CN113188566A - Airborne distributed POS data fusion method - Google Patents
Airborne distributed POS data fusion method Download PDFInfo
- Publication number
- CN113188566A CN113188566A CN202110309944.7A CN202110309944A CN113188566A CN 113188566 A CN113188566 A CN 113188566A CN 202110309944 A CN202110309944 A CN 202110309944A CN 113188566 A CN113188566 A CN 113188566A
- Authority
- CN
- China
- Prior art keywords
- measurement
- node
- matrix
- sub
- child node
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007500 overflow downdraw method Methods 0.000 title claims abstract description 16
- 238000005259 measurement Methods 0.000 claims abstract description 226
- 239000011159 matrix material Substances 0.000 claims abstract description 124
- 239000013598 vector Substances 0.000 claims abstract description 78
- 230000004927 fusion Effects 0.000 claims abstract description 73
- 238000012937 correction Methods 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000001914 filtration Methods 0.000 claims abstract description 28
- 238000012546 transfer Methods 0.000 claims abstract description 17
- 238000005070 sampling Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims description 33
- 230000009466 transformation Effects 0.000 claims description 14
- 230000014509 gene expression Effects 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 3
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims 2
- 101100272279 Beauveria bassiana Beas gene Proteins 0.000 claims 1
- 235000006629 Prosopis spicigera Nutrition 0.000 claims 1
- 240000000037 Prosopis spicigera Species 0.000 claims 1
- 238000003491 array Methods 0.000 claims 1
- 230000002411 adverse Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000003384 imaging method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C23/00—Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
- G01C23/005—Flight directors
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Navigation (AREA)
Abstract
本公开提供了一种机载分布式POS数据融合方法,具体包括:计算子节点所在处冗余的位置和姿态信息;计算子节点的量测向量,利用量测自举策略,生成自举量测集合;使用Metropolis‑Hastings采样准则对自举量测集合的元素进行抽样,得到有效量测集合;计算有效量测集合中每个有效量测向量的权重和量测噪声矩阵;使用序贯滤波对子节点进行数据融合,用融合结果校正该子节点的运动参数;其它未进行数据融合的子节点分别重复上述步骤。该方法利用了所有子节点的运动信息,减小了量测噪声不确定性对传递对准估计精度的不利影响,并将数据融合结果用于运动参数的校正,因而提高了各子节点运动参数的估计精度。
The present disclosure provides an airborne distributed POS data fusion method, which specifically includes: calculating redundant position and attitude information where a child node is located; calculating a measurement vector of the child node, and using a measurement bootstrapping strategy to generate a bootstrapping amount measurement set; use the Metropolis‑Hastings sampling criterion to sample the elements of the bootstrap measurement set to obtain a valid measurement set; calculate the weight and measurement noise matrix of each valid measurement vector in the valid measurement set; use sequential filtering Data fusion is performed on the child node, and the motion parameters of the child node are corrected by the fusion result; the above steps are respectively repeated for other child nodes without data fusion. The method utilizes the motion information of all sub-nodes, reduces the adverse effect of measurement noise uncertainty on the accuracy of transfer alignment estimation, and uses the data fusion result for motion parameter correction, thus improving the motion parameters of each sub-node. estimation accuracy.
Description
技术领域technical field
本发明涉及机载多任务遥感载荷节点信息融合技术领域,特别是涉及一种机载分布式位置姿态测量系统(Position and Orientation System,POS)数据融合方法,可用于提升机载分布式POS子节点运动参数的估计精度。The invention relates to the technical field of airborne multi-task remote sensing load node information fusion, in particular to a data fusion method of an airborne distributed position and attitude measurement system (Position and Orientation System, POS), which can be used to upgrade the airborne distributed POS sub-nodes The estimation accuracy of the motion parameters.
背景技术Background technique
机载位置姿态测量系统(Position and Orientation System,POS)是用于获取载机位置、速度和姿态信息的主要手段。利用上述信息,就可以实现遥感数据的校正,提高成像质量。因此,POS常被应用于航空遥感成像、航空摄影测量等领域。例如利用POS辅助合成孔径雷达(Synthetic Aperture Rada,SAR)、激光雷达、多光谱扫描仪、数字相机、大视场红外扫描仪等遥感载荷,以满足高精度运动成像的需求。The airborne position and orientation system (Position and Orientation System, POS) is the main means for obtaining the position, speed and attitude information of the airborne aircraft. Using the above information, the correction of remote sensing data can be realized and the imaging quality can be improved. Therefore, POS is often used in aerial remote sensing imaging, aerial photogrammetry and other fields. For example, remote sensing payloads such as POS-assisted Synthetic Aperture Rada (SAR), lidar, multispectral scanners, digital cameras, and large-field infrared scanners are used to meet the needs of high-precision motion imaging.
随着飞行平台技术的发展,同一载机开始安装多个或多种遥感设备以实现多观测窗口的同步观测,典型的有SAR、可见光相机、成像光谱仪和激光雷达同时工作,还有多个天线同时工作的阵列天线SAR。这种集成多种或多个遥感载荷的多任务遥感模式已经成为航空遥感系统重要的发展方向。由于多个观测载荷安装在载机的不同位置,使用传统的单一POS必定不能满足测量多节点位置姿态信息的需求。因此实际使用中,会在载机上安装多个惯性测量单元(Inertial Measurement Unit,IMU),形成一个分布式的位置姿态测量系统,即分布式POS,以实现多节点运动参数的测量。With the development of flight platform technology, the same carrier began to install multiple or multiple remote sensing equipment to achieve simultaneous observation of multiple observation windows, typically SAR, visible light camera, imaging spectrometer and lidar working at the same time, as well as multiple antennas Array antenna SAR working simultaneously. This multi-mission remote sensing mode integrating multiple or multiple remote sensing payloads has become an important development direction of aerial remote sensing systems. Since multiple observation loads are installed in different positions of the carrier aircraft, the use of a traditional single POS must not meet the needs of measuring the position and attitude information of multiple nodes. Therefore, in actual use, multiple Inertial Measurement Units (IMU) will be installed on the carrier to form a distributed position and attitude measurement system, namely distributed POS, to realize the measurement of multi-node motion parameters.
分布式POS通常由一个或少量高精度主POS、多个中/低精度子IMU组成,这两部分分别安装在机体或机翼两侧的各遥感载荷附近,组成一个分布式的多传感器系统。其中主POS所在位置称为主节点,各子IMU所在处称为子节点。Distributed POS usually consists of one or a small number of high-precision main POS and multiple medium/low-precision sub-IMUs. These two parts are respectively installed near each remote sensing load on both sides of the airframe or wing to form a distributed multi-sensor system. The location where the main POS is located is called the main node, and the location where each sub-IMU is located is called the child node.
为实现分布式POS中各子节点处运动信息的精确测量,子节点需要根据主POS提供的高精度位置、速度、姿态等运动信息,对自身捷联解算的结果进行修正,并将其作为该点最终的运动参数,这一过程称为传递对准。由于各子节点处机体变形、杆臂等因素存在差异,在完成主节点到每个子节点的一对一传递对准之后,各子节点处的运动参数精度各不相同,有高有低。特别是远离机体中心的子节点的挠曲变形情况最为复杂,传递对准精度较低。如果每一个子节点都能利用其余节点的运动信息进行数据融合,将进一步提高各子节点的运动参数精度。In order to realize the accurate measurement of the motion information at each sub-node in the distributed POS, the sub-nodes need to correct the result of their own strapdown solution according to the high-precision position, speed, attitude and other motion information provided by the main POS, and use it as The final motion parameters of the point, a process called transfer alignment. Due to the differences in the body deformation, lever arm and other factors at each sub-node, after completing the one-to-one transfer alignment from the main node to each sub-node, the accuracy of the motion parameters at each sub-node is different, ranging from high to low. In particular, the flexural deformation of the sub-nodes far from the center of the body is the most complicated, and the transfer alignment accuracy is low. If each child node can use the motion information of other nodes for data fusion, the accuracy of the motion parameters of each child node will be further improved.
目前针对多传感器系统的数据融合算法可分为两种:第一种是集中式融合,该方法将所有传感器的量测数据进行一次融合计算完成,且被证明是信息损失最小、同时是全局最优的,但是对于机载分布式POS这样的多传感器系统,在融合时刻涉及高维矩阵的乘法和求逆,若在机载分布式POS中采用该融合方法会具有计算负荷量大、实时性低、容错性低的劣势。第二种是分布式融合,该方法将多个传感器的原始数据信息分别经过多个滤波器中完成滤波,然后再经过融合中心集中处理。例如专利号为CN201810153913.5的专利就采用了分布式融合的方法,将子IMU传递对准得到的协方差矩阵的逆作为数据融合的权重矩阵,分别给出了位置、速度、姿态信息融合的具体方法。但该方法需要计算总数为子节点数的权重矩阵用于数据融合,权重矩阵的计算复杂,且涉及到矩阵的求逆,存在矩阵陷入奇异的问题,总计算量也很大。同时该方法未考虑子节点之间挠曲运动的相关性,这对数据融合结果的精度也会造成不利影响。At present, the data fusion algorithms for multi-sensor systems can be divided into two types: the first is centralized fusion, which fuses the measurement data of all sensors at one time, and is proved to be the smallest in information loss and the best in the world at the same time. Excellent, but for multi-sensor systems such as airborne distributed POS, the multiplication and inversion of high-dimensional matrices are involved at the time of fusion. If this fusion method is used in airborne distributed POS, it will have a large computational load and real-time performance. The disadvantage of low and low fault tolerance. The second is distributed fusion, in which the raw data information of multiple sensors is filtered through multiple filters, and then processed centrally by the fusion center. For example, the patent No. CN201810153913.5 adopts the distributed fusion method. The inverse of the covariance matrix obtained by the sub-IMU transfer and alignment is used as the weight matrix of data fusion, and the information fusion of position, velocity and attitude is given respectively. specific method. However, this method needs to calculate the weight matrix with the total number of child nodes for data fusion. The calculation of the weight matrix is complicated, and it involves the inversion of the matrix. There is a problem that the matrix falls into singularity, and the total calculation amount is also large. At the same time, the method does not consider the correlation of the deflection motion between the sub-nodes, which will adversely affect the accuracy of the data fusion results.
分布式融合中常用的结构有联邦滤波和序贯滤波。两种分布式融合结构均是基于卡尔曼滤波。其中联邦滤波属于分散化滤波方法的一种,其结构中包含若干子滤波器和一个主滤波器,同时运用信息分配原则,实现子滤波器与主滤波器之间信息的分配。联邦滤波具有设计灵活、容错性好的优势,在组合导航系统中获得了广泛的应用。但是联邦滤波针对的是某点处安装的多个测量功能具有互补性的传感器数据的融合,而机载分布式POS中每个子节点仅安装一个子IMU,因此针对任一子节点无法构成联邦滤波使用时所需的公共参考系统和若干子系统,即不能构成联邦滤波结构,因此联邦滤波不适用于机载分布式POS的数据融合。而序贯滤波是对多组量测数据依次进行卡尔曼滤波,将最终的结果作为数据融合结果。针对机载分布式POS,可以利用光纤光栅传感器测量出的形变数据,将各子节点的运动参数信息转换到任意其它子节点处,即任一子节点都能得到其余子节点转换到所在处的冗余运动参数信息,从而形成了多个量测向量,为采用序贯滤波对每一个子节点的多个量测向量进行滤波估计提供了可能,而且序贯滤波具有计算量更小、结构简单的优势。Commonly used structures in distributed fusion are federated filtering and sequential filtering. Both distributed fusion structures are based on Kalman filtering. Among them, federated filtering is a kind of decentralized filtering method. Its structure includes several sub-filters and a main filter. At the same time, the principle of information distribution is used to realize the distribution of information between the sub-filters and the main filter. Federated filtering has the advantages of flexible design and good fault tolerance, and has been widely used in integrated navigation systems. However, federated filtering is aimed at the fusion of sensor data with complementary measurement functions installed at a certain point, and only one sub-IMU is installed in each sub-node in the airborne distributed POS, so federated filtering cannot be formed for any sub-node. The common reference system and several subsystems required for use cannot constitute a federated filtering structure, so federated filtering is not suitable for data fusion of airborne distributed POS. Sequential filtering is to perform Kalman filtering on multiple sets of measurement data in turn, and use the final result as the data fusion result. For the airborne distributed POS, the deformation data measured by the fiber grating sensor can be used to convert the motion parameter information of each sub-node to any other sub-node, that is, any sub-node can get the rest of the sub-nodes to convert to the location where they are located. The redundant motion parameter information is used to form multiple measurement vectors, which provides the possibility to use sequential filtering to filter and estimate multiple measurement vectors of each child node, and the sequential filtering has the advantages of less computation and simple structure. The advantages.
发明内容SUMMARY OF THE INVENTION
本发明的技术解决问题是:克服现有技术的不足,提出一种机载分布式POS数据融合方法,提升机载分布式POS各子节点运动参数的估计精度。The technical solution of the present invention is: to overcome the deficiencies of the prior art, an airborne distributed POS data fusion method is proposed, and the estimation accuracy of the motion parameters of each sub-node of the airborne distributed POS is improved.
本发明的技术解决方案为:一种机载分布式POS数据融合方法。其具体步骤如下:The technical solution of the present invention is: an airborne distributed POS data fusion method. The specific steps are as follows:
(1)计算tk时刻子节点处冗余的位置和姿态信息;( 1 ) Calculate the redundant position and attitude information at the child node at time tk;
(2)计算tk时刻子节点的量测向量,并利用量测自举策略,生成自举量测集合;(2) Calculate the measurement vector of the child node at time tk, and use the measurement bootstrapping strategy to generate a bootstrapping measurement set;
(3)使用Metropolis-Hastings采样准则对自举量测集合中的元素进行采样,得到子节点的有效量测集合;(3) Use the Metropolis-Hastings sampling criterion to sample the elements in the bootstrap measurement set to obtain the effective measurement set of the child nodes;
(4)计算有效量测集合中每个有效量测向量的权重和量测噪声矩阵;(4) Calculate the weight and measurement noise matrix of each valid measurement vector in the valid measurement set;
(5)使用序贯滤波对子节点进行数据融合,将融合结果用于该子节点tk时刻运动参数的校正;(5) use sequential filtering to perform data fusion on the child node, and use the fusion result for the correction of the motion parameter of the child node at time t k ;
(6)对其它未进行数据融合和运动参数校正的子节点重复步骤(1)到(5),直至所有子节点完成tk时刻的数据融合和运动参数的校正;(6) Repeat steps (1) to (5) to other child nodes that do not perform data fusion and motion parameter correction, until all child nodes complete the data fusion at time t k and the correction of motion parameters;
(7)tk=tk+1,执行步骤(1)到(6),直至完成所有子节点在所有时刻的数据融合和运动参数的校正。(7) t k =t k+1 , perform steps (1) to (6) until the data fusion of all child nodes at all times and the correction of motion parameters are completed.
上述步骤(1)中获取tk时刻子节点处冗余的位置与姿态信息的具体步骤如下:The specific steps for obtaining redundant position and attitude information at the child nodes at time t k in the above step (1) are as follows:
1)子节点进行捷联解算1) Sub-nodes for strapdown solution
相关参考坐标系的定义包括:e为地球坐标系;主节点和子节点处导航坐标系均为东北天地理坐标系,主节点的导航坐标系用n表示,第J个子节点的导航坐标系和计算导航坐标系分别用nJ和n′J表示,J=1,2,…,N,N为子节点的个数;载体坐标系原点为载体重心,x轴沿载体横轴向右,y轴沿载体纵轴向前,z轴沿载体竖轴向上,该坐标系固定在载体上,称为右前上载体坐标系,用bm、bJ分别代表主节点和第J个子节点的载体坐标系,J=1,2,…,N。The definition of the relevant reference coordinate system includes: e is the earth coordinate system; the navigation coordinate system at the main node and the child nodes are the northeast geographic coordinate system, the navigation coordinate system of the main node is represented by n, and the navigation coordinate system of the Jth child node and calculation The navigation coordinate system is represented by n J and n' J respectively, J=1,2,...,N, N is the number of child nodes; the origin of the carrier coordinate system is the center of gravity of the carrier, the x-axis is to the right along the horizontal axis of the carrier, and the y-axis Forward along the vertical axis of the carrier, the z-axis is upward along the vertical axis of the carrier, the coordinate system is fixed on the carrier, and is called the front-right upper carrier coordinate system, and b m and b J represent the carrier coordinates of the main node and the J-th child node respectively. system, J=1,2,...,N.
各子节点通过捷联解算后将得到tk时刻各自所在处的位置[LJ λJ HJ]T、姿态[ψJθJ γJ]T和速度其中,LJ、λJ和HJ分别表示第J个子节点的纬度、经度和高度;ψJ、θJ和γJ分别表示第J个子节点的航向角、俯仰角和横滚角;和分别表示第J个子节点在nJ系下的东向速度、北向速度和天向速度。Each sub-node will get the position [L J λ J H J ] T , the attitude [ψ J θ J γ J ] T and the velocity at the time t k after the strapdown solution. Among them, L J , λ J and H J represent the latitude, longitude and altitude of the J-th child node, respectively; ψ J , θ J and γ J represent the heading angle, pitch angle and roll angle of the J-th child node, respectively; and respectively represent the easting velocity, northing velocity and sky velocity of the Jth child node under the n J system.
2)子节点冗余位置、姿态信息的获取2) Acquisition of redundant position and attitude information of child nodes
a)子节点冗余位置信息的获取a) Acquisition of redundant location information of child nodes
通过安装在机翼上的光纤光栅传感器,可以获取tk时刻任意子节点处的应变信息,进而获得其相对其初始位置的位移以及任意两个子节点J、J′(J,J′=1,2,…,N;J≠J′)间的相对位置信息ΔPJ←J′,ΔPJ←J′代表任意两个子节点J、J′之间纬度、经度、高度的差值。Through the fiber grating sensor installed on the wing, the strain information at any sub-node at time t k can be obtained, and then its displacement relative to its initial position and any two sub-nodes J, J' (J, J'=1, 2,...,N; J≠J′) relative position information ΔP J←J′ , ΔP J←J′ represents the difference in latitude, longitude and height between any two child nodes J and J′.
在tk时刻,第J个子节点经过捷联解算后得到的位置为[LJ λJ HJ]T,J=1,2,…,N,其它N-1个子节点捷联解算后的位置表示为[LJ′ λJ′ HJ′]T(J′=1,2,…,N,J′≠J)。第J个子节点处的冗余位置信息可表示为:At time t k , the position obtained by the Jth child node after strapdown solution is [L J λ J H J ] T , J=1,2,...,N, and the other N-1 child nodes after strapdown solution The position of is expressed as [L J′ λ J′ H J′ ] T (J′=1,2,…,N,J′≠J). The redundant location information at the Jth child node can be expressed as:
[LJ←J′ λJ←J′ HJ←J′]T=[LJ′ λJ′ HJ′]T+ΔPJ←J′(J,J′=1,2,…,N;J≠J′)[L J←J′ λ J←J′ H J←J′ ] T = [L J′ λ J′ H J′ ] T +ΔP J←J′ (J,J′=1,2,…,N ; J≠J′)
由此,加上自身捷联解算得到的位置信息,第J个子节点处共有N个纬度、经度、高度计算值,即[LJ λJ HJ]T和[LJ←J′ λJ←J′ HJ←J′]T(J,J′=1,2,…,N,J′≠J)。将当前子节点J直接捷联解算得到的位置信息[LJ λJ HJ]T重新记为其余N-1个位置信息[LJ←J′ λJ←J′ HJ←J′]T(J,J′=1,2,…,N;J≠J′)重新记为 Thus, plus the position information obtained by the strapdown solution, there are N calculated values of latitude, longitude and altitude at the Jth child node, namely [L J λ J H J ] T and [L J←J′ λ J ←J′ H J←J′ ] T (J, J′=1,2,…,N,J′≠J). Rewrite the position information [L J λ J H J ] T obtained by the direct strapdown solution of the current child node J as The remaining N-1 pieces of position information [L J←J′ λ J←J′ H J←J′ ] T (J,J′=1,2,…,N; J≠J′) are rewritten as
b)子节点冗余姿态信息的获取b) Acquisition of redundant attitude information of child nodes
利用光纤光栅传感器测得的tk时刻各子节点的角位移信息,可以构建任意两个子节点J、J′(J,J′=1,2,…,N;J≠J′)载体坐标系之间的转换矩阵第J个子节点处的载体坐标系(bJ系)与该点导航坐标系(nJ系)之间的转换矩阵(姿态矩阵)表示为其它N-1个子节点处的姿态矩阵表示为第J个子节点处的冗余姿态矩阵可表示为:Using the angular displacement information of each sub-node at time t k measured by the fiber grating sensor, the carrier coordinate system of any two sub-nodes J, J' (J, J' = 1, 2, ..., N; J≠J') can be constructed transformation matrix between The transformation matrix (attitude matrix) between the carrier coordinate system (b J system) at the Jth child node and the point navigation coordinate system (n J system) is expressed as The attitude matrix at the other N-1 child nodes is expressed as The redundant pose matrix at the Jth child node can be expressed as:
其中,in,
在tk时刻,第J个子节点处就有N个姿态矩阵。利用这N个姿态矩阵,可计算得到N个姿态角。姿态角的具体计算方法如下:At time tk , there are N pose matrices at the Jth child node. Using the N attitude matrices, N attitude angles can be calculated. The specific calculation method of the attitude angle is as follows:
将记为: Will Record as:
其中,TJxy为矩阵中第x行、第y列的元素,x=1,2,3,y=1,2,3;则第J个子节点的姿态角,包括航向角ψJ、俯仰角θJ和横滚角γJ的主值,即和分别为: Among them, T Jxy is a matrix The elements in the xth row and the yth column, x=1,2,3, y=1,2,3; then the attitude angle of the Jth child node, including the heading angle ψ J , the pitch angle θ J and the roll angle The principal value of γ J , i.e. and They are:
航向角ψJ、俯仰角θJ和横滚角γJ的取值范围分别定义为[0,2π]、 [-π,+π];那么,ψJ、θJ和γJ的真值可由下式确定:The value ranges of the heading angle ψ J , the pitch angle θ J and the roll angle γ J are defined as [0, 2π], [-π, +π]; then, the true values of ψ J , θ J and γ J can be determined by:
按照上述姿态角的计算方法,还可以计算出第J个子节点处N-1个冗余姿态矩阵对应的N-1个冗余姿态角。将由子节点J自身的姿态矩阵解算出的姿态角重新记为由其余N-1个姿态矩阵解算出的姿态角记为 According to the above calculation method of attitude angle, N-1 redundant attitude matrices at the Jth child node can also be calculated. The corresponding N-1 redundant attitude angles. Will be composed of the attitude matrix of the child node J itself The calculated attitude angle is re-recorded as By the remaining N-1 pose matrices The calculated attitude angle is recorded as
上述步骤(2)中计算tk时刻子节点的量测向量,并利用量测自举策略,生成自举量测集合的具体步骤为:In the above step (2), the measurement vector of the child node at time t k is calculated, and the measurement bootstrapping strategy is used to generate the specific steps of the bootstrapping measurement set:
1)计算子节点的量测向量1) Calculate the measurement vector of the child node
tk时刻主节点m经杆臂补偿后的纬度、经度、高度分别记为Lm、λm、Hm,主节点m的航向角、俯仰角、横滚角分别记为ψm、θm、γm。针对任一子节点J(J=1,2,…,N),可以得到tk时刻的N个量测向量其表达式如下:At time t k , the latitude, longitude and height of master node m after lever arm compensation are respectively recorded as L m , λ m , H m , and the heading angle, pitch angle and roll angle of master node m are respectively recorded as ψ m , θ m , γ m . For any child node J (J=1,2,...,N), N measurement vectors at time t k can be obtained Its expression is as follows:
其中,分别代表tk时刻子节点J的第i个纬度、经度、高度与主节点m经杆臂补偿后的纬度、经度、高度的差值;分别代表tk时刻子节点J的第i个航向角、俯仰角、横滚角与主节点m对应的航向角、俯仰角、横滚角的差值。in, respectively represent the difference between the ith latitude, longitude and height of the child node J at time tk and the latitude, longitude and height of the main node m after compensation by the lever arm; respectively represent the difference between the ith heading angle, pitch angle, and roll angle of the child node J at time tk and the heading angle, pitch angle, and roll angle corresponding to the main node m.
2)利用量测自举策略,生成自举量测集合2) Use the measurement bootstrapping strategy to generate a bootstrapping measurement set
在量测向量的基础上,通过增加扰动的方式生成自举量测具体步骤如下:in the measurement vector On the basis of , the bootstrap measurements are generated by adding perturbations Specific steps are as follows:
其中,表示以原始量测向量为基础产生的第c个自举量测,c=1,2,…,l,l表示自举量测的总个数,l=5;HJ是系统的量测矩阵,xJ是系统的状态向量,vJ是量测噪声,且vJ满足是零均值的高斯白噪声,其协方差为 和vJ具有相同的统计特性,即满足是零均值的高斯白噪声,其协方差 in, represents the original measurement vector The c-th bootstrap measurement generated based on c=1,2,...,l, where l represents the bootstrap measurement The total number of , l=5; H J is the measurement matrix of the system, x J is the state vector of the system, v J is the measurement noise, and v J is Gaussian white noise with zero mean, and its covariance is has the same statistical properties as v J , namely Satisfy is white Gaussian noise with zero mean, and its covariance
通过上述方法,可以得到N×l个自举量测数据定义自举量测集合:其中代表原始量测向量,即 Through the above method, N×l bootstrap measurement data can be obtained Define the bootstrap measurement set: in represents the original measurement vector, i.e.
上述步骤(3)中使用Metropolis-Hastings采样准则对自举量测集合中的元素进行采样,得到子节点的有效量测集合,具体步骤如下:In the above step (3), the Metropolis-Hastings sampling criterion is used to sample the elements in the bootstrap measurement set to obtain the effective measurement set of the child nodes. The specific steps are as follows:
1)计算可信度和接受概率1) Calculate the credibility and acceptance probability
依据Metropolis-Hastings采样原理,从N个自举量测集合中随意选择两个集合再从这两个集合中分别随机抽取一个元素和并计算对应的可信度和可信度的计算公式如下所示:According to the Metropolis-Hastings sampling principle, from N bootstrap measurement sets Randomly choose two sets from Then randomly select an element from each of these two sets and and calculate the corresponding reliability and The formula for calculating reliability is as follows:
其中是量测预测均值,代表量测噪声vJ协方差矩阵的行列式。in is the mean of the measurement forecast, represents the measurement noise v J covariance matrix determinant of .
在得到可信度和的基础上,按照下式计算接受概率:getting credibility and On the basis of , the acceptance probability is calculated according to the following formula:
即接受概率的取值为和1之间的最小值。the acceptance probability value of and the smallest value between 1.
2)构建有效量测集合2) Build an effective measurement set
首先生成一个满足均匀分布U(0,1)的随机数χ,有效量测集合ΩJ的确定方法如下:First, a random number χ that satisfies the uniform distribution U(0,1) is generated. The method for determining the effective measurement set Ω J is as follows:
式中,若随机抽取的元素和对应的接受概率大于等于生成的随机数χ,则将作为有效量测集合ΩJ中的元素;反之,将作为有效量测集合ΩJ中的元素。上述过程即为确定有效量测向量的采样过程。In the formula, if the randomly selected elements and The corresponding acceptance probability is greater than or equal to the generated random number χ, then the as an element in the effective measurement set Ω J ; otherwise, the as an element in the effective measurement set Ω J. The above process is the sampling process for determining the effective measurement vector.
重复进行L次采样,L=2N,并且定义有效量测集合中L个有效量测向量分别为zJ(1),zJ(2),…zJ(L),这些有效量测向量组成有效量测集合ΩJ。Repeat L sampling, L=2N, and define L effective measurement vectors in the effective measurement set as z J (1), z J (2),...z J (L), these effective measurement vectors are composed of Valid measurement set Ω J .
上述步骤(4)中计算有效量测集合中每个有效量测向量的权重和量测噪声矩阵的具体步骤如下:The specific steps of calculating the weight of each effective measurement vector and the measurement noise matrix in the effective measurement set in the above step (4) are as follows:
1)计算一致性距离和一致性矩阵1) Calculate the consistency distance and consistency matrix
定义有效量测集合ΩJ中任意两个量测向量zJ(ξ)和zJ(ζ)之间的置信距离为其计算方法如下:Define the confidence distance between any two measurement vectors z J (ξ) and z J (ζ) in the effective measurement set Ω J as Its calculation method is as follows:
在此基础上计算一致性距离和一致性矩阵ΨJ,其计算方法如下:Calculate the consistency distance on this basis and the consistency matrix Ψ J , which is calculated as follows:
其中,表示ΩJ中任意两个量测向量之间置信距离的最大值。in, represents the maximum confidence distance between any two measurement vectors in Ω J.
2)计算有效量测向量的权重和量测噪声矩阵2) Calculate the weight of the effective measurement vector and the measurement noise matrix
得到一致性矩阵ΨJ后,计算该矩阵的最大模特征值λ和对应的特征向量β,将β单位化得到令权向量此时,可以用来表示相应的有效量测向量被有效量测集合ΩJ中所有元素的总体支持程度。After obtaining the consistency matrix Ψ J , calculate the maximum modulus eigenvalue λ of the matrix and the corresponding eigenvector β, and unite β to get Let the weight vector at this time, It can be used to represent the overall support degree of all elements in the effective measurement set Ω J for the corresponding effective measurement vector.
依据数理统计中方差的计算基本原理,计算得到有效量测集合中每个元素对应的量测噪声矩阵其计算方法如下:According to the basic principle of variance calculation in mathematical statistics, the measurement noise matrix corresponding to each element in the effective measurement set is calculated. Its calculation method is as follows:
上述步骤(5)中使用序贯滤波对子节点进行数据融合,将融合结果用于该子节点tk时刻运动参数的校正,具体步骤如下:In the above step (5), sequential filtering is used to perform data fusion on the child node, and the fusion result is used to correct the motion parameters of the child node at time t k . The specific steps are as follows:
1)建立机载分布式POS传递对准模型1) Establish an airborne distributed POS delivery alignment model
传递对准模型采用“位置+姿态”的匹配方式,系统状态向量为15维状态向量,包括子节点J的平台失准角速度误差位置误差(δLJ、δλJ、δHJ)、陀螺常值漂移和加计常值偏置N为子系统的个数。其中, 分别为第J个子节点的东向、北向、天向失准角;分别为第J个子节点在nJ系下的东向、北向和天向速度误差;δLJ、δλJ、δHJ分别为第J个子节点的纬度误差、经度误差、高度误差;和分别为第J个子节点处子IMU在其载体坐标系下(bJ系)陀螺常值漂移和加计常值偏置;分别为第J个子节点处子IMU在bJ系x轴、y轴和z轴上的陀螺仪随机常值漂移;分别为第J个子节点处子IMU在bJ系x轴、y轴和z轴上的加速度计常值偏置。因此系统状态向量有如下形式:The transfer alignment model adopts the matching method of "position + attitude", and the system state vector is a 15-dimensional state vector, including the platform misalignment angle of the child node J speed error Position error (δL J , δλ J , δH J ), gyro constant drift and add-up constant offset N is the number of subsystems. in, are the east, north and sky misalignment angles of the J-th child node; are the easting, northing and sky velocity errors of the J-th child node under the n J system, respectively; δL J , δλ J , and δH J are the latitude error, longitude error, and altitude error of the J-th child node; and are respectively the gyro constant drift and the accumulating constant offset of the child IMU at the Jth child node in its carrier coordinate system (b J system); are the random constant drift of the gyroscope on the x-axis, y-axis and z-axis of the b J system of the child IMU at the Jth child node, respectively; are the constant accelerometer offsets of the child IMU at the Jth child node on the x-axis, y-axis and z-axis of the b J system, respectively. Therefore, the system state vector has the following form:
a)状态方程的建立a) Establishment of the equation of state
系统状态方程有如下形式: The state equation of the system has the following form:
其中系统噪声为零均值高斯白噪声,其方差阵由IMU中陀螺仪和加速度计的噪声水平决定。FJ为状态转移矩阵,其具体表达形式如下:where system noise White Gaussian noise with zero mean, its variance matrix Determined by the noise level of the gyroscope and accelerometer in the IMU. FJ is the state transition matrix, and its specific expression is as follows:
其中, in,
其中,ωie表示地球自转角速度;和分别为子节点J处子IMU在导航坐标系(nJ系)中的东向比力、北向比力和天向比力分量;和分别为子节点J在导航坐标系(nJ系)下的东向速度、北向速度和天向速度;和分别为子节点J沿子午圈和卯酉圈的主曲率半径;T为滤波周期;GJ为子节点J的系统噪声矩阵,其具体表达形式如下:Among them, ω ie represents the angular velocity of the earth's rotation; and are the eastward specific force, northward specific force and skyward specific force components of the child IMU at the child node J in the navigation coordinate system (n J system), respectively; and are the easting speed, northing speed and sky speed of the child node J in the navigation coordinate system (n J system) respectively; and are respectively the principal radius of curvature of the sub-node J along the meridian and 卯unitary circles; T is the filter period; G J is the system noise matrix of the sub-node J, and its specific expression is as follows:
b)量测方程的建立b) Establishment of measurement equations
子节点J的L个有效量测向量zJ(τ)(τ=1,2,…,L)的具体表达式为:The specific expressions of the L effective measurement vectors z J (τ) (τ=1,2,...,L) of the child node J are:
其中,分别表示子节点J的第τ个纬度、经度、高度计算值与主节点m经杆臂补偿后的纬度、经度、高度的差值;和分别表示子节点J第τ个航向角、俯仰角、横滚角计算值与主节点m对应的航向角、俯仰角、横滚角的差值;in, respectively represent the difference between the calculated value of the τth latitude, longitude and height of the child node J and the latitude, longitude and height of the main node m after compensation by the lever arm; and respectively represent the difference between the calculated value of the τth heading angle, pitch angle and roll angle of the child node J and the heading angle, pitch angle and roll angle corresponding to the main node m;
量测方程的表达式: The expression of the measurement equation:
zJ(τ)对应的量测矩阵 The measurement matrix corresponding to z J (τ)
其中, in,
Ta为主节点的姿态矩阵,即且令表示矩阵Ta中第s行、第t列的元素,即Ta可以表示为:T a is the attitude matrix of the main node, i.e. and make Represents the elements of the s-th row and the t-th column in the matrix T a , that is, T a can be expressed as:
2)使用序贯滤波进行数据融合2) Use sequential filtering for data fusion
首先进行时间更新,针对第J个子节点,根据上一时刻tk-1的滤波估计值和传递对准模型可以得到当前tk时刻的一步预测估计值计算公式如下所示:First, the time update is performed, and for the Jth child node, according to the filter estimated value of the previous time t k-1 and the transfer alignment model can get a one-step prediction estimate at the current time t k The calculation formula is as follows:
其中,ΓJ是将连续系统的状态转移矩阵FJ离散化后得到的离散系统的转移矩阵。Among them, Γ J is the transition matrix of the discrete system obtained by discretizing the state transition matrix F J of the continuous system.
同理,根据上一时刻的估计均方误差阵PJ(k-1|k-1)和传递对准模型可以得到当前tk时刻的一步预测均方误差阵,计算公式如下所示:Similarly, according to the estimated mean square error matrix P J (k-1|k-1) at the previous moment and the transfer alignment model, the one-step forecast mean square error matrix of the current moment t k can be obtained. The calculation formula is as follows:
其中,ΞJ是将连续系统的噪声驱动阵GJ离散化后得到的离散系统的噪声驱动阵。Among them, Ξ J is the noise-driven array of the discrete system obtained by discretizing the noise-driven array G J of the continuous system.
然后利用步骤(3)中得到的有效量测向量进行量测更新,将第J个子节点在当前tk时刻的L个量测向量分别记为第J个子节点的数据融合公式如下:Then use the effective measurement vector obtained in step (3) to perform measurement update, and record the L measurement vectors of the Jth child node at the current time tk as The data fusion formula of the Jth child node is as follows:
当使用进行量测更新时,有:when using When performing a measurement update, there are:
其中,和分别为所对应的量测矩阵和量测噪声矩阵;为使用进行量测更新时计算得到的滤波增益矩阵;表示使用进行量测更新时计算得到的状态估计值;为对应的估计均方误差阵;I为与维度相同的单位阵。in, and respectively The corresponding measurement matrix and measurement noise matrix; for use The filter gain matrix calculated when the measurement update is performed; indicate use The state estimate calculated when the measurement update is performed; for The corresponding estimated mean square error matrix; I is the A unit matrix of the same dimensions.
当使用依次进行量测更新时,有:when using When performing measurement updates in sequence, there are:
其中,和分别为对应的量测矩阵和量测噪声矩阵;为使用进行量测更新时计算得到的滤波增益矩阵;表示使用进行量测更新时计算得到的状态估计值;为对应的估计均方误差阵。in, and respectively Corresponding measurement matrix and measurement noise matrix; for use The filter gain matrix calculated when the measurement update is performed; indicate use The state estimate calculated when the measurement update is performed; for The corresponding estimated mean squared error matrix.
执行上述数据融合公式,当上述流程运行到τ=L时,将得到的作为当前tk时刻第J个子节点处最终的数据融合结果,即其中,包含tk时刻第J个子节点数据融合后的纬度误差δLJ(k)、经度误差δλJ(k)和高度误差δHJ(k),还包含数据融合后在nJ系下的东向速度误差北向速度误差和天向速度误差以及数据融合后的东向失准角北向失准角和天向失准角 Execute the above data fusion formula, when the above process runs to τ=L, the obtained As the final data fusion result at the Jth child node at the current tk time, that is, in, It includes the latitude error δL J (k), longitude error δλ J (k) and altitude error δH J (k) after data fusion of the Jth child node at time t k , and also includes the eastward velocity under the n J system after data fusion error northbound speed error and sky speed error and the easting misalignment angle after data fusion North misalignment angle and sky misalignment
3)运动参数校正3) Motion parameter correction
利用上述融合结果对tk时刻第J个子节点捷联解算的结果进行校正。校正的步骤如下所示:Use the above fusion result to correct the result of the strapdown solution of the Jth child node at time tk. The calibration steps are as follows:
a)位置校正a) Position correction
LJ(k)|new=LJ(k)-δLJ(k),λJ(k)|new=λJ(k)-δλJ(k),HJ(k)|new=HJ(k)-δHJ(k)L J (k)| new =L J (k)-δL J (k),λ J (k)| new =λ J (k)-δλ J (k), H J (k)| new =H J (k)-δH J (k)
其中,LJ(k)、λJ(k)、HJ(k)分别代表tk时刻第J个子节点捷联解算得到的纬度、经度和高度;LJ(k)|new、λJ(k)|new、HJ(k)|new分别代表tk时刻第J个子节点校正后的纬度、经度和高度。Among them, L J (k), λ J (k), H J (k) represent the latitude, longitude and altitude obtained by the strapdown solution of the J-th child node at time t k , respectively; L J (k) | new , λ J (k)| new and H J ( k )| new respectively represent the corrected latitude, longitude and altitude of the Jth child node at time tk.
b)速度校正b) Speed correction
其中,分别代表tk时刻第J个子节点捷联解算得到的东向速度、北向速度和天向速度;分别代表tk时刻第J个子节点校正后的东向速度、北向速度和天向速度。in, respectively represent the easting velocity, northing velocity and sky velocity obtained by the strapdown solution of the Jth child node at time tk; respectively represent the corrected easting speed, northing speed and sky speed of the Jth child node at time tk.
c)姿态校正c) Attitude correction
计算tk时刻第J个子节点导航坐标系nJ与计算导航坐标系nJ′间的转换矩阵 Calculate the transformation matrix between the navigation coordinate system n J of the J-th child node at time t k and the calculated navigation coordinate system n J ′
修正后的转换矩阵为:其中,为tk时刻J个子节点进行捷联解算后得到的姿态矩阵;Corrected transformation matrix for: in, is the attitude matrix obtained by the strapdown solution for J child nodes at time tk;
利用修正后的转换矩阵计算tk时刻第J个子节点的航向角ψJ(k)|new、俯仰角θJ(k)|new和横滚角γJ(k)|new。Using the modified transformation matrix Calculate the heading angle ψ J (k)| new , the pitch angle θ J (k)| new and the roll angle γ J (k)| new of the J-th child node at time t k .
上述步骤(6)中对其它未进行数据融合和运动参数校正的子节点重复步骤(1)到(5),直至所有子节点完成tk时刻的数据融合和运动参数的校正,具体步骤如下:Repeat steps (1) to (5) for other sub-nodes that do not perform data fusion and motion parameter correction in the above step (6), until all sub-nodes complete the data fusion and motion parameter correction at time t k , and the specific steps are as follows:
1)设tk时刻已完成步骤(1)到(5)的子节点编号为kN,kN初始值为1;1) Let the number of the child nodes that have completed steps (1) to (5) at time t k be k N , and the initial value of k N is 1;
2)若kN<N,N为子节点的个数,则说明仍有子节点未完成数据融合和运动参数的校正,kN=kN+1,对编号为kN的子节点重复步骤(1)到(5);2) If k N <N, and N is the number of child nodes, it means that there are still child nodes that have not completed data fusion and motion parameter correction, k N =k N +1, repeat the steps for the child nodes numbered k N (1) to (5);
3)若kN=N,则停止步骤(6),表示所有子节点均已完成tk时刻的数据融合和运动参数的校正。3) If k N =N, stop step (6), indicating that all child nodes have completed data fusion and motion parameter correction at time t k .
本发明与现有技术相比的优点在于:The advantages of the present invention compared with the prior art are:
围绕提升机载分布式POS多节点运动参数测量整体精度这一目标,将量测自举策略和序贯滤波相结合。前者所有子节点的运动参数信息利用获取每一个子节点更加接近于真实值的量测向量,然后使用这些量测向量进行序贯滤波,并将得到的数据融合结果用于子节点运动参数的校正。该方法充分利用了所有子节点的运动参数信息,克服了量测噪声不确定性对传递对准估计精度的不利影响,最终提升了子节点运动参数的估计精度。Focusing on the goal of improving the overall accuracy of airborne distributed POS multi-node motion parameter measurement, the measurement bootstrapping strategy and sequential filtering are combined. The motion parameter information of all child nodes of the former is used to obtain measurement vectors that are closer to the true value of each child node, and then use these measurement vectors to perform sequential filtering, and the obtained data fusion results are used for the correction of child node motion parameters. . The method makes full use of the motion parameter information of all sub-nodes, overcomes the adverse effect of measurement noise uncertainty on the estimation accuracy of transfer alignment, and finally improves the estimation accuracy of motion parameters of sub-nodes.
附图说明Description of drawings
图1为本发明的流程图;Fig. 1 is the flow chart of the present invention;
图2为本发明的基于量测自举和序贯滤波的数据融合方法的结构图。FIG. 2 is a structural diagram of a data fusion method based on measurement bootstrapping and sequential filtering of the present invention.
具体实施方式Detailed ways
如图1所示,本发明的具体方法实施如下:As shown in Figure 1, the concrete method of the present invention is implemented as follows:
1、计算tk时刻子节点处冗余的位置和姿态信息,具体计算步骤如下:1. Calculate the redundant position and attitude information of the child nodes at time tk, and the specific calculation steps are as follows :
(1)子节点进行捷联解算(1) Sub-nodes for strapdown solution
相关参考坐标系的定义包括:e为地球坐标系;主节点和子节点处导航坐标系均为东北天地理坐标系,主节点的导航坐标系用n表示,第J个子节点的导航坐标系和计算导航坐标系分别用nJ和n′J表示,J=1,2,…,N,N为子节点的个数;载体坐标系原点为载体重心,x轴沿载体横轴向右,y轴沿载体纵轴向前,z轴沿载体竖轴向上,该坐标系固定在载体上,称为右前上载体坐标系,用bm、bJ分别代表主节点和第J个子节点的载体坐标系,J=1,2,…,N。The definition of the relevant reference coordinate system includes: e is the earth coordinate system; the navigation coordinate system at the main node and the child nodes are the northeast geographic coordinate system, the navigation coordinate system of the main node is represented by n, and the navigation coordinate system of the Jth child node and calculation The navigation coordinate system is represented by n J and n' J respectively, J=1,2,...,N, N is the number of child nodes; the origin of the carrier coordinate system is the center of gravity of the carrier, the x-axis is to the right along the horizontal axis of the carrier, and the y-axis Forward along the vertical axis of the carrier, and the z-axis is upward along the vertical axis of the carrier. The coordinate system is fixed on the carrier and is called the front-right upper carrier coordinate system, and b m and b J represent the carrier coordinates of the main node and the J-th child node respectively. system, J=1,2,...,N.
各子节点通过捷联解算后将得到tk时刻各自所在处的位置[LJ λJ HJ]T、姿态[ψJθJ γJ]T和速度其中,LJ、λJ和HJ分别表示第J个子节点的纬度、经度和高度;ψJ、θJ和γJ分别表示第J个子节点的航向角、俯仰角和横滚角;和分别表示第J个子节点在nJ系下的东向速度、北向速度和天向速度。Each sub-node will get the position [L J λ J H J ] T , the attitude [ψ J θ J γ J ] T and the velocity at the time t k after the strapdown solution. Among them, L J , λ J and H J represent the latitude, longitude and altitude of the J-th child node, respectively; ψ J , θ J and γ J represent the heading angle, pitch angle and roll angle of the J-th child node, respectively; and respectively represent the easting velocity, northing velocity and sky velocity of the Jth child node under the n J system.
(2)子节点冗余位置、姿态信息的获取(2) Acquisition of redundant position and attitude information of child nodes
a)子节点冗余位置信息的获取a) Acquisition of redundant location information of child nodes
通过安装在机翼上的光纤光栅传感器,可以获取tk时刻任意子节点处的应变信息,进而获得其相对其初始位置的位移以及任意两个子节点J、J′(J,J′=1,2,…,N;J≠J′)间的相对位置信息ΔPJ←J′,ΔPJ←J′代表任意两个子节点J、J′之间纬度、经度、高度的差值。Through the fiber grating sensor installed on the wing, the strain information at any sub-node at time t k can be obtained, and then its displacement relative to its initial position and any two sub-nodes J, J' (J, J'=1, 2,...,N; J≠J′) relative position information ΔP J←J′ , ΔP J←J′ represents the difference in latitude, longitude and height between any two child nodes J and J′.
在tk时刻,第J个子节点经过捷联解算后得到的位置为[LJ λJ HJ]T,J=1,2,…,N,其它N-1个子节点捷联解算后的位置表示为[LJ′ λJ′ HJ′]T(J′=1,2,…,N,J′≠J)。第J个子节点处的冗余位置信息可表示为:At time t k , the position obtained by the Jth child node after strapdown solution is [L J λ J H J ] T , J=1,2,...,N, and the other N-1 child nodes after strapdown solution The position of is expressed as [L J′ λ J′ H J′ ] T (J′=1,2,…,N,J′≠J). The redundant location information at the Jth child node can be expressed as:
[LJ←J′ λJ←J′ HJ←J′]T=[LJ′ λJ′ HJ′]T+ΔPJ←J′(J,J′=1,2,…,N;J≠J′)[L J←J′ λ J←J′ H J←J′ ] T = [L J′ λ J′ H J′ ] T +ΔP J←J′ (J,J′=1,2,…,N ; J≠J′)
由此,加上自身捷联解算得到的位置信息,第J个子节点处共有N个纬度、经度、高度计算值,即[LJ λJ HJ]T和[LJ←J′ λJ←J′ HJ←J′]T(J,J′=1,2,…,N,J′≠J)。将当前子节点J直接捷联解算得到的位置信息[LJ λJ HJ]T重新记为其余N-1个位置信息[LJ←J′ λJ←J′ HJ←J′]T(J,J′=1,2,…,N;J≠J′)重新记为 Thus, plus the position information obtained by the strapdown solution, there are N calculated values of latitude, longitude and altitude at the Jth child node, namely [L J λ J H J ] T and [L J←J′ λ J ←J′ H J←J′ ] T (J, J′=1,2,…,N,J′≠J). Rewrite the position information [L J λ J H J ] T obtained by the direct strapdown solution of the current child node J as The remaining N-1 pieces of position information [L J←J′ λ J←J′ H J←J′ ] T (J,J′=1,2,…,N; J≠J′) are rewritten as
b)子节点冗余姿态信息的获取b) Acquisition of redundant attitude information of child nodes
利用光纤光栅传感器测得的tk时刻各子节点的角位移信息,可以构建任意两个子节点J、J′(J,J′=1,2,…,N;J≠J′)载体坐标系之间的转换矩阵第J个子节点处的载体坐标系(bJ系)与该点导航坐标系(nJ系)之间的转换矩阵(姿态矩阵)表示为其它N-1个子节点处的姿态矩阵表示为第J个子节点处的冗余姿态矩阵可表示为:Using the angular displacement information of each sub-node at time t k measured by the fiber grating sensor, the carrier coordinate system of any two sub-nodes J, J' (J, J' = 1, 2, ..., N; J≠J') can be constructed transformation matrix between The transformation matrix (attitude matrix) between the carrier coordinate system (b J system) at the Jth child node and the point navigation coordinate system (n J system) is expressed as The attitude matrix at the other N-1 child nodes is expressed as The redundant pose matrix at the Jth child node can be expressed as:
其中,in,
在tk时刻,第J个子节点处就有N个姿态矩阵。利用这N个姿态矩阵,可计算得到N个姿态信息,即N个姿态角。姿态角的具体计算方法如下:At time tk , there are N pose matrices at the Jth child node. Using the N attitude matrices, N attitude information, that is, N attitude angles, can be calculated. The specific calculation method of the attitude angle is as follows:
将记为:Will Record as:
其中,TJxy为矩阵中第x行、第y列的元素,x=1,2,3,y=1,2,3;则第J个子节点的姿态角,包括航向角ψJ、俯仰角θJ和横滚角γJ的主值,即和分别为:Among them, T Jxy is a matrix The elements in the xth row and the yth column, x=1,2,3, y=1,2,3; then the attitude angle of the Jth child node, including the heading angle ψ J , the pitch angle θ J and the roll angle The principal value of γ J , i.e. and They are:
航向角ψJ、俯仰角θJ和横滚角γJ的取值范围分别定义为[0,2π]、 [-π,+π];那么,ψJ、θJ和γJ的真值可由下式确定:The value ranges of the heading angle ψ J , the pitch angle θ J and the roll angle γ J are defined as [0, 2π], [-π, +π]; then, the true values of ψ J , θ J and γ J can be determined by:
按照上述姿态角的计算方法,还可以计算出第J个子节点处N-1个冗余姿态矩阵对应的N-1个冗余姿态角。将由子节点J自身的姿态矩阵解算出的姿态角重新记为由其余N-1个姿态矩阵解算出的姿态角记为 According to the above attitude angle calculation method, N-1 redundant attitude matrices at the Jth child node can also be calculated. The corresponding N-1 redundant attitude angles. Will be composed of the attitude matrix of the child node J itself The calculated attitude angle is re-recorded as By the remaining N-1 pose matrices The calculated attitude angle is recorded as
2、计算tk时刻子节点的量测向量,并利用量测自举策略,生成自举量测集合,具体步骤如下:2. Calculate the measurement vector of the child node at time tk, and use the measurement bootstrapping strategy to generate a bootstrapping measurement set. The specific steps are as follows:
(1)计算子节点的量测向量(1) Calculate the measurement vector of the child node
tk时刻主节点m经杆臂补偿后的纬度、经度、高度分别记为Lm、λm、Hm,主节点m的航向角、俯仰角、横滚角分别记为ψm、θm、γm。针对任一子节点J(J=1,2,…,N),可以得到tk时刻的N个量测向量其表达式如下:At time t k , the latitude, longitude and height of master node m after lever arm compensation are recorded as L m , λ m , and H m respectively, and the heading angle, pitch angle and roll angle of master node m are respectively recorded as ψ m , θ m , γ m . For any child node J (J=1,2,...,N), N measurement vectors at time t k can be obtained Its expression is as follows:
其中,分别代表tk时刻子节点J的第i个纬度、经度、高度与主节点m经杆臂补偿后的纬度、经度、高度的差值;分别代表tk时刻子节点J的第i个航向角、俯仰角、横滚角与主节点m对应的航向角、俯仰角、横滚角的差值。in, respectively represent the difference between the ith latitude, longitude and height of the child node J at time tk and the latitude, longitude and height of the main node m after compensation by the lever arm; respectively represent the difference between the ith heading angle, pitch angle, and roll angle of the child node J at time tk and the heading angle, pitch angle, and roll angle corresponding to the main node m.
(2)利用量测自举策略,生成自举量测集合(2) Use the measurement bootstrapping strategy to generate a bootstrapping measurement set
在量测向量的基础上,通过增加扰动的方式生成自举量测具体步骤如下:in the measurement vector On the basis of , the bootstrap measurements are generated by adding perturbations Specific steps are as follows:
其中,表示以原始量测向量为基础产生的第c个自举量测,c=1,2,…,l,l表示自举量测的总个数,l=5;HJ是系统的量测矩阵,xJ是系统的状态向量,vJ是量测噪声,且vJ满足是零均值的高斯白噪声,其协方差为 和vJ具有相同的统计特性,即满足是零均值的高斯白噪声,其协方差 in, represents the original measurement vector The c-th bootstrap measurement generated based on c=1,2,...,l, where l represents the bootstrap measurement The total number of , l=5; H J is the measurement matrix of the system, x J is the state vector of the system, v J is the measurement noise, and v J is Gaussian white noise with zero mean, and its covariance is has the same statistical properties as v J , namely Satisfy is white Gaussian noise with zero mean, and its covariance
通过上述方法,可以得到N×l个自举量测数据定义自举量测集合:其中代表原始量测向量,即 Through the above method, N×l bootstrap measurement data can be obtained Define the bootstrap measurement set: in represents the original measurement vector, i.e.
3、使用Metropolis-Hastings采样准则对步骤2得到的自举量测集合中的元素进行采样,得到子节点的有效量测集合,具体步骤如下:3. Use the Metropolis-Hastings sampling criterion to sample the elements in the bootstrap measurement set obtained in
(1)计算可信度和接受概率(1) Calculate the reliability and acceptance probability
依据Metropolis-Hastings采样原理,从N个自举量测集合中随意选择两个集合再从这两个集合中分别随机抽取一个元素和并计算对应的可信度和可信度的计算公式如下所示:According to the Metropolis-Hastings sampling principle, from N bootstrap measurement sets Randomly choose two sets from Then randomly select an element from each of these two sets and and calculate the corresponding reliability and The formula for calculating reliability is as follows:
其中是量测预测均值,代表量测噪声vJ协方差矩阵的行列式。in is the mean of the measurement forecast, represents the measurement noise v J covariance matrix determinant of .
在得到可信度和的基础上,按照下式计算接受概率:getting credibility and On the basis of , the acceptance probability is calculated according to the following formula:
即接受概率的取值为和1之间的最小值。the acceptance probability value of and the smallest value between 1.
(2)构建有效量测集合(2) Build an effective measurement set
首先生成一个满足均匀分布U(0,1)的随机数χ,有效量测集合ΩJ的确定方法如下:First, a random number χ that satisfies the uniform distribution U(0,1) is generated. The method for determining the effective measurement set Ω J is as follows:
式中,若随机抽取的元素和对应的接受概率大于等于生成的随机数χ,则将作为有效量测集合ΩJ中的元素;反之,将作为有效量测集合ΩJ中的元素。上述过程即为确定有效量测向量的采样过程。In the formula, if the randomly selected elements and The corresponding acceptance probability is greater than or equal to the generated random number χ, then the as an element in the effective measurement set Ω J ; otherwise, the as an element in the effective measurement set Ω J. The above process is the sampling process for determining the effective measurement vector.
重复进行L次采样,L=2N,并且定义有效量测集合中L个有效量测向量分别为zJ(1),zJ(2),…zJ(L),这些有效量测向量组成有效量测集合ΩJ。Repeat L sampling, L=2N, and define L effective measurement vectors in the effective measurement set as z J (1), z J (2),...z J (L), these effective measurement vectors are composed of Valid measurement set Ω J .
4、针对步骤3中得到有效量测集合,计算其中每个有效量测向量的权重和量测噪声矩阵,具体步骤如下:4. For the effective measurement set obtained in step 3, calculate the weight of each effective measurement vector and the measurement noise matrix, and the specific steps are as follows:
(1)计算一致性距离和一致性矩阵(1) Calculate the consistency distance and consistency matrix
定义有效量测集合ΩJ中任意两个量测向量zJ(ξ)和zJ(ζ)之间的置信距离为其计算方法如下:Define the confidence distance between any two measurement vectors z J (ξ) and z J (ζ) in the effective measurement set Ω J as Its calculation method is as follows:
在此基础上计算一致性距离和一致性矩阵ΨJ,其计算方法如下:Calculate the consistency distance on this basis and the consistency matrix Ψ J , which is calculated as follows:
其中,表示ΩJ中任意两个量测向量之间置信距离的最大值。in, represents the maximum confidence distance between any two measurement vectors in Ω J.
(2)计算有效量测向量的权重和量测噪声矩阵(2) Calculate the weight of the effective measurement vector and the measurement noise matrix
得到一致性矩阵ΨJ后,计算该矩阵的最大模特征值λ和对应的特征向量β,将特征向量β单位化得到令权向量此时,可用来表示相应的有效量测向量被有效量测集合ΩJ中所有元素的总体支持程度。After obtaining the consistency matrix Ψ J , calculate the maximum modulus eigenvalue λ of the matrix and the corresponding eigenvector β, and unite the eigenvector β to get Let the weight vector at this time, It can be used to represent the overall support degree of all elements in the effective measurement set Ω J for the corresponding effective measurement vector.
依据数理统计中方差的计算基本原理,计算得到有效量测集合中每个元素对应的量测噪声矩阵其计算方法如下:According to the basic principle of variance calculation in mathematical statistics, the measurement noise matrix corresponding to each element in the effective measurement set is calculated. Its calculation method is as follows:
5、使用序贯滤波对子节点进行数据融合,将融合结果用于该子节点tk时刻运动参数的校正,具体步骤如下:5. Use sequential filtering to perform data fusion on the child node, and use the fusion result to correct the motion parameters of the child node at time tk. The specific steps are as follows :
(1)建立机载分布式POS传递对准模型(1) Establish an airborne distributed POS delivery alignment model
传递对准模型采用“位置+姿态”的匹配方式,系统状态向量为15维状态向量,包括子节点J的平台失准角速度误差位置误差(δLJ、δλJ、δHJ)、陀螺常值漂移和加计常值偏置N为子系统的个数。其中, 分别为第J个子节点的东向、北向、天向失准角;分别为第J个子节点在nJ系下的东向、北向和天向速度误差;δLJ、δλJ、δHJ分别为第J个子节点的纬度误差、经度误差、高度误差;和分别为第J个子节点处子IMU在其载体坐标系下(bJ系)陀螺常值漂移和加计常值偏置;分别为第J个子节点处子IMU在bJ系x轴、y轴和z轴上的陀螺仪随机常值漂移;分别为第J个子节点处子IMU在bJ系x轴、y轴和z轴上的加速度计常值偏置。因此系统状态向量有如下形式:The transfer alignment model adopts the matching method of "position + attitude", and the system state vector is a 15-dimensional state vector, including the platform misalignment angle of the child node J speed error Position error (δL J , δλ J , δH J ), gyro constant drift and add-up constant offset N is the number of subsystems. in, are the east, north and sky misalignment angles of the J-th child node; are the easting, northing and sky velocity errors of the J-th child node under the n J system, respectively; δL J , δλ J , and δH J are the latitude error, longitude error, and altitude error of the J-th child node; and are respectively the gyro constant drift and the accumulating constant offset of the child IMU at the Jth child node in its carrier coordinate system (b J system); are the random constant drift of the gyroscope on the x-axis, y-axis and z-axis of the b J system of the child IMU at the Jth child node, respectively; are the constant accelerometer offsets of the child IMU at the Jth child node on the x-axis, y-axis and z-axis of the b J system, respectively. Therefore, the system state vector has the following form:
a)状态方程的建立a) Establishment of the equation of state
系统状态方程有如下形式:The state equation of the system has the following form:
其中系统噪声为零均值高斯白噪声,其方差阵由IMU中陀螺仪和加速度计的噪声水平决定。where system noise White Gaussian noise with zero mean, its variance matrix Determined by the noise level of the gyroscope and accelerometer in the IMU.
式中,FJ为状态转移矩阵,其具体表达形式如下:In the formula, F J is the state transition matrix, and its specific expression is as follows:
其中,in,
其中,ωie表示地球自转角速度;和分别为子节点J处子IMU在导航坐标系(nJ系)中的东向比力、北向比力和天向比力分量;和分别为子节点J在导航坐标系(nJ系)下的东向速度、北向速度和天向速度;和分别为子节点J沿子午圈和卯酉圈的主曲率半径;T为滤波周期。GJ为子节点J的系统噪声矩阵,其具体表达形式如下:Among them, ω ie represents the angular velocity of the earth's rotation; and are the eastward specific force, northward specific force and skyward specific force components of the child IMU at the child node J in the navigation coordinate system (n J system), respectively; and are the easting speed, northing speed and sky speed of the child node J in the navigation coordinate system (n J system) respectively; and are the principal curvature radii of the child node J along the meridian and 卯unitary circles, respectively; T is the filtering period. G J is the system noise matrix of the child node J, and its specific expression is as follows:
b)量测方程的建立b) Establishment of measurement equations
子节点J的L个有效量测向量zJ(τ)(τ=1,2,…,L)的具体表达式为:The specific expressions of the L effective measurement vectors z J (τ) (τ=1,2,...,L) of the child node J are:
其中,分别表示子节点J的第τ个纬度、经度、高度计算值与主节点m经杆臂补偿后的纬度、经度、高度的差值;和分别表示子节点J第τ个航向角、俯仰角、横滚角计算值与主节点m对应的航向角、俯仰角、横滚角的差值;in, respectively represent the difference between the calculated value of the τth latitude, longitude and height of the child node J and the latitude, longitude and height of the main node m after compensation by the lever arm; and respectively represent the difference between the calculated value of the τth heading angle, pitch angle and roll angle of the child node J and the heading angle, pitch angle and roll angle corresponding to the main node m;
量测方程有如下表达形式:The measurement equation has the following expression:
zJ(τ)对应的量测矩阵有如下形式:The measurement matrix corresponding to z J (τ) Has the following form:
其中in
Ta为主节点的姿态矩阵,即且令表示矩阵Ta中第s行、第t列的元素,即Ta可以表示为:T a is the attitude matrix of the main node, i.e. and make Represents the elements of the s-th row and the t-th column in the matrix T a , that is, T a can be expressed as:
由于机载分布式POS中各子节点任一子节点都能得到其余子节点转换到所在处的冗余运动参数信息,按照步骤2的方法即可获得冗余量测向量,因此针对子节点J,其量测向量可表示为:Since any sub-node of each sub-node in the airborne distributed POS can obtain the redundant motion parameter information of the other sub-nodes, the redundant measurement vector can be obtained according to the method of
量测向量对应的量测矩阵可表示为 measurement vector The corresponding measurement matrix can be expressed as
(2)使用序贯滤波进行数据融合(2) Data fusion using sequential filtering
首先进行时间更新,针对第J个子节点,根据上一时刻tk-1的滤波估计值和传递对准模型可以得到当前tk时刻的一步预测估计值计算公式如下所示:First, the time update is performed, and for the Jth child node, according to the filter estimated value of the previous time t k-1 and the transfer alignment model can get a one-step prediction estimate at the current time t k The calculation formula is as follows:
其中,ΓJ是将连续系统的状态转移矩阵FJ离散化后得到的离散系统的转移矩阵。Among them, Γ J is the transition matrix of the discrete system obtained by discretizing the state transition matrix F J of the continuous system.
同理,根据上一时刻的估计均方误差阵PJ(k-1|k-1)和传递对准模型可以得到当前tk时刻的一步预测均方误差阵,计算公式如下所示:Similarly, according to the estimated mean square error matrix P J (k-1|k-1) at the previous moment and the transfer alignment model, the one-step forecast mean square error matrix of the current moment t k can be obtained. The calculation formula is as follows:
其中,ΞJ是将连续系统噪声驱动阵GJ离散化后得到的离散系统的噪声驱动阵。Among them, Ξ J is the noise-driven array of the discrete system obtained by discretizing the continuous-system noise-driven array G J.
然后利用步骤(3)中得到的有效量测向量进行量测更新,将第J个子节点在当前tk时刻的L个量测向量分别记为第J个子节点的数据融合公式如下:Then use the effective measurement vector obtained in step (3) to perform measurement update, and record the L measurement vectors of the Jth child node at the current time tk as The data fusion formula of the Jth child node is as follows:
当使用进行量测更新时,有:when using When performing a measurement update, there are:
其中,和分别为所对应的量测矩阵和量测噪声矩阵;为使用进行量测更新时计算得到的滤波增益矩阵;表示使用进行量测更新时计算得到的状态估计值;为对应的估计均方误差阵;I为与维度相同的单位阵。in, and respectively The corresponding measurement matrix and measurement noise matrix; for use The filter gain matrix calculated when the measurement update is performed; indicate use The state estimate calculated when the measurement update is performed; for The corresponding estimated mean square error matrix; I is the A unit matrix of the same dimensions.
当使用依次进行量测更新时,有:when using When performing measurement updates in sequence, there are:
其中,和分别为对应的量测矩阵和量测噪声矩阵;为使用进行量测更新时计算得到的滤波增益矩阵;表示使用进行量测更新时计算得到的状态估计值;为对应的估计均方误差阵。in, and respectively Corresponding measurement matrix and measurement noise matrix; for use The filter gain matrix calculated when the measurement update is performed; indicate use The state estimate calculated when the measurement update is performed; for The corresponding estimated mean squared error matrix.
执行上述数据融合公式,当上述流程运行到τ=L时,将得到的作为当前tk时刻第J个子节点处最终的数据融合结果,即其中,包含tk时刻第J个子节点数据融合后的纬度误差δLJ(k)、经度误差δλJ(k)和高度误差δHJ(k),还包含数据融合后在nJ系下的东向速度误差北向速度误差和天向速度误差以及数据融合后的东向失准角北向失准角和天向失准角 Execute the above data fusion formula, when the above process runs to τ=L, the obtained As the final data fusion result at the Jth child node at the current tk time, that is, in, It includes the latitude error δL J (k), longitude error δλ J (k) and altitude error δH J (k) of the Jth child node after data fusion at time t k , and also includes the eastward velocity under the n J system after data fusion error northbound speed error and sky speed error and the easting misalignment angle after data fusion North misalignment angle and sky misalignment
(3)运动参数校正(3) Motion parameter correction
利用上述融合结果对tk时刻第J个子节点捷联解算的结果进行校正。校正的步骤如下所示:Use the above fusion result to correct the result of the strapdown solution of the Jth child node at time tk. The calibration steps are as follows:
a)位置校正a) Position correction
其中,LJ(k)、λJ(k)、HJ(k)分别代表tk时刻第J个子节点捷联解算得到的纬度、经度和高度;LJ(k)|new、λJ(k)|new、HJ(k)|new分别代表tk时刻第J个子节点校正后的纬度、经度和高度。Among them, L J (k), λ J (k), H J (k) represent the latitude, longitude and altitude obtained by the strapdown solution of the J-th child node at time t k , respectively; L J (k) | new , λ J (k)| new and H J ( k )| new respectively represent the corrected latitude, longitude and altitude of the Jth child node at time tk.
b)速度校正b) Speed correction
其中,分别代表tk时刻第J个子节点捷联解算得到的东向速度、北向速度和天向速度;分别代表tk时刻第J个子节点校正后的东向速度、北向速度和天向速度。in, respectively represent the easting velocity, northing velocity and sky velocity obtained by the strapdown solution of the Jth child node at time tk; respectively represent the corrected easting speed, northing speed and sky speed of the Jth child node at time tk.
c)姿态校正c) Attitude correction
计算tk时刻第J个子节点导航坐标系nJ与计算导航坐标系nJ′间的转换矩阵 Calculate the transformation matrix between the navigation coordinate system n J of the J-th child node at time t k and the calculated navigation coordinate system n J ′
修正后的转换矩阵为:Corrected transformation matrix for:
其中,为tk时刻J个子节点进行捷联解算后得到的姿态矩阵;in, is the attitude matrix obtained by the strapdown solution for J child nodes at time tk;
利用修正后的转换矩阵计算tk时刻第J个子节点的航向角ψJ(k)|new、俯仰角θJ(k)|new和横滚角γJ(k)|new。Using the modified transformation matrix Calculate the heading angle ψ J (k)| new , the pitch angle θ J (k)| new and the roll angle γ J (k)| new of the J-th child node at time t k .
6、对其它未进行数据融合和运动参数校正的子节点重复步骤1到5,直至所有子节点完成tk时刻的数据融合和运动参数的校正,具体步骤如下:6. Repeat steps 1 to 5 for other child nodes that have not undergone data fusion and motion parameter correction until all child nodes complete data fusion and motion parameter correction at time tk. The specific steps are as follows :
(1)假设tk时刻已完成步骤1到5的子节点编号为kN,kN的初始值为1;(1) Assume that the number of child nodes that have completed
(2)若kN<N,N为子节点的个数,则说明仍有子节点未完成数据融合和运动参数的校正,kN=kN+1,对编号为kN的子节点重复前5个步骤;(2) If k N <N, and N is the number of child nodes, it means that there are still child nodes that have not completed data fusion and motion parameter correction, k N =k N +1, repeat for the child nodes numbered k N the first 5 steps;
(3)若kN=N,则停止步骤6,表示所有子节点均已完成tk时刻的数据融合和运动参数的校正。(3) If k N =N, stop step 6, indicating that all child nodes have completed data fusion and motion parameter correction at time t k .
7、tk=tk+1,执行步骤1到6,直至完成所有子节点在所有时刻的数据融合和运动参数的校正。7. t k =t k+1 , and perform
本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。Contents that are not described in detail in the specification of the present invention belong to the prior art known to those skilled in the art. For those skilled in the art, according to the idea of the present invention, there will be changes in the specific embodiments and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110309944.7A CN113188566B (en) | 2021-03-23 | 2021-03-23 | Airborne distributed POS data fusion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110309944.7A CN113188566B (en) | 2021-03-23 | 2021-03-23 | Airborne distributed POS data fusion method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113188566A true CN113188566A (en) | 2021-07-30 |
CN113188566B CN113188566B (en) | 2023-09-29 |
Family
ID=76973665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110309944.7A Active CN113188566B (en) | 2021-03-23 | 2021-03-23 | Airborne distributed POS data fusion method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113188566B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104655152A (en) * | 2015-02-11 | 2015-05-27 | 北京航空航天大学 | Onboard distributed type POS real-time transmission alignment method based on federal filtering |
CN107728182A (en) * | 2017-09-18 | 2018-02-23 | 北京航空航天大学 | Flexible more base line measurement method and apparatus based on camera auxiliary |
CN108387227A (en) * | 2018-02-22 | 2018-08-10 | 北京航空航天大学 | The multinode information fusion method and system of airborne distribution POS |
CN108458709A (en) * | 2018-02-22 | 2018-08-28 | 北京航空航天大学 | The airborne distributed POS data fusion method and device of view-based access control model subsidiary |
WO2020233290A1 (en) * | 2019-05-17 | 2020-11-26 | 东南大学 | Dual-filter-based transfer alignment method under dynamic deformation |
CN112525191A (en) * | 2021-02-08 | 2021-03-19 | 北京航空航天大学 | Airborne distributed POS transfer alignment method based on relative strapdown calculation |
-
2021
- 2021-03-23 CN CN202110309944.7A patent/CN113188566B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104655152A (en) * | 2015-02-11 | 2015-05-27 | 北京航空航天大学 | Onboard distributed type POS real-time transmission alignment method based on federal filtering |
CN107728182A (en) * | 2017-09-18 | 2018-02-23 | 北京航空航天大学 | Flexible more base line measurement method and apparatus based on camera auxiliary |
CN108387227A (en) * | 2018-02-22 | 2018-08-10 | 北京航空航天大学 | The multinode information fusion method and system of airborne distribution POS |
CN108458709A (en) * | 2018-02-22 | 2018-08-28 | 北京航空航天大学 | The airborne distributed POS data fusion method and device of view-based access control model subsidiary |
WO2020233290A1 (en) * | 2019-05-17 | 2020-11-26 | 东南大学 | Dual-filter-based transfer alignment method under dynamic deformation |
CN112525191A (en) * | 2021-02-08 | 2021-03-19 | 北京航空航天大学 | Airborne distributed POS transfer alignment method based on relative strapdown calculation |
Non-Patent Citations (5)
Title |
---|
GONG XIAOLIN ET AL.: "Multi-Node Transfer Alignment Based on Mechanics Modeling for Airborne DPOS", 《IEEE SENSORS JOURNAL》, vol. 18, no. 2, pages 669 - 679 * |
LI JIANLI ET AL.: "Multisensor Time Synchronization Error Modeling and Compensation Method for Distributed POS", 《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》, vol. 65, no. 11, pages 2637 - 2645, XP011625064, DOI: 10.1109/TIM.2016.2598020 * |
宋丽君;秦永元;: "联邦模糊自适应卡尔曼滤波在速度+姿态传递对准中的应用", 测控技术, no. 05, pages 135 - 138 * |
房建成等: "机载分布式POS传递对准建模与仿真", 《中国惯性技术学报》, vol. 20, no. 4, pages 379 - 385 * |
胡振涛等: "基于Metropolis-Hastings采样的多传感器集合卡尔曼滤波算法", 《电子学报》, vol. 45, no. 4, pages 868 - 873 * |
Also Published As
Publication number | Publication date |
---|---|
CN113188566B (en) | 2023-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101949703B (en) | Strapdown inertial/satellite combined navigation filtering method | |
CN110274588B (en) | Multi-source fusion navigation method based on two-layer nested factor graph based on UAV swarm information | |
CN110501024B (en) | Measurement error compensation method for vehicle-mounted INS/laser radar integrated navigation system | |
CN109000640B (en) | Vehicle GNSS/INS integrated navigation method based on discrete grey neural network model | |
CN104655152B (en) | A real-time delivery alignment method for airborne distributed POS based on federated filtering | |
CN108387227B (en) | Multi-node information fusion method and system of airborne distributed POS | |
CN104698486B (en) | A kind of distribution POS data processing computer system real-time navigation methods | |
CN109459019A (en) | A kind of vehicle mounted guidance calculation method based on cascade adaptive robust federated filter | |
CN107728182B (en) | Flexible multi-baseline measurement method and device based on camera assistance | |
CN111189442B (en) | State Prediction Method of UAV Multi-source Navigation Information Based on CEPF | |
CN110954102B (en) | Magnetometer-assisted inertial navigation system and method for robot positioning | |
CN103852760B (en) | A kind of many base measurements method based on rigidity and flexible baseline combination | |
CN105910602A (en) | Combined navigation method | |
CN102879779A (en) | Rod arm measurement and compensation method based on synthetic aperture radar (SAR) remote sensing imaging | |
CN112504275A (en) | Water surface ship horizontal attitude measurement method based on cascade Kalman filtering algorithm | |
CN116222551A (en) | Underwater navigation method and device integrating multiple data | |
CN111220151B (en) | Inertia and milemeter combined navigation method considering temperature model under load system | |
CN103884340A (en) | Information fusion navigation method for detecting fixed-point soft landing process in deep space | |
CN108303120B (en) | Real-time transfer alignment method and device for airborne distributed POS | |
CN110285834A (en) | Fast autonomous readjustment method of dual inertial navigation system based on one point position information | |
CN110388942B (en) | Vehicle-mounted posture fine alignment system based on angle and speed increment | |
CN103226022B (en) | For the moving alignment method and system of integrated navigation system | |
CN109855652B (en) | On-orbit calibration method when pointing angle error of spaceborne laser altimeter is non-constant | |
CN108981691B (en) | An online filtering and smoothing method for sky polarized light integrated navigation | |
CN113137977B (en) | An Initial Alignment Filtering Method for SINS/Polarized Light Integrated Navigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |