电子病历实体抽取方法 |
CN111444726A (zh) * | 2020-03-27 | 2020-07-24 | 河海大学常州校区 | 基于双向格子结构的长短时记忆网络的中文语义信息提取方法和装置 |
CN111523320A (zh) * | 2020-04-20 | 2020-08-11 | 电子科技大学 | 一种基于深度学习的中文病案分词方法 |
CN112151183A (zh) * | 2020-09-23 | 2020-12-29 | 上海海事大学 | 一种基于Lattice LSTM模型的中文电子病历的实体识别方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022242074A1 (zh) * | 2021-05-21 | 2022-11-24 | 山东省人工智能研究院 | 一种多特征融合的中文医疗文本命名实体识别方法 |
CN117195877A (zh) * | 2023-11-06 | 2023-12-08 | 中南大学 | 一种电子病历的词向量生成方法、系统、设备及存储介质 |
CN117195877B (zh) * | 2023-11-06 | 2024-01-30 | 中南大学 | 一种电子病历的词向量生成方法、系统、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
WO2022242074A1 (zh) | 2022-11-24 |
CN113191150B (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110765775B (zh) | 一种融合语义和标签差异的命名实体识别领域自适应的方法 | |
CN110969020B (zh) | 基于cnn和注意力机制的中文命名实体识别方法、系统及介质 | |
CN110008469B (zh) | 一种多层次命名实体识别方法 | |
CN112487143A (zh) | 一种基于舆情大数据分析的多标签文本分类方法 | |
CN110263325B (zh) | 中文分词系统 | |
CN111046670B (zh) | 基于毒品案件法律文书的实体及关系联合抽取方法 | |
CN112989834A (zh) | 一种基于平格增强线性转换器的命名实体识别方法和系统 | |
CN113190656A (zh) | 一种基于多标注框架与融合特征的中文命名实体抽取方法 | |
CN113191150B (zh) | 一种多特征融合的中文医疗文本命名实体识别方法 | |
CN111881256B (zh) | 文本实体关系抽取方法、装置及计算机可读存储介质设备 | |
CN110276396B (zh) | 基于物体显著性和跨模态融合特征的图片描述生成方法 | |
CN112347780B (zh) | 基于深度神经网络的司法事实查明生成方法、装置、介质 | |
CN111723572B (zh) | 基于CNN卷积层和BiLSTM的中文短文本相关性度量方法 | |
CN115600597A (zh) | 基于注意力机制和词内语义融合的命名实体识别方法、装置、系统及存储介质 | |
CN111753088A (zh) | 一种自然语言信息的处理方法 | |
CN115831102A (zh) | 基于预训练特征表示的语音识别方法、装置及电子设备 | |
CN115169349A (zh) | 基于albert的中文电子简历命名实体识别方法 | |
CN114330328B (zh) | 基于Transformer-CRF的藏文分词方法 | |
CN115510230A (zh) | 一种基于多维特征融合与比较增强学习机制的蒙古语情感分析方法 | |
CN113051886B (zh) | 一种试题查重方法、装置、存储介质及设备 | |
CN118262874A (zh) | 一种基于知识图谱的中医诊疗模型数据扩充系统及方法 | |
Göker et al. | Neural text normalization for turkish social media | |
CN113076744A (zh) | 一种基于卷积神经网络的文物知识关系抽取方法 | |
CN115186670B (zh) | 一种基于主动学习的领域命名实体识别方法及系统 | |
CN115952284A (zh) | 一种融合密度聚类与ernie的医疗文本关系抽取方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: No.19 Keyuan Road, Lixia District, Jinan City, Shandong Province Patentee after: Shandong Institute of artificial intelligence Country or region after: China Patentee after: Qilu University of Technology (Shandong Academy of Sciences) Address before: No.19 Keyuan Road, Lixia District, Jinan City, Shandong Province Patentee before: Shandong Institute of artificial intelligence Country or region before: China Patentee before: Qilu University of Technology |