CN113189174B - Titanium dioxide photoelectrode with three-dimensional crystal plane crystallization property and preparation and application thereof - Google Patents
Titanium dioxide photoelectrode with three-dimensional crystal plane crystallization property and preparation and application thereof Download PDFInfo
- Publication number
- CN113189174B CN113189174B CN202110178404.XA CN202110178404A CN113189174B CN 113189174 B CN113189174 B CN 113189174B CN 202110178404 A CN202110178404 A CN 202110178404A CN 113189174 B CN113189174 B CN 113189174B
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- titanium
- photoelectrode
- tio
- crystal plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 59
- 239000013078 crystal Substances 0.000 title claims abstract description 36
- 239000004408 titanium dioxide Substances 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000002425 crystallisation Methods 0.000 title claims abstract 3
- 230000008025 crystallization Effects 0.000 title claims abstract 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 69
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 42
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 30
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 25
- 239000002351 wastewater Substances 0.000 claims abstract description 15
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 9
- 230000003647 oxidation Effects 0.000 claims abstract description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000000243 solution Substances 0.000 claims description 17
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 claims description 17
- 239000008367 deionised water Substances 0.000 claims description 16
- 229910021641 deionized water Inorganic materials 0.000 claims description 16
- 238000006731 degradation reaction Methods 0.000 claims description 14
- 230000015556 catabolic process Effects 0.000 claims description 13
- 238000001354 calcination Methods 0.000 claims description 12
- 239000011259 mixed solution Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 5
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 5
- 235000011152 sodium sulphate Nutrition 0.000 claims description 5
- 239000012298 atmosphere Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 239000003792 electrolyte Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- 239000000356 contaminant Substances 0.000 claims 1
- 238000001782 photodegradation Methods 0.000 claims 1
- 239000010936 titanium Substances 0.000 abstract description 56
- 239000002073 nanorod Substances 0.000 abstract description 23
- 239000002135 nanosheet Substances 0.000 abstract description 15
- 230000035484 reaction time Effects 0.000 abstract description 12
- 238000000926 separation method Methods 0.000 abstract description 11
- 239000000758 substrate Substances 0.000 abstract description 11
- 229910052719 titanium Inorganic materials 0.000 abstract description 8
- 238000011065 in-situ storage Methods 0.000 abstract description 5
- 239000002904 solvent Substances 0.000 abstract description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 3
- 239000007800 oxidant agent Substances 0.000 abstract description 2
- 230000001590 oxidative effect Effects 0.000 abstract description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 55
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000003197 catalytic effect Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000000969 carrier Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- -1 thermal receipts Polymers 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000002189 fluorescence spectrum Methods 0.000 description 4
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001453 impedance spectrum Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 206010074268 Reproductive toxicity Diseases 0.000 description 1
- 206010043275 Teratogenicity Diseases 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 231100000704 bioconcentration Toxicity 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 231100000049 endocrine disruptor Toxicity 0.000 description 1
- 239000000598 endocrine disruptor Substances 0.000 description 1
- 230000001076 estrogenic effect Effects 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000007696 reproductive toxicity Effects 0.000 description 1
- 231100000372 reproductive toxicity Toxicity 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 231100000211 teratogenicity Toxicity 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3275—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
- G01N27/3278—Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于光电催化技术领域,涉及一种具有三维晶面结性质的二氧化钛光电极及其制备和应用。The invention belongs to the technical field of photoelectric catalysis, and relates to a titanium dioxide photoelectrode with three-dimensional crystal surface junction properties and its preparation and application.
背景技术Background technique
双酚A(Biphenol A,简称BPA)是一种半持久性环境内分泌干扰物,表现出类似雌激素的作用,尽管比较小的剂量也会造成生殖毒性、神经毒性、糖尿病、致癌致畸等一系列危害。BPA主要用于环氧树脂和聚碳酸酯塑料的生产,因此常存在于食品罐头衬里,聚碳酸酯塑料,阻燃剂,热收据,环氧树脂和医疗设备。在我国,BPA使用量大,许多城市河道、污水厂出水等均检出BPA,尤其以造纸厂、精细化工厂等排放的废水中检出BPA含量较高,超出国家标准的规定限值(BPA 15.72ng L-1)的数十数百倍。自然界中的BPA在通过生物浓缩、生物积累和生物放大作用进入生物体后会对生物体产生损害,从而造成生物体的不可逆损伤,因此,世界各国对BPA污染都给予了高度重视,例如我国在食品接触材料检测标准(GB4806-2016)对BPA的用量做了规定。因此高效去除水体中的BPA是当前环境水处理领域的热点课题。Bisphenol A (BPA) is a semi-persistent environmental endocrine disruptor that exhibits estrogen-like effects, although relatively small doses can cause reproductive toxicity, neurotoxicity, diabetes, carcinogenic teratogenicity, etc. series of hazards. BPA is mainly used in the production of epoxy resins and polycarbonate plastics, so it is often found in food can linings, polycarbonate plastics, flame retardants, thermal receipts, epoxy resins and medical equipment. In China, BPA is used in a large amount, and BPA has been detected in many urban rivers and sewage plant effluents, especially in the wastewater discharged from paper mills and fine chemical plants, which exceeds the national standard limit (BPA 15.72ng L -1 ) tens of hundreds of times. BPA in nature will damage the organism after entering the organism through bioconcentration, bioaccumulation and biomagnification, thus causing irreversible damage to the organism. Therefore, all countries in the world have attached great importance to BPA pollution. The food contact material testing standard (GB4806-2016) stipulates the dosage of BPA. Therefore, efficient removal of BPA in water is a hot topic in the field of environmental water treatment.
在过去的几十年里,二氧化钛(TiO2)由于其化学稳定性、环境友好性和避免光腐蚀的优点,被研究用于光催化、光电催化、太阳能电池等领域应用前景广阔。相比于应用广泛的锐钛矿型二氧化钛,金红石型二氧化钛是热力学上最稳定的晶型,且在室温下带隙较窄,约为3.0eV,可以将光响应范围拓宽至可见光区域,但由于其光生电子空穴对的复合速率快,限制了其应用能力。In the past few decades, due to its chemical stability, environmental friendliness and avoidance of photocorrosion, titanium dioxide (TiO 2 ) has been studied in the fields of photocatalysis, photoelectrocatalysis, solar cells and other fields with broad application prospects. Compared with the widely used anatase titanium dioxide, rutile titanium dioxide is the most thermodynamically stable crystal form, and has a narrow band gap at room temperature, about 3.0eV, which can broaden the photoresponse range to the visible light region, but due to The fast recombination rate of photogenerated electron-hole pairs limits its application ability.
如中国专利CN108911056A公开了一种{001}晶面可控暴露的二氧化钛光电极的制备及应用,其以钛板为钛源,以氢氟酸为封端剂,通过水热方法在钛基底上原位生长TiO2花状微球结构,其{001}晶面暴露比为0%~100%,制备得到的{001}TiO2/Ti光电极可以应用在邻苯二甲酸二甲酯废水光电催化氧化降解中,该专利具有较高的光电催化降解性能,但是,以钛板为基底制备得到的平板电极,生长位点暴露较少,生长得到的TiO2花状微球层层堆叠,不利于光生载流子的选择性空间分离,且易脱落;此外,钛板基底难剪裁,在实际应用中受限。For example, Chinese patent CN108911056A discloses the preparation and application of a titanium dioxide photoelectrode with controllable exposure of {001} crystal plane, which uses titanium plate as titanium source, hydrofluoric acid as end-capping agent, and hydrothermal method on the titanium substrate. In-situ growth of TiO 2 flower-like microsphere structure, the exposure ratio of {001} crystal planes is 0% to 100%, and the prepared {001}TiO 2 /Ti photoelectrode can be applied in the photoelectricity of dimethyl phthalate wastewater In catalytic oxidative degradation, this patent has high photoelectric catalytic degradation performance. However, the flat electrode prepared on the basis of titanium plate has less exposed growth sites, and the grown TiO 2 flower-shaped microspheres are stacked layer by layer, which is not It is conducive to the selective spatial separation of photogenerated carriers and is easy to fall off; in addition, the titanium plate substrate is difficult to tailor, which is limited in practical applications.
发明内容Contents of the invention
本发明的目的就是为了提供一种具有三维晶面结性质的二氧化钛光电极及其制备和应用,可以显著促进光生电荷的分离和转移,有效实现对水体中双酚A的降解去除。The purpose of the present invention is to provide a titanium dioxide photoelectrode with three-dimensional crystal surface junction properties and its preparation and application, which can significantly promote the separation and transfer of photogenerated charges, and effectively realize the degradation and removal of bisphenol A in water.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一方面,本发明提供了一种具有三维晶面结性质的二氧化钛光电极的制备方法,先以钛网为钛源,以盐酸为形貌控制剂,以过氧化氢为氧化剂,通过气相水热方法在钛网基底上原位生长顶端{111}晶面暴露的一维直立金红石TiO2纳米棒;再通过二次水热于纳米棒外生长{101}、{111}纳米片,形成三维晶面结结构,得到具有三维晶面结性质的FH-{111}TiO2/Ti光电极,即为目的产物。具体的,上述制备过程包括以下步骤:On the one hand, the present invention provides a method for preparing a titanium dioxide photoelectrode with three-dimensional crystal surface junction properties. First, titanium mesh is used as a titanium source, hydrochloric acid is used as a shape control agent, and hydrogen peroxide is used as an oxidant. Methods One-dimensional upright rutile TiO 2 nanorods with exposed top {111} crystal planes were grown in situ on a titanium mesh substrate; then {101} and {111} nanosheets were grown outside the nanorods by secondary hydrothermal heat to form three-dimensional crystals. Surface junction structure, FH-{111}TiO 2 /Ti photoelectrode with three-dimensional crystal surface junction properties is obtained, which is the target product. Specifically, the above-mentioned preparation process includes the following steps:
(1)取钛网置于由盐酸、过氧化氢和水组成的混合溶液的上方进行一次气相水热反应,得到中间样品(其在钛网基底上原位生长顶端{111}晶面暴露的一维直立金红石TiO2纳米棒);(1) Put the titanium mesh above the mixed solution composed of hydrochloric acid, hydrogen peroxide and water to perform a gas-phase hydrothermal reaction to obtain an intermediate sample (the {111} crystal surface exposed at the top of the in-situ growth on the titanium mesh substrate 1D upright rutile TiO2 nanorods);
(2)将中间样品置于由盐酸、三氯化钛和去离子水配成的混合溶液中,继续二次水热反应,所得产物(于纳米棒外生长{101}、{111}纳米片,形成三维晶面结结构)清洗、干燥后煅烧,即得到目的产物,即具有三维晶面结性质的FH-{111}TiO2/Ti光电极。(2) Place the intermediate sample in a mixed solution made of hydrochloric acid, titanium trichloride and deionized water, continue the secondary hydrothermal reaction, and the obtained product ({101}, {111} nanosheets grown outside the nanorods , forming a three-dimensional crystal facet structure), washing, drying, and calcining to obtain the target product, that is, a FH-{111}TiO 2 /Ti photoelectrode with a three-dimensional crystal facet structure.
进一步的,步骤(1)中,钛网先进行化学抛光,且化学抛光过程优选具体为:由硝酸(浓度≥99.0%)、氢氟酸(≥38wt%)和水以体积比5:1:25配成的抛光液中处理。Further, in step (1), the titanium mesh is chemically polished first, and the chemical polishing process is preferably specifically: nitric acid (concentration ≥ 99.0%), hydrofluoric acid (≥ 38wt%) and water in a volume ratio of 5:1: 25 in the polishing solution.
进一步的,步骤(1)中,盐酸、过氧化氢和水的体积比为4.2:1:17~5.3:1:17,优选为4.8:1:17;所用盐酸的质量分数为36~38%,过氧化氢的质量分数为30%。Further, in step (1), the volume ratio of hydrochloric acid, hydrogen peroxide and water is 4.2:1:17-5.3:1:17, preferably 4.8:1:17; the mass fraction of hydrochloric acid used is 36-38% , the mass fraction of hydrogen peroxide is 30%.
进一步的,步骤(1)中,一次气相水热反应的温度为180~220℃,优选为200℃,时间为2~12h,优选为5h。Further, in step (1), the temperature of the primary gas phase hydrothermal reaction is 180-220° C., preferably 200° C., and the time is 2-12 hours, preferably 5 hours.
进一步的,步骤(2)中,三氯化钛采用三氯化钛溶液形式加入,且所加入的盐酸、三氯化钛溶液和去离子水的体积比为1:0.2:120~1:2.4:120,其中,所用三氯化钛溶液的质量分数为15~20%。Further, in step (2), titanium trichloride is added in the form of titanium trichloride solution, and the volume ratio of the added hydrochloric acid, titanium trichloride solution and deionized water is 1:0.2:120~1:2.4 : 120, wherein the mass fraction of the titanium trichloride solution used is 15-20%.
进一步的,步骤(2)中,二次水热反应的温度为80℃,时间为2-5h,优选为4h。Further, in step (2), the temperature of the secondary hydrothermal reaction is 80° C., and the time is 2-5 hours, preferably 4 hours.
进一步的,步骤(2)中,煅烧在空气气氛下进行,煅烧温度为400~550℃,优选450℃,煅烧时间为1~3h,优选2h。Further, in step (2), the calcination is carried out under air atmosphere, the calcination temperature is 400-550°C, preferably 450°C, and the calcination time is 1-3h, preferably 2h.
另一方面,本发明还提供了一种具有三维晶面结性质的二氧化钛光电极,其采用如上述的制备方法制备得到,该二氧化钛光电极的TiO2三维结构沿钛网的网格结构密集生长。同时,其纳米棒直径在150~250nm之间,长度约2.3μm。On the other hand, the present invention also provides a titanium dioxide photoelectrode with three-dimensional crystal surface junction properties, which is prepared by the above-mentioned preparation method, and the TiO2 three-dimensional structure of the titanium dioxide photoelectrode grows densely along the grid structure of the titanium mesh . At the same time, the diameter of the nanorod is between 150-250nm, and the length is about 2.3μm.
再另一方面,本发明还提供了一种具有三维晶面结性质的二氧化钛光电极的应用,该二氧化钛光电极用于光电催化氧化去除水中的双酚A污染物。In yet another aspect, the present invention also provides an application of a titanium dioxide photoelectrode with three-dimensional crystal surface junction properties, and the titanium dioxide photoelectrode is used for photocatalytic oxidation to remove bisphenol A pollutants in water.
进一步的,具体应用时,采用三电极体系,分别以二氧化钛光电极、铂片、饱和甘汞电极作为工作电极、对电极和参比电极,采用硫酸钠去离子水溶液作为电解质,在外加光源照射及施加偏压下光电催化氧化降解含双酚A的废水。Further, in a specific application, a three-electrode system is adopted, with a titanium dioxide photoelectrode, a platinum sheet, and a saturated calomel electrode as the working electrode, counter electrode, and reference electrode, and sodium sulfate deionized aqueous solution as the electrolyte. Bisphenol A-containing wastewater was degraded by photoelectrocatalytic oxidation under bias voltage.
更进一步的,所用硫酸钠去离子水溶液的浓度为0.1mol/L;Further, the concentration of the sodium sulfate deionized aqueous solution used is 0.1mol/L;
含双酚A的废水的浓度为2~10mg/L,外加光源光强为50~200mW/cm2,优选100mW/cm2,工作电极与光源间的距离为5~20cm,施加偏压为+0.2~+1.0V,优选+0.4V,光照降解时间为0.5~4h,优选1h。The concentration of bisphenol A-containing wastewater is 2-10mg/L, the light intensity of the external light source is 50-200mW/cm 2 , preferably 100mW/cm 2 , the distance between the working electrode and the light source is 5-20cm, and the bias voltage is + 0.2~+1.0V, preferably +0.4V, and the light degradation time is 0.5~4h, preferably 1h.
本发明通过研究发现,光电催化反应的本质是界面反应过程,水中污染物分子经扩散后,吸附在催化剂的表面同时发生光电催化氧化反应,催化剂本身的光吸收效率、表面性能、电荷分离效率都影响着整个反应的路径和速率,因此,基于以上几个因素来构筑高效的光电催化界面,对于实现水中双酚A的深度去除具有重要意义。The present invention finds through research that the essence of the photoelectric catalytic reaction is an interface reaction process. After the pollutant molecules in the water are diffused, they are adsorbed on the surface of the catalyst and the photoelectric catalytic oxidation reaction occurs at the same time. The light absorption efficiency, surface performance and charge separation efficiency of the catalyst itself are all Therefore, it is of great significance to construct an efficient photocatalytic interface based on the above factors for the deep removal of bisphenol A in water.
基于此,本发明选用一种新型的钛网作为基底材料,三维网状基底可随意折叠剪裁,适用于实际应用中不同反应器的要求,提供了均匀的二氧化钛纳米棒生长位点。一维纳米棒的直立生长提供了电子传输的快速通道,其顶端高暴露的{111}面具有高反应活性。纳米棒外生长二维纳米片({111}、{101}),具有高比表面,对于污染物分子的吸附能力大大增强。且{111}、{101}、{110}晶面间三维晶面结({111}/{101}、{111}/{110}、{110}/{101})的构筑有助于促进光生载流子高效的选择性空间分离(最高载流子浓度达3.99×1021cm-3,激发电子寿命在23.06~24.27ns之间)。这种FH-{111}TiO2/Ti光电阳极在光照条件下具有高效且稳定的光电催化性能(光电流密度最高达到0.56mA/cm2),在20~60min内对双酚A表现出100%去除。Based on this, the present invention selects a new type of titanium mesh as the substrate material. The three-dimensional mesh substrate can be folded and cut at will, which is suitable for the requirements of different reactors in practical applications, and provides uniform growth sites for titanium dioxide nanorods. The upright growth of 1D nanorods provides fast pathways for electron transport, and the highly exposed {111} faces at their tips are highly reactive. Two-dimensional nanosheets ({111}, {101}) grown outside the nanorods have a high specific surface area and greatly enhance the adsorption capacity for pollutant molecules. And the construction of three-dimensional crystal facet junctions ({111}/{101}, {111}/{110}, {110}/{101}) among {111}, {101}, {110} crystal planes helps to promote Efficient and selective spatial separation of photogenerated carriers (the highest carrier concentration is 3.99×10 21 cm -3 , and the lifetime of excited electrons is between 23.06 and 24.27 ns). This FH-{111}TiO 2 /Ti photoanode has high-efficiency and stable photocatalytic performance under light conditions (the highest photocurrent density is 0.56mA/cm 2 ), and it exhibits 100% bisphenol A in 20-60min. % removed.
本发明所提出的光电极制备是通过两步水热方法实现的,受到溶剂比例和时间两个因素的影响,因此对溶剂比例和水热时间进行了限定。首先,在气相水热反应所需的混合溶液准备过程中,对盐酸、过氧化氢的用量以及气相水热反应的时间进行了限定,Cl-吸附在{110}面上,有利于{111}面的生长,不同的盐酸和过氧化氢的用量会得到不同形貌的二氧化钛纳米棒,而反应时间会影响纳米棒的尺寸和生长方向。反应时间过短,纳米棒直径较小、分布稀疏、方向错乱,反应时间过长又会导致纳米棒尺寸过大,影响二维纳米片的生长,其中5h为最佳反应时间。其次,在二次水热过程中,盐酸和三氯化钛的溶剂比例会影响二维纳米片的生长密度和暴露比例,因此对以上因素进行了限定。当三氯化钛浓度偏低时,一方面会影响二维纳米片的尺寸、浓度,另一方面,会导致水热反应时间较长,增加生产成本;而三氯化钛浓度偏高,会使二维纳米片生长过密,不利于纳米棒{110}侧面和顶端{111}面的暴露。最后,对二次水热过程中水热反应的时间进行了限定,反应时间过短,纳米片结构不明显,反应时间过长又会导致纳米片尺寸过大,出现棒与棒之间的连结,降低光生载流子分离效率,其中4h为最优反应时间。The preparation of the photoelectrode proposed in the present invention is realized by a two-step hydrothermal method, which is affected by two factors, the solvent ratio and the time, so the solvent ratio and the hydrothermal time are limited. First, in the preparation process of the mixed solution required for the gas-phase hydrothermal reaction, the amount of hydrochloric acid and hydrogen peroxide and the time of the gas-phase hydrothermal reaction are limited. Cl - adsorbed on the {110} surface is beneficial to {111} Different dosages of hydrochloric acid and hydrogen peroxide will result in different shapes of titanium dioxide nanorods, and the reaction time will affect the size and growth direction of nanorods. If the reaction time is too short, the diameter of the nanorods is small, the distribution is sparse, and the direction is disordered. If the reaction time is too long, the size of the nanorods will be too large, which will affect the growth of the two-dimensional nanosheets. Among them, 5h is the best reaction time. Secondly, in the secondary hydrothermal process, the solvent ratio of hydrochloric acid and titanium trichloride will affect the growth density and exposure ratio of 2D nanosheets, so the above factors are limited. When the concentration of titanium trichloride is low, it will affect the size and concentration of two-dimensional nanosheets on the one hand, and on the other hand, it will lead to a longer hydrothermal reaction time and increase production costs; The dense growth of two-dimensional nanosheets is not conducive to the exposure of {110} sides and top {111} sides of nanorods. Finally, the hydrothermal reaction time in the secondary hydrothermal process is limited. If the reaction time is too short, the nanosheet structure will not be obvious. If the reaction time is too long, the size of the nanosheets will be too large, and the connection between rods will appear. , reduce the separation efficiency of photogenerated carriers, and 4h is the optimal reaction time.
基于此,本发明选用一种新型的钛网作为基底材料,三维网状基底可随意折叠剪裁,适用于实际应用中不同反应器的要求。且{111}、{101}、{110}晶面间三维晶面结({111}/{101}、{111}/{110}、{110}/{101})的构筑有助于促进光生载流子高效的选择性空间分离。这种FH-{111}TiO2/Ti光电阳极在光照条件下具有高效且稳定的光电催化性能(光电流密度最高达到0.56mA/cm2),在20~60min内对双酚A表现出100%去除。Based on this, the present invention selects a new type of titanium mesh as the base material. The three-dimensional mesh base can be folded and cut at will, which is suitable for the requirements of different reactors in practical applications. And the construction of three-dimensional crystal facet junctions ({111}/{101}, {111}/{110}, {110}/{101}) among {111}, {101}, {110} crystal planes helps to promote Efficient and selective spatial separation of photogenerated carriers. This FH-{111}TiO 2 /Ti photoanode has high-efficiency and stable photocatalytic performance under light conditions (the highest photocurrent density is 0.56mA/cm 2 ), and it exhibits 100% bisphenol A in 20-60min. % removed.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明制备的{111}晶面高暴露的FH-{111}TiO2/Ti高效光电极,选用的钛网作为电极基底材料,其三维网状结构提供了致密的二氧化钛纳米棒生长位点,且材质较柔软,易折叠、裁剪,可根据需要裁剪成不同尺寸,适用于实际应用中各种反应器的需求。(1) The FH-{111}TiO 2 /Ti high-efficiency photoelectrode with highly exposed {111} crystal faces prepared by the present invention uses titanium mesh as the electrode substrate material, and its three-dimensional network structure provides dense titanium dioxide nanorod growth site, and the material is relatively soft, easy to fold and cut, and can be cut into different sizes according to needs, which is suitable for the needs of various reactors in practical applications.
(2)钛网同时作为钛源,直接原位生长得到{111}TiO2纳米棒结构,解决了负载型电极牢固度差、容易剥离、重复利用率低的问题,增强了电极稳定性。(2) The titanium mesh is used as the titanium source at the same time, and the {111}TiO 2 nanorod structure is directly grown in situ, which solves the problems of poor firmness, easy peeling, and low reuse rate of the loaded electrode, and enhances the stability of the electrode.
(3)一维TiO2纳米棒状结构直立生长提供了电子传输的快速通道,其顶端暴露的{111}晶面是具有1.46J/m2表面能的高活性晶面,具有很好的光电催化氧化活性。(3) The upright growth of one-dimensional TiO2 nanorod structure provides a fast channel for electron transport, and the {111} crystal face exposed at the top is a highly active crystal face with a surface energy of 1.46J/ m2 , which has good photoelectrocatalytic properties Oxidation activity.
(4)纳米棒外生长二维纳米片({111}、{101}),形成三维高级结构,具有高比表面,对于污染物分子的吸附能力大大增强。(4) Two-dimensional nanosheets ({111}, {101}) grow outside the nanorods to form a three-dimensional high-level structure with a high specific surface area, which greatly enhances the adsorption capacity for pollutant molecules.
(5)晶面结{111}/{101}、{111}/{110}、{110}/{101}的构筑有助于促进光生载流子高效的选择性空间分离。(5) The construction of crystal facet junctions {111}/{101}, {111}/{110}, {110}/{101} helps to promote efficient and selective spatial separation of photogenerated carriers.
因此,构筑的具有三维晶面结性质的二氧化钛光电极,同时具有高活性的反应界面和高效的光生载流子分离能力,两种作用相互协同,可实现对双酚A的高效光电氧化去除。Therefore, the constructed titanium dioxide photoelectrode with three-dimensional crystal surface junction properties has a highly active reaction interface and efficient photogenerated carrier separation ability. The two effects cooperate with each other to achieve efficient photoelectric oxidation removal of bisphenol A.
附图说明Description of drawings
图1为实施例1中制备的FH-{111}TiO2/Ti光电极的扫描电镜图;Figure 1 is a scanning electron microscope image of the FH-{111}TiO 2 /Ti photoelectrode prepared in Example 1;
图2为实施例1、2中制备的FH-{111}TiO2/Ti与{111}TiO2/Ti的光电性能对比图;Fig. 2 is a photoelectric performance comparison chart of FH-{111}TiO 2 /Ti and {111}TiO 2 /Ti prepared in Examples 1 and 2;
图3为实施例1中制备的FH-{111}TiO2/Ti与{111}TiO2/Ti光电极的荧光光谱图和时间分辨瞬态荧光光谱图;Figure 3 is the fluorescence spectrum and time-resolved transient fluorescence spectrum of FH-{111}TiO 2 /Ti and {111}TiO 2 /Ti photoelectrodes prepared in Example 1;
图4为实施例1、2制备的FH-{111}TiO2/Ti与{111}TiO2/Ti光电极降解BPA过程中,BPA浓度与初始浓度比值和时间曲线图;Fig. 4 is a curve diagram of the ratio of BPA concentration to initial concentration and time during the degradation of BPA by FH-{111}TiO 2 /Ti and {111}TiO 2 /Ti photoelectrodes prepared in Examples 1 and 2;
图5为对比例1、对比例2和对比例3所制备的光电极的扫描电镜图。FIG. 5 is a scanning electron microscope image of photoelectrodes prepared in Comparative Example 1, Comparative Example 2 and Comparative Example 3. FIG.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. This embodiment is carried out on the premise of the technical solution of the present invention, and detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
以下各实施例中,所用钛网规格为80目,其余如无特别说明的原料或处理技术,则表明其均为本领域的常规市售原料或常规处理技术。In the following examples, the specification of the titanium mesh used is 80 mesh, and if there is no special raw material or processing technology for the rest, it shows that they are conventional commercially available raw materials or conventional processing technology in the art.
实施例1Example 1
一种{111}TiO2/Ti光电极的制备方法,具体包括以下步骤:A method for preparing a {111}TiO 2 /Ti photoelectrode, specifically comprising the following steps:
(1)将钛网裁剪成4.5cm×7cm大小,沿长边对折成双层,在含硝酸、氢氟酸和水的混合酸液(硝酸:氢氟酸:水体积比5:1:25)中进行化学抛光,30s后取出,依次用去离子水和无水乙醇进行超声震荡清洗3次,最后保存在无水乙醇中备用。(1) Cut the titanium mesh into a size of 4.5cm×7cm, fold it into double layers along the long side, and put it in a mixed acid solution containing nitric acid, hydrofluoric acid and water (nitric acid: hydrofluoric acid: water volume ratio 5:1:25) ) for chemical polishing, took it out after 30 s, and cleaned it with deionized water and absolute ethanol by ultrasonic vibration for three times, and finally stored it in absolute ethanol for later use.
(2)将2.2mL盐酸(质量分数36~38%)、450μL过氧化氢(质量分数30%)与7.65mL去离子水混合后搅拌均匀,转移至150mL的高压反应釜内衬中,放入自制的圆环状聚四氟乙烯支架,将步骤(1)中经过化学抛光处理的双层钛网平铺在支架上方,距离反应液液面6cm处,密封后在200℃条件下水热反应5h。(2) Mix 2.2mL hydrochloric acid (mass fraction 36-38%), 450μL hydrogen peroxide (mass fraction 30%) and 7.65mL deionized water, stir evenly, transfer to a 150mL autoclave lining, put For a self-made ring-shaped polytetrafluoroethylene support, lay the double-layer titanium mesh that has been chemically polished in step (1) above the support, 6 cm away from the liquid surface of the reaction solution, seal it, and conduct a hydrothermal reaction at 200 ° C for 5 hours .
(3)待步骤(2)反应结束后,使反应釜自然冷却至室温,取出反应后的光电极材料用去离子水冲洗干净,80℃干燥4h,在空气氛围下煅烧,升温速率为3℃/min,煅烧温度为450℃,煅烧时间为2h,得到{111}TiO2/Ti光电极。(3) After the reaction in step (2), let the reactor cool down to room temperature naturally, take out the reacted photoelectrode material and rinse it with deionized water, dry it at 80°C for 4h, and calcinate it in air atmosphere with a heating rate of 3°C /min, the calcination temperature is 450℃, and the calcination time is 2h, the {111}TiO 2 /Ti photoelectrode is obtained.
实施例2Example 2
一种具有三维晶面结性质的二氧化钛光电极的制备方法,具体包括以下步骤:A method for preparing a titanium dioxide photoelectrode with a three-dimensional crystal surface junction property, specifically comprising the following steps:
(1)将钛网裁剪成4.5cm×7cm大小,沿长边对折成双层,在含硝酸、氢氟酸和水的混合酸液(硝酸:氢氟酸:水体积比5:1:25)中进行化学抛光,30s后取出,依次用去离子水和无水乙醇进行超声震荡清洗3次,最后保存在无水乙醇中备用。(1) Cut the titanium mesh into a size of 4.5cm×7cm, fold it into double layers along the long side, and put it in a mixed acid solution containing nitric acid, hydrofluoric acid and water (nitric acid: hydrofluoric acid: water volume ratio 5:1:25) ) for chemical polishing, took it out after 30 s, and cleaned it with deionized water and absolute ethanol by ultrasonic vibration for three times, and finally stored it in absolute ethanol for later use.
(2)将2.2mL盐酸(质量分数约为37%左右)、450μL过氧化氢(质量分数30%左右)与7.65mL去离子水混合后搅拌均匀,转移至150mL的高压反应釜内衬中,放入自制的圆环状聚四氟乙烯支架,将步骤(1)中经过化学抛光处理的双层钛网平铺在支架上方,距离反应液液面6cm处,密封后在200℃条件下水热反应5h。(2) Mix 2.2mL hydrochloric acid (mass fraction about 37%), 450μL hydrogen peroxide (mass fraction about 30%) and 7.65mL deionized water, stir evenly, transfer to a 150mL autoclave lining, Put the self-made ring-shaped polytetrafluoroethylene support, spread the double-layer titanium mesh that has been chemically polished in step (1) above the support, 6 cm away from the liquid surface of the reaction solution, and heat it under the condition of 200 °C after sealing. Reaction 5h.
(3)待步骤(2)反应结束后,使反应釜自然冷却至室温,取出反应后的光电极材料用去离子水冲洗干净,干燥备用。在100mL聚四氟乙烯衬底中加入30mL去离子水和250μL盐酸(质量分数约为37%左右)和100μL三氯化钛(质量分数约为18%左右)混合均匀后,将步骤(2)制备获得的{111}TiO2/Ti一维金红石纳米棒放入其中,将该聚四氟乙烯衬底放入高压反应釜中,在80℃下水热4h,反应完成后,冷却至室温,用去离子水冲洗表面,自然晾干。(3) After the reaction in step (2) is completed, the reaction kettle is naturally cooled to room temperature, and the reacted photoelectrode material is taken out, rinsed with deionized water, and dried for later use. After adding 30 mL of deionized water, 250 μL of hydrochloric acid (about 37% in mass fraction) and 100 μL of titanium trichloride (about 18% in mass fraction) into 100 mL of polytetrafluoroethylene substrate and mix well, the step (2) The prepared {111}TiO 2 /Ti one-dimensional rutile nanorods were placed in it, and the polytetrafluoroethylene substrate was placed in a high-pressure reactor, and hydrothermally heated at 80°C for 4 hours. After the reaction was completed, cool to room temperature and use Rinse the surface with deionized water and let it dry naturally.
在空气氛围下煅烧,升温速率为3℃/min,煅烧温度为450℃,煅烧时间为2h,得到FH-{111}TiO2/Ti光电极。Calcined in air atmosphere, the heating rate was 3°C/min, the calcination temperature was 450°C, and the calcination time was 2h, to obtain the FH-{111}TiO 2 /Ti photoelectrode.
采用场发射扫描电子显微镜技术(HitachiS-4800)对电极的形貌进行表征,见图1,图1表明FH-{111}TiO2/Ti形貌为钛网表面均匀分布的三维高级结构,一维直立的单根纳米棒直径约150~250nm,纳米棒外的二维纳米片分支结构整齐,生长方向一致,约62nm,制备得到的FH-{111}TiO2/Ti光电极的{111}、{110}、{101}晶面共暴露。The morphology of the electrode was characterized by field emission scanning electron microscopy (Hitachi S-4800), as shown in Figure 1. Figure 1 shows that the morphology of FH-{111}TiO 2 /Ti is a three-dimensional advanced structure uniformly distributed on the surface of titanium mesh, a The diameter of the single upright nanorod is about 150-250nm, and the branch structure of the two-dimensional nanosheets outside the nanorod is neat, and the growth direction is consistent, about 62nm . The {111} , {110}, {101} crystal planes are co-exposed.
实施例3~实施例4Embodiment 3~Example 4
与实施例2相比,绝大部分都相同,除了本实施例中:气相水热反应时间分别为4h和8h。Compared with Example 2, most of them are the same, except that in this example: the gas phase hydrothermal reaction time is 4h and 8h respectively.
实施例5~实施例6Embodiment 5 to Embodiment 6
与实施例2相比,绝大部分都相同,除了本实施例中:气相水热反应混合溶液的组成中,盐酸、过氧化氢和水的体积比分别为4.2:1:17和5.3:1:17。Compared with Example 2, most of them are the same, except in this example: in the composition of the gas phase hydrothermal reaction mixed solution, the volume ratios of hydrochloric acid, hydrogen peroxide and water are 4.2:1:17 and 5.3:1 respectively :17.
实施例7Example 7
与实施例2相比,绝大部分都相同,除了本实施例中:二次水热反应时间分别为2h和5h。Compared with Example 2, most of them are the same, except in this example: the secondary hydrothermal reaction time is 2h and 5h respectively.
实施例8Example 8
与实施例2相比,绝大部分都相同,除了本实施例中:二次水热反应混合溶液的组成中,盐酸,三氯化钛与去离子水的体积比为1:0.2:120和1:0.8:120,得到的电极分别标记为FH-{111}TiO2/Ti-0.2和FH-{111}TiO2/Ti-0.8。Compared with Example 2, most of them are the same, except in this example: in the composition of the secondary hydrothermal reaction mixed solution, the volume ratio of hydrochloric acid, titanium trichloride and deionized water is 1:0.2:120 and 1:0.8:120, the obtained electrodes are labeled as FH-{111}TiO 2 /Ti-0.2 and FH-{111}TiO 2 /Ti-0.8, respectively.
实施例9Example 9
采用实施例1中制备的{111}TiO2/Ti与实施例2中制备的FH-{111}TiO2/Ti光电极进行光电催化氧化性能研究,具体步骤如下:The {111}TiO 2 /Ti prepared in Example 1 and the FH-{111}TiO 2 /Ti photoelectrode prepared in Example 2 were used to study the photoelectric catalytic oxidation performance. The specific steps are as follows:
光电催化性能测试在方形石英反应池中进行,电解质溶液为0.1mol/L Na2SO4溶液,采用三电极体系,分别以{111}TiO2/Ti和FH-{111}TiO2/Ti为工作电极,铂片为对电极,饱和甘汞电极为参比电极,采用辰华CHI660C电化学工作站测试线性扫描伏安曲线、莫特-肖特基曲线、i-t曲线以及交流阻抗谱,实验过程中使用光源型号为HAYSHI 150W LA-410UV-3,光源与工作电极之间的距离为1cm。结果表明,在0~1.5V vs SCE范围内,FH-{111}TiO2/Ti光电极的PEC响应明显高于{111}TiO2/Ti光电极(图2a)。从图2b可以看出,FH-{111}TiO2/Ti的光电流密度约为0.56mA cm-2,是{111}TiO2/Ti的2.9倍(约0.19mA cm-2)。图2c和图2d分别为光照下的莫特-肖特基曲线和交流阻抗谱,可以看出FH-{111}TiO2/Ti的阻抗值大约为166Ω,相比于{111}TiO2/Ti减小了约0.26,计算得到的载流子浓度为3.99×1021cm-3,相比于{111}TiO2/Ti提高了16.5倍。The photoelectric catalytic performance test was carried out in a square quartz reaction cell, the electrolyte solution was 0.1mol/L Na 2 SO 4 solution, and a three-electrode system was used, with {111}TiO 2 /Ti and FH-{111}TiO 2 /Ti as the The working electrode, the platinum sheet is the counter electrode, and the saturated calomel electrode is the reference electrode. The Chenhua CHI660C electrochemical workstation is used to test the linear sweep voltammetry curve, Mott-Schottky curve, it curve and AC impedance spectrum. During the experiment The light source model used is HAYSHI 150W LA-410UV-3, and the distance between the light source and the working electrode is 1cm. The results show that the PEC response of the FH-{111}TiO 2 /Ti photoelectrode is significantly higher than that of the {111}TiO 2 /Ti photoelectrode in the range of 0-1.5V vs SCE (Fig. 2a). It can be seen from Fig. 2b that the photocurrent density of FH-{111}TiO 2 /Ti is about 0.56mA cm -2 , which is 2.9 times (about 0.19mA cm -2 ) that of {111}TiO 2 /Ti. Figure 2c and Figure 2d are Mott-Schottky curves and AC impedance spectra under light respectively. It can be seen that the impedance value of FH-{111}TiO 2 /Ti is about 166Ω, compared to that of {111}TiO 2 / Ti decreases by about 0.26, and the calculated carrier concentration is 3.99×10 21 cm -3 , which is 16.5 times higher than that of {111}TiO 2 /Ti.
实施例10Example 10
与实施例9相比,绝大部分都相同,除了本实施例中:将工作电极换为FH-{111}TiO2/Ti-0.2,进行光电催化性能测试。测试结果发现,在光照条件下,该电极的光响应性能较好,光电流密度可达到0.27mA/cm2,阻抗约为530Ω,载流子浓度为1.54×1021cm-3。Compared with Example 9, most of them are the same, except that in this example: the working electrode is changed to FH-{111}TiO 2 /Ti-0.2, and the photoelectric catalytic performance test is carried out. The test results show that under light conditions, the photoresponse performance of the electrode is good, the photocurrent density can reach 0.27mA/cm 2 , the impedance is about 530Ω, and the carrier concentration is 1.54×10 21 cm -3 .
实施例11Example 11
与实施例9相比,绝大部分都相同,除了本实施例中:将工作电极换为FH-{111}TiO2/Ti-0.8,进行光电催化性能测试。测试结果发现,在光照条件下,该电极的光响应性能较好,光电流密度可达到0.46mA/cm2,阻抗约为286Ω,载流子浓度为1.02×1021cm-3。Compared with Example 9, most of them are the same, except that in this example: the working electrode is changed to FH-{111}TiO 2 /Ti-0.8, and the photoelectric catalytic performance test is carried out. The test results show that under light conditions, the photoresponse performance of the electrode is good, the photocurrent density can reach 0.46mA/cm 2 , the impedance is about 286Ω, and the carrier concentration is 1.02×10 21 cm -3 .
实施例12Example 12
采用实施例1中制备的{111}TiO2/Ti与实施例2中制备的FH-{111}TiO2/Ti光电极进行荧光光谱和时间分辨瞬态荧光光谱测试,见图3,表明三维晶面结的构筑显著提高了光生电荷的分离能力,延长了激发电子的寿命(FH-{111}TiO2/Ti:24.27ns;{111}TiO2/Ti:22.89ns)。The {111}TiO 2 /Ti prepared in Example 1 and the FH-{111}TiO 2 /Ti photoelectrode prepared in Example 2 were used to test the fluorescence spectrum and time-resolved transient fluorescence spectrum, as shown in Figure 3, showing that the three-dimensional The construction of facet junctions significantly improves the separation ability of photogenerated charges and prolongs the lifetime of excited electrons (FH-{111}TiO 2 /Ti: 24.27ns; {111}TiO 2 /Ti: 22.89ns).
实施例13Example 13
采用实施例1中制备的{111}TiO2/Ti与实施例2中制备的FH-{111}TiO2/Ti光电极降解含BPA废水,具体实施步骤如下:Using the {111}TiO 2 /Ti prepared in Example 1 and the FH-{111}TiO 2 /Ti photoelectrode prepared in Example 2 to degrade BPA-containing wastewater, the specific implementation steps are as follows:
光电催化降解BPA废水实验在方形石英反应池中进行,电解质溶液为0.1mol·L-1硫酸钠溶液,加入BPA配制成浓度为5mg/L的模拟废水,体积为45mL。采用三电极降解体系,以FH-{111}TiO2/Ti或{111}TiO2/Ti电极为工作电极,铂片为对电极,饱和甘汞电极为参比电极,工作电极与对电极之间的距离为1cm,有效的光电极面积为3.5×4.5cm2。光源为300W氙灯,光照强度为100mW/cm2,施加偏压+0.4V(相对于饱和甘汞电极),每隔5~10min取样,降解时间为1h,样品采用Agilent 1260高效液相色谱测定其中BPA浓度,具体降解结果如图4所示。图4中,a表示FH-{111}TiO2/Ti和{111}TiO2/Ti光电极光电催化降解含BPA废水曲线,b表示光电催化降解过程对应的一级动力学曲线。The experiment of photoelectric catalytic degradation of BPA wastewater was carried out in a square quartz reaction cell. The electrolyte solution was 0.1mol·L -1 sodium sulfate solution, and BPA was added to prepare simulated wastewater with a concentration of 5mg/L, with a volume of 45mL. A three-electrode degradation system was adopted, with the FH-{111}TiO 2 /Ti or {111}TiO 2 /Ti electrode as the working electrode, the platinum sheet as the counter electrode, and the saturated calomel electrode as the reference electrode. The distance between them is 1 cm, and the effective photoelectrode area is 3.5×4.5 cm 2 . The light source is a 300W xenon lamp, the light intensity is 100mW/cm 2 , a bias voltage of +0.4V (relative to the saturated calomel electrode) is applied, samples are taken every 5-10min, and the degradation time is 1h. The samples are determined by Agilent 1260 high performance liquid chromatography. BPA concentration, specific degradation results are shown in Figure 4. In Fig. 4, a represents the photocatalytic degradation curves of BPA-containing wastewater by FH-{111}TiO 2 /Ti and {111}TiO 2 /Ti photoelectrodes, and b represents the first-order kinetic curve corresponding to the photocatalytic degradation process.
图4a测试结果表明,FH-{111}TiO2/Ti光电极成功实现了对含BPA废水的高效光电催化氧化降解。降解1h后,{111}TiO2/Ti光电极对于BPA的光电催化降解去除率达到94.95%,而FH-{111}TiO2/Ti光电极在仅20min内对于BPA的光电催化降解去除率达到100%。表明{111}、{101}、{110}晶面可控共暴露的FH-{111}TiO2/Ti光电极具有高的光生载流子分离效率,最终实现水中BPA污染物的高效去除。The test results in Figure 4a show that the FH-{111}TiO 2 /Ti photoelectrode successfully realized the efficient photocatalytic oxidation degradation of BPA-containing wastewater. After 1 h of degradation, the photocatalytic degradation removal rate of {111}TiO 2 /Ti photoelectrode for BPA reached 94.95%, while the photocatalytic degradation removal rate of FH-{111}TiO 2 /Ti photoelectrode for BPA reached 100%. It shows that the FH-{111}TiO 2 /Ti photoelectrode with controllable co-exposure of {111}, {101}, {110} crystal planes has high separation efficiency of photogenerated carriers, and finally achieves efficient removal of BPA pollutants in water.
图4b表明,含BPA废水在FH-{111}TiO2/Ti和{111}TiO2/Ti光电极上的去除过程均符合准一级反应动力学。采用实施案例2中制备的{111}TiO2/Ti光电极循环降解BPA模拟废水,与实施例12相比,绝大部分相同,除了本实施例中:{111}TiO2/Ti光电极降解BPA废水2h后,将电极材料用去离子水冲洗干净,烘干后重复上述降解过程,循环使用电极四次。Figure 4b shows that the removal process of BPA-containing wastewater on FH-{111}TiO 2 /Ti and {111}TiO 2 /Ti photoelectrodes conforms to the pseudo-first-order kinetics. The {111}TiO 2 /Ti photoelectrode prepared in Example 2 is used to degrade BPA simulated wastewater cyclically. Compared with Example 12, most of them are the same, except that in this example: {111}TiO 2 /Ti photoelectrode degradation After 2 hours of BPA wastewater, the electrode material was rinsed with deionized water, and after drying, the above degradation process was repeated, and the electrode was recycled for four times.
实施例14~15Examples 14-15
与实施例13相比,绝大部分都相同,除了本实施例中:将BPA的浓度改为2mg/L、10mg/L,进行光电催化降解实验。Compared with Example 13, most of them are the same, except that in this example: the concentration of BPA is changed to 2mg/L and 10mg/L, and the photoelectric catalytic degradation experiment is carried out.
对比例1Comparative example 1
与实施例2相比,绝大部分都相同,除了省去了步骤(2),即直接将化学抛光后的钛网置于盐酸、三氯化钛和水的混合溶液中进行水热反应,如图5a所示,制备得到了直接生长于钛网上的纳米颗粒。Compared with Example 2, most of them are the same, except that step (2) is omitted, that is, the titanium mesh after the chemical polishing is directly placed in the mixed solution of hydrochloric acid, titanium trichloride and water for hydrothermal reaction, As shown in Figure 5a, nanoparticles grown directly on the titanium mesh were prepared.
对比例2Comparative example 2
与实施例2相比,绝大部分都相同,除了步骤(3)中三氯化钛的添加量调整为30μL,如图5b所示,纳米棒外未有明显二级纳米片生长。Compared with Example 2, most of them are the same, except that the addition amount of titanium trichloride in step (3) is adjusted to 30 μL, as shown in Figure 5b, there is no obvious growth of secondary nanosheets except nanorods.
对比例3Comparative example 3
与实施例2相比,绝大部分都相同,除了步骤(3)中三氯化钛的添加量调整为700μL,如图5c所示,纳米棒外生长了大量的纳米片,层层堆积,互相连接,破坏了纳米棒基底的一维直立结构。Compared with Example 2, most of them are the same, except that the addition of titanium trichloride in step (3) is adjusted to 700 μL, as shown in Figure 5c, a large number of nanosheets grow outside the nanorods, stacked layer by layer, interconnected, disrupting the one-dimensional upright structure of the nanorod substrate.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The above descriptions of the embodiments are for those of ordinary skill in the art to understand and use the invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative efforts. Therefore, the present invention is not limited to the above-mentioned embodiments. Improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110178404.XA CN113189174B (en) | 2021-02-09 | 2021-02-09 | Titanium dioxide photoelectrode with three-dimensional crystal plane crystallization property and preparation and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110178404.XA CN113189174B (en) | 2021-02-09 | 2021-02-09 | Titanium dioxide photoelectrode with three-dimensional crystal plane crystallization property and preparation and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113189174A CN113189174A (en) | 2021-07-30 |
CN113189174B true CN113189174B (en) | 2023-08-04 |
Family
ID=76972885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110178404.XA Active CN113189174B (en) | 2021-02-09 | 2021-02-09 | Titanium dioxide photoelectrode with three-dimensional crystal plane crystallization property and preparation and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113189174B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115872497B (en) * | 2021-09-29 | 2025-04-22 | 上海电力大学 | Graphene-like two-dimensional Fe2O3 nanosheet/ZnO nanorod composite photoelectrode and preparation method thereof |
CN115814785B (en) * | 2022-11-18 | 2024-04-26 | 同济大学 | TiO (TiO) with visible light response nano Au modified crystal face heterojunction2Photoelectrode, construction and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101519233A (en) * | 2009-03-26 | 2009-09-02 | 上海交通大学 | Method for degrading organic substances by using photoelectric catalysis of short TiO2 nano-tube array film electrode |
CN101767820A (en) * | 2010-01-12 | 2010-07-07 | 浙江大学 | Multi-facet spherical micro-nano-structure titanium dioxide and preparation method thereof |
CN105540655A (en) * | 2015-12-21 | 2016-05-04 | 河南师范大学 | A kind of preparation method of three-dimensional dendritic structure TiO2 array |
CN105858822A (en) * | 2016-04-19 | 2016-08-17 | 中国科学院生态环境研究中心 | Red titanium dioxide photoelectrode with wedge-shaped structure and preparing and application of red titanium dioxide photoelectrode |
KR20180112314A (en) * | 2017-04-03 | 2018-10-12 | 한국과학기술연구원 | Method for fabricating self-doped titanium dioxide photoanode and photoelectrochemical small-scale water purification system thereof |
CN108911056A (en) * | 2018-03-23 | 2018-11-30 | 同济大学 | { 001 } preparation and application for the titanium dioxide photoelectrode that crystal face controllably exposes |
CN111157594A (en) * | 2019-05-29 | 2020-05-15 | 内蒙古内化科技有限公司 | Anatase phase titanium dioxide nanocone array COD sensor and preparation method thereof |
-
2021
- 2021-02-09 CN CN202110178404.XA patent/CN113189174B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101519233A (en) * | 2009-03-26 | 2009-09-02 | 上海交通大学 | Method for degrading organic substances by using photoelectric catalysis of short TiO2 nano-tube array film electrode |
CN101767820A (en) * | 2010-01-12 | 2010-07-07 | 浙江大学 | Multi-facet spherical micro-nano-structure titanium dioxide and preparation method thereof |
CN105540655A (en) * | 2015-12-21 | 2016-05-04 | 河南师范大学 | A kind of preparation method of three-dimensional dendritic structure TiO2 array |
CN105858822A (en) * | 2016-04-19 | 2016-08-17 | 中国科学院生态环境研究中心 | Red titanium dioxide photoelectrode with wedge-shaped structure and preparing and application of red titanium dioxide photoelectrode |
KR20180112314A (en) * | 2017-04-03 | 2018-10-12 | 한국과학기술연구원 | Method for fabricating self-doped titanium dioxide photoanode and photoelectrochemical small-scale water purification system thereof |
CN108911056A (en) * | 2018-03-23 | 2018-11-30 | 同济大学 | { 001 } preparation and application for the titanium dioxide photoelectrode that crystal face controllably exposes |
CN111157594A (en) * | 2019-05-29 | 2020-05-15 | 内蒙古内化科技有限公司 | Anatase phase titanium dioxide nanocone array COD sensor and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
Anatase Ti02 microspheres with exposed mirror-like plane {001} facets for performance dye-sensitized solar cells;haimin zhang, et al;Chemical communications;全文 * |
TiO_2纳米片的合成、生长机制及其光催化活性;孙小卫;高娟;赵琳;查婷玉;;安徽理工大学学报(自然科学版)(第06期);全文 * |
面暴露的锐钛矿TiO2单晶及微球的水热法制备;唐美兰;中国优秀硕士学位论文全文数据库工程科技I辑;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN113189174A (en) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104016405B (en) | A kind of flower-shaped mesoporous titanium dioxide material and preparation method thereof and application | |
CN102962051B (en) | Method for preparing beta-Bi2O3/TiO2-NTs composite photocatalyst with high stability visible light catalytic activity | |
CN103700829B (en) | Titanium dioxide (B)-Graphene is from the preparation method of winding nano composite material | |
CN108374179A (en) | A kind of preparation method and application of the compound nitrogen-doped carbon material of two cobaltous selenide of Fe2O3 doping | |
CN113189174B (en) | Titanium dioxide photoelectrode with three-dimensional crystal plane crystallization property and preparation and application thereof | |
Wang et al. | Porous WO3 monolith-based photoanodes for high-efficient photoelectrochemical water splitting | |
CN103861576A (en) | Heterojunction nano-tube array film photocatalysis material for exposing high-energy surface of anatase titanium dioxide, and preparation method and application of photocatalysis material | |
Kuspanov et al. | Multifunctional strontium titanate perovskite-based composite photocatalysts for energy conversion and other applications | |
CN115305480A (en) | A kind of alloy nanomaterial catalyst and its preparation method and application | |
CN112371145B (en) | Two-dimensional carbon nitride photocatalyst containing D-A structure, preparation method and application | |
CN103779102A (en) | Low-temperature in-situ construction of BiOI/Bi2S3 heterojunction thin films and flexible photoelectrochemical solar cell devices | |
CN103352211A (en) | Preparation method of low-dimensional tantalum-based nano-array photo-electrode | |
CN105568309B (en) | A kind of preparation method of the optoelectronic pole of photoelectrochemical cell | |
Wang et al. | Conjugated carbon network mediated–Graphdiyne based Cu2MoS4 homojunction for enhanced charge transfer dynamics | |
CN112495411B (en) | A kind of carbon nitride nanosheet supported indium vanadate quantum dot photocatalyst and its preparation and application | |
CN111330623B (en) | One-step method for preparing Ag ion modified TiO with high visible light response 2 /g-C 3 N 4 Nanofiber photocatalytic material | |
CN112661241B (en) | High-efficiency titanium dioxide photoelectrode with {111} crystal face highly exposed and preparation and application thereof | |
CN108597899A (en) | NiSe for ultracapacitor2-Ni2O3Nanocomposite and preparation method thereof | |
CN118513086A (en) | A photothermal-pyroelectric-photocatalytic composite thin film catalyst system and its preparation method and application | |
CN112691664A (en) | Fe2O3/TiO2Nano photocatalyst film composite material and preparation method thereof | |
CN113832479B (en) | Fe 2 O 3 (Ti)@NH 2 -MIL-101 (Fe) composite photoelectric catalyst and preparation method thereof | |
CN115418668A (en) | Titanium homologous semiconductor heterojunction photo-anode and preparation method thereof | |
CN115893531A (en) | La and Rh co-doped SrTiO 3 Nanotube array and preparation method and application thereof | |
CN111185148B (en) | Ce-Zn modified TiO 2 Preparation method and application of nanotube array composite catalytic material | |
CN111389440B (en) | Preparation method and application of layered cesium titanium niobate @ nitrogen doped titanium dioxide hybrid core-shell structured photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |