CN113186454A - Production method of tempered low-yield-ratio bridge steel - Google Patents

Production method of tempered low-yield-ratio bridge steel Download PDF

Info

Publication number
CN113186454A
CN113186454A CN202110337853.4A CN202110337853A CN113186454A CN 113186454 A CN113186454 A CN 113186454A CN 202110337853 A CN202110337853 A CN 202110337853A CN 113186454 A CN113186454 A CN 113186454A
Authority
CN
China
Prior art keywords
temperature
equal
tempering
less
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110337853.4A
Other languages
Chinese (zh)
Other versions
CN113186454B (en
Inventor
李中平
李建宇
何航
熊祥江
张勇伟
史术华
范明
陈奇明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Valin Xiangtan Iron and Steel Co Ltd
Original Assignee
Hunan Valin Xiangtan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Valin Xiangtan Iron and Steel Co Ltd filed Critical Hunan Valin Xiangtan Iron and Steel Co Ltd
Priority to CN202110337853.4A priority Critical patent/CN113186454B/en
Publication of CN113186454A publication Critical patent/CN113186454A/en
Application granted granted Critical
Publication of CN113186454B publication Critical patent/CN113186454B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Abstract

A production method of tempered bridge steel with low yield ratio comprises the following process routes of molten iron pretreatment → a converter → refining → continuous casting → heating → rolling → cooling → tempering, wherein the chemical composition content of the steel is C =0.07% -0.09%, Si =0.20% -0.30%, Mn =1.52% -1.60%, P is less than or equal to 0.015%, S is less than or equal to 0.003%, Alt =0.020% -0.045%, Nb =0.01% -0.030%, Ti =0.012% -0.020%, Cr =0.16% -0.20%, Mo =0.08% -0.12%, Cu =0.16% -0.20%, Pcm is less than or equal to 0.22%, and the balance is Fe and inevitable impurities. The steel produced by the method has the advantages of low cost, narrow components and the like, the steel plate with the thickness of 6-50 mm is produced, the yield strength is more than or equal to 420MPa, the yield ratio is less than or equal to 0.80, the impact toughness at minus 40 ℃ is more than or equal to 200J, the manufacturing cost of the steel plate is low, and the steel plate has low yield ratio, high strength, high low-temperature toughness and the like.

Description

Production method of tempered low-yield-ratio bridge steel
Technical Field
The invention belongs to the technical field of metallurgy, and relates to a production method of tempered low-yield-ratio bridge steel.
Background
With the rapid development of economic construction and the construction of large-span, complex-structure and large-flow bridges, the demand of high-performance steel for bridge structures is increasing. In consideration of light design, safety and reliability, low maintenance cost, service life and the like, high strength, high low temperature toughness resistance, corrosion resistance and low yield ratio become the main development directions of modern bridge structural steel, and research and development of high-performance bridge steel with higher strength level has important significance for promoting the development of bridge construction.
U.S. Pat. No. 6,56833 discloses a thermomechanically rolled high-strength low-yield-ratio atmospheric corrosion resistant steel, which comprises the following chemical components in percentage by weight: c = 0.08-0.12%, Mn = 0.80-1.35%, Si = 0.30-0.65%, Mo = 0.08-0.35%, V = 0.06-0.14%, Cu = 0.20-0.40%, Cr = 0.30-0.70%, Ni is less than or equal to 0.50%, Nb is less than or equal to 0.04%, Ti is less than or equal to 0.02%, S is less than or equal to 0.01%, P is less than or equal to 0.02%, N = 1-14 ppm, and the balance is Fe and trace impurities. The yield strength of the steel is 485MPa, and the yield ratio is 0.85. The patent adds more alloy, and manufacturing cost is high, and the yield ratio is higher.
Chinese patent CN109550806A discloses a method for producing a 420MPa grade bridge steel plate with low yield ratio, which adopts the traditional TMCP process, has low final cooling temperature, large internal stress of the steel plate after cooling, influences the flatness of the steel plate and indirectly influences the welding quality.
Chinese patent CN106811704A discloses a bridge steel with 420MPa grade yield strength and low yield ratio and a manufacturing method thereof, wherein alloy elements Cr =0.40% -1.00% and Ni =0.05% -0.20%, because of the high content of Cr, although the hardenability of the steel is improved, the toughness of the material is improved by adding Ni, the excessive addition of expensive alloy elements can substantially increase the manufacturing cost, and the benefit is difficult to create for enterprises in the industrial production.
Chinese patent CN107236905A discloses a 600MPa grade high-strength low-yield-ratio structural steel plate and a manufacturing method thereof, wherein the steel plate is characterized in that the alloy elements Ni =0.14% -0.18%, Mn =1.0% -1.7%, the contents of Mn and Ni are high and the production cost is high.
In summary, the existing steel plate for the bridge with the low yield ratio has many defects: (1) more precious alloy is added, and the manufacturing cost is high; (2) the traditional cooling process has poor steel plate flatness, and is not beneficial to the processing of downstream procedures; (3) the impact toughness was unstable.
Disclosure of Invention
The invention aims to provide a production method of tempered low-yield-ratio bridge steel, which aims to solve the technical problem of production in the existing low-yield-ratio bridge steel process. The produced steel plate has the thickness of 6-50 mm, the yield strength of more than or equal to 420MPa, the yield ratio of less than or equal to 0.80, the impact toughness of more than or equal to 200J at minus 40 ℃, the manufacturing cost of the steel plate is low, and the steel plate has low yield ratio, high strength and strong low-temperature toughness.
The technical scheme of the invention is as follows:
a production method of tempered bridge steel with low yield ratio comprises the following process routes of molten iron pretreatment → a converter → refining → continuous casting → heating → rolling → cooling → tempering, wherein the chemical components of the steel comprise, by weight, C =0.07% -0.09%, Si =0.20% -0.30%, Mn =1.52% -1.60%, P is less than or equal to 0.015%, S is less than or equal to 0.003%, Alt =0.020% -0.045%, Nb =0.01% -0.030%, Ti =0.012% -0.020%, Cr =0.16% -0.20%, Mo =0.08% -0.12%, Cu =0.16% -0.20%, Pcm is less than or equal to 0.22%, and the balance is Fe and inevitable impurities; the method comprises the following key process steps:
(1) heating: the casting blank is directly installed, namely the hot casting blank pulled out by continuous casting does not need to be cooled by stacking, and is directly conveyed to a heating furnace through a conveying roller way, the feeding temperature is 420-650 ℃, the hearth temperature is 1100-1200 ℃, and the total time in the furnace is 120-180 min;
(2) rough rolling: setting the thickness of the intermediate blank to be more than or equal to 2.5 times of the thickness of a finished product, wherein the initial rolling temperature is 1120-1160 ℃, the final rolling temperature is more than or equal to 980 ℃, the pass is 5-9, and the cumulative reduction rate is more than or equal to 50%;
(3) finish rolling: the initial rolling temperature is 860-920 ℃, the final rolling temperature is 790-830 ℃, the pass is 7-9, and the cumulative reduction rate is more than or equal to 60%;
(4) and (3) cooling: starting to cool at 770-820 ℃, at a cooling rate of 5-12 ℃ and at a temperature of 600-700 ℃ for re-reddening;
(5) tempering: tempering temperature is 420 +/-10 ℃, heat preservation time is 2.5 Xmin, and air cooling is carried out to normal temperature after tempering.
The heat preservation time of 2.5 multiplied by the wall thickness min in the step (5) means that the heat preservation time is calculated in minutes, and the wall thickness is calculated according to mm.
Compared with the prior art, the invention has the following advantages: the alloy cost is low in the chemical composition design, the process design characteristics are more beneficial to welding in bridge structure factories, and the unevenness of 6-50 mm steel plates can reach 3mm/1 m. The casting blank is hot-charged, so that the energy consumption for steel burning is reduced, and the yield ratio of the material is more favorably controlled; the steel plate adopts low-temperature tempering, so that the elongation and low-temperature impact toughness of the steel plate are improved while the rolling residual stress is eliminated; rolled steel plate Rt0.5: 480-520 MPa, tensile strength Rm: 650-690 MPa, yield ratio: 0.70 to 0.80; the elongation A is 23% -30%; -40 ℃ impact toughness: 180-300J, and the grain size reaches 12 grades.
Drawings
FIG. 1 is a photograph of the metallographic structure of a steel plate produced widely according to the present invention.
Detailed Description
The present invention will be further described with reference to the following examples.
The first embodiment is as follows: a production method of a 6mm low yield ratio Q420qE steel plate.
The chemical composition content of the steel is as follows: c =0.08%, Si =0.24%, Mn =1.56%, P =0.010%, S =0.001%, Alt =0.030%, Nb =0.015%, Ti =0.015%, Cr =0.18%, Mo =0.10%, Cu =0.17%, Pcm =0.19%, and the balance is Fe and unavoidable impurities.
The production process of the steel comprises the following steps and parameters:
(1) heating: the casting blank is directly loaded, and the charging temperature is as follows: 516 ℃, furnace temperature: 1140-1190 ℃, and the total time in the furnace: and (3) 140 min.
(2) Rough rolling: setting the intermediate billet to be 55mm, the initial rolling temperature to be 1150 ℃, the final rolling temperature to be 990 ℃, the pass number to be 7 and the accumulated reduction rate to be 69.5 percent.
(3) Finish rolling: the initial rolling temperature is 915 ℃, the final rolling temperature is 805-825 ℃, the pass is 7, and the cumulative reduction rate is 89.1%.
(4) And (3) cooling: the initial cooling temperature is 810-820 ℃, the cooling rate is 8-11 ℃, and the re-reddening temperature is 650-690 ℃.
(5) Tempering: tempering temperature 420 ℃, and holding time: and (5) tempering for 15min, and then air-cooling to normal temperature.
The results of the performance measurements are shown in Table 1.
Example two: a production method of a 20mm low yield ratio Q420qE steel plate.
The chemical composition content of the steel is as follows: c =0.07%, Si =0.26%, Mn =1.54%, P =0.010%, S =0.001%, Alt =0.032%, Nb =0.018%, Ti =0.016%, Cr =0.17%, Mo =0.11%, Cu =0.18%, Pcm =0.18%, and the balance of Fe and unavoidable impurities.
The production process of the steel comprises the following steps and parameters:
(1) heating: the casting blank is directly loaded, and the charging temperature is as follows: 532 ℃, furnace temperature: 1160-1188 ℃, total time in the furnace: and (3) 162 min.
(2) Rough rolling: the intermediate billet is set to be 80mm, the initial rolling temperature is 1172 ℃, the final rolling temperature is 992 ℃, the pass is 7, and the accumulated reduction rate is 69.2%.
(3) Finish rolling: the initial rolling temperature is 880 ℃, the final rolling temperature is 801-822 ℃, the pass is 7, and the cumulative reduction rate is 75%.
(4) And (3) cooling: the initial cooling temperature is 796-817 ℃, the cooling rate is 7-10 ℃, and the re-reddening temperature is 620-650 ℃.
(5) Tempering: tempering temperature 420 ℃, and holding time: and (5) tempering for 50min, and then air-cooling to normal temperature.
The results of the performance measurements are shown in Table 1.
Example three: a production method of a 50mm low yield ratio Q420qE steel plate.
The chemical composition content of the steel is as follows: c =0.08%, Si =0.29%, Mn =1.56%, P =0.010%, S =0.001%, Alt =0.040%, Nb =0.022%, Ti =0.015%, Cr =0.18%, Mo =0.10%, Cu =0.19%, Pcm =0.19%, and the balance is Fe and unavoidable impurities.
The production process of the steel comprises the following steps and parameters:
(1) heating: the casting blank is directly loaded, and the charging temperature is as follows: 572 ℃, furnace temperature: 1172-1188 ℃, total time in the furnace: 176 min.
(2) Rough rolling: 125mm of intermediate billet, 1176 ℃ of initial rolling temperature, 995 ℃ of final rolling temperature, 5 passes of pass and 51.9 percent of accumulated reduction rate.
(3) Finish rolling: the initial rolling temperature is 840 ℃, the final rolling temperature is 790-800 ℃, the pass is 9, and the cumulative reduction rate is 60%.
(4) And (3) cooling: the initial cooling temperature is 775-798 ℃, the cooling rate is 7-9 ℃, and the temperature of red return is 600-630 ℃.
(5) Tempering: tempering temperature 420 ℃, and holding time: and (4) tempering for 125min, and then air-cooling to normal temperature.
The results of the performance measurements are shown in Table 1.
Table 1 results of property measurements of steels of examples
Figure 226217DEST_PATH_IMAGE001

Claims (1)

1. A production method of tempered low-yield-ratio bridge steel comprises the following process routes of molten iron pretreatment → a converter → refining → continuous casting → heating → rolling → cooling → tempering, and is characterized in that: the steel comprises the following chemical components, by percentage, 0.07% -0.09% of C, 0.20% -0.30% of Si, 1.52% -1.60% of Mn, 0.015% or less of P, 0.003% or less of S, 0.020% to 0.045% of Alt, 0.01% -0.030% of Nb, 0.012% -0.020% of Ti, 0.16% -0.20% of Cr, 0.08% -0.12% of Mo, 0.16% -0.20% of Cu, 0.22% or less of Pcm, and the balance of Fe and inevitable impurities; the method comprises the following key process steps:
(1) heating: the casting blank is directly installed, namely the hot casting blank pulled out by continuous casting does not need to be cooled by stacking, and is directly conveyed to a heating furnace through a conveying roller way, the feeding temperature is 420-650 ℃, the hearth temperature is 1100-1200 ℃, and the total time in the furnace is 120-180 min;
(2) rough rolling: setting the thickness of the intermediate blank to be more than or equal to 2.5 times of the thickness of a finished product, wherein the initial rolling temperature is 1120-1160 ℃, the final rolling temperature is more than or equal to 980 ℃, the pass is 5-9, and the cumulative reduction rate is more than or equal to 50%;
(3) finish rolling: the initial rolling temperature is 860-920 ℃, the final rolling temperature is 790-830 ℃, the pass is 7-9, and the cumulative reduction rate is more than or equal to 60%;
(4) and (3) cooling: starting to cool at 770-820 ℃, at a cooling rate of 5-12 ℃ and at a temperature of 600-700 ℃ for re-reddening;
(5) tempering: tempering temperature is 420 +/-10 ℃, heat preservation time is 2.5 multiplied by wall thickness min, and air cooling is carried out to normal temperature after tempering.
CN202110337853.4A 2021-03-30 2021-03-30 Production method of tempered low-yield-ratio bridge steel Active CN113186454B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110337853.4A CN113186454B (en) 2021-03-30 2021-03-30 Production method of tempered low-yield-ratio bridge steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110337853.4A CN113186454B (en) 2021-03-30 2021-03-30 Production method of tempered low-yield-ratio bridge steel

Publications (2)

Publication Number Publication Date
CN113186454A true CN113186454A (en) 2021-07-30
CN113186454B CN113186454B (en) 2022-03-29

Family

ID=76974388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110337853.4A Active CN113186454B (en) 2021-03-30 2021-03-30 Production method of tempered low-yield-ratio bridge steel

Country Status (1)

Country Link
CN (1) CN113186454B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182174A (en) * 2021-11-26 2022-03-15 湖南华菱湘潭钢铁有限公司 Production method of high-toughness bridge structural steel plate
CN114182165A (en) * 2021-10-29 2022-03-15 南京钢铁股份有限公司 Low-yield-ratio high-toughness Q500qE bridge steel and production method thereof
CN114875299A (en) * 2022-05-25 2022-08-09 湖南华菱湘潭钢铁有限公司 Production method of Q690 high-corrosion-resistance high-strength offshore structural steel
CN114875311A (en) * 2022-04-26 2022-08-09 湖南华菱湘潭钢铁有限公司 Large-thickness 420 MPa-grade low-yield-ratio steel for ocean engineering and production method thereof
CN114892090A (en) * 2022-05-25 2022-08-12 湖南华菱湘潭钢铁有限公司 Production method of Q550-grade high-corrosion-resistance high-strength offshore structure steel
CN114921725A (en) * 2022-05-25 2022-08-19 湖南华菱湘潭钢铁有限公司 Production method of Q500-grade high-corrosion-resistance high-strength offshore structural steel
CN114921711A (en) * 2022-05-25 2022-08-19 湖南华菱湘潭钢铁有限公司 Production method of Q620-level high-corrosion-resistance high-strength offshore structure steel
CN115011887A (en) * 2022-06-21 2022-09-06 湖南华菱湘潭钢铁有限公司 Production method of low-yield-ratio Q500F quenched and tempered steel plate

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333628A (en) * 2008-07-29 2008-12-31 湖南华菱湘潭钢铁有限公司 Bridge structural steel plate and producing method thereof
CN103320692A (en) * 2013-06-19 2013-09-25 宝山钢铁股份有限公司 HT550 steel plate with ultrahigh toughness and excellent weldability and manufacture method thereof
CN103866203A (en) * 2014-01-15 2014-06-18 扬州龙川钢管有限公司 Seamless steel pipe for large-aperture high-strength bridge and TMCP production method thereof
CN104328356A (en) * 2014-09-29 2015-02-04 南京钢铁股份有限公司 Manufacturing method of thin-specification high-strength-structure steel plate with steckel mill
CN104988429A (en) * 2015-07-13 2015-10-21 武汉钢铁(集团)公司 Structure steel plate for bridge with yield strength being 690MPa and production method thereof
CN105063509A (en) * 2015-07-27 2015-11-18 武汉钢铁(集团)公司 Structural steel with yield strength of 500 MPa for bridges and production method of structural steel
CN107447167A (en) * 2017-07-30 2017-12-08 湖南华菱湘潭钢铁有限公司 A kind of production method of low yield strength ratio high-strength medium plate
CN108330399A (en) * 2018-01-09 2018-07-27 唐山钢铁集团有限责任公司 A kind of low-cost and high-performance bridge steel and its production method
CN110863139A (en) * 2019-10-31 2020-03-06 鞍钢股份有限公司 Ultralow-temperature-impact-resistant 420 MPa-grade weather-resistant bridge steel and production method thereof
CN111455287A (en) * 2020-03-30 2020-07-28 南京钢铁股份有限公司 500 MPa-grade low-yield-ratio weather-resistant bridge steel and manufacturing method thereof
CN112080702A (en) * 2020-09-16 2020-12-15 燕山大学 Weather-resistant bridge steel with impact absorption power of not less than 60J at-60 ℃ in welded coarse grain heat affected zone
CN112195406A (en) * 2020-09-29 2021-01-08 南京钢铁股份有限公司 Low-cost high-performance Q370qE-HPS bridge steel and production method thereof
CN112226699A (en) * 2020-10-28 2021-01-15 湖南华菱湘潭钢铁有限公司 Production method of acid-resistant pipeline steel

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333628A (en) * 2008-07-29 2008-12-31 湖南华菱湘潭钢铁有限公司 Bridge structural steel plate and producing method thereof
CN103320692A (en) * 2013-06-19 2013-09-25 宝山钢铁股份有限公司 HT550 steel plate with ultrahigh toughness and excellent weldability and manufacture method thereof
CN103866203A (en) * 2014-01-15 2014-06-18 扬州龙川钢管有限公司 Seamless steel pipe for large-aperture high-strength bridge and TMCP production method thereof
CN104328356A (en) * 2014-09-29 2015-02-04 南京钢铁股份有限公司 Manufacturing method of thin-specification high-strength-structure steel plate with steckel mill
CN104988429A (en) * 2015-07-13 2015-10-21 武汉钢铁(集团)公司 Structure steel plate for bridge with yield strength being 690MPa and production method thereof
CN105063509A (en) * 2015-07-27 2015-11-18 武汉钢铁(集团)公司 Structural steel with yield strength of 500 MPa for bridges and production method of structural steel
CN107447167A (en) * 2017-07-30 2017-12-08 湖南华菱湘潭钢铁有限公司 A kind of production method of low yield strength ratio high-strength medium plate
CN108330399A (en) * 2018-01-09 2018-07-27 唐山钢铁集团有限责任公司 A kind of low-cost and high-performance bridge steel and its production method
CN110863139A (en) * 2019-10-31 2020-03-06 鞍钢股份有限公司 Ultralow-temperature-impact-resistant 420 MPa-grade weather-resistant bridge steel and production method thereof
CN111455287A (en) * 2020-03-30 2020-07-28 南京钢铁股份有限公司 500 MPa-grade low-yield-ratio weather-resistant bridge steel and manufacturing method thereof
CN112080702A (en) * 2020-09-16 2020-12-15 燕山大学 Weather-resistant bridge steel with impact absorption power of not less than 60J at-60 ℃ in welded coarse grain heat affected zone
CN112195406A (en) * 2020-09-29 2021-01-08 南京钢铁股份有限公司 Low-cost high-performance Q370qE-HPS bridge steel and production method thereof
CN112226699A (en) * 2020-10-28 2021-01-15 湖南华菱湘潭钢铁有限公司 Production method of acid-resistant pipeline steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
于勇: "《钢铁工业绿色工艺技术》", 31 January 2017, 冶金工业出版社 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182165A (en) * 2021-10-29 2022-03-15 南京钢铁股份有限公司 Low-yield-ratio high-toughness Q500qE bridge steel and production method thereof
CN114182174A (en) * 2021-11-26 2022-03-15 湖南华菱湘潭钢铁有限公司 Production method of high-toughness bridge structural steel plate
CN114875311A (en) * 2022-04-26 2022-08-09 湖南华菱湘潭钢铁有限公司 Large-thickness 420 MPa-grade low-yield-ratio steel for ocean engineering and production method thereof
CN114875311B (en) * 2022-04-26 2023-05-26 湖南华菱湘潭钢铁有限公司 Large-thickness 420 MPa-level low-yield-ratio steel for ocean engineering and production method thereof
CN114875299A (en) * 2022-05-25 2022-08-09 湖南华菱湘潭钢铁有限公司 Production method of Q690 high-corrosion-resistance high-strength offshore structural steel
CN114892090A (en) * 2022-05-25 2022-08-12 湖南华菱湘潭钢铁有限公司 Production method of Q550-grade high-corrosion-resistance high-strength offshore structure steel
CN114921725A (en) * 2022-05-25 2022-08-19 湖南华菱湘潭钢铁有限公司 Production method of Q500-grade high-corrosion-resistance high-strength offshore structural steel
CN114921711A (en) * 2022-05-25 2022-08-19 湖南华菱湘潭钢铁有限公司 Production method of Q620-level high-corrosion-resistance high-strength offshore structure steel
CN114921711B (en) * 2022-05-25 2023-10-24 湖南华菱湘潭钢铁有限公司 Production method of Q620-grade high-corrosion-resistance high-strength offshore structural steel
CN115011887A (en) * 2022-06-21 2022-09-06 湖南华菱湘潭钢铁有限公司 Production method of low-yield-ratio Q500F quenched and tempered steel plate

Also Published As

Publication number Publication date
CN113186454B (en) 2022-03-29

Similar Documents

Publication Publication Date Title
CN113186454B (en) Production method of tempered low-yield-ratio bridge steel
CN111455287B (en) 500 MPa-grade low-yield-ratio weather-resistant bridge steel and manufacturing method thereof
CN112831717B (en) 690 MPa-grade low-yield-ratio thin-specification weather-resistant bridge steel and manufacturing method thereof
WO2022022047A1 (en) Low-yield-ratio granular bainite high-strength steel plate used in low-temperature environment and manufacturing method therefor
US20170275719A1 (en) High-toughness hot-rolling high-strength steel with yield strength of 800 mpa, and preparation method thereof
CN102400043B (en) Large-thickness steel plate for oceaneering
CN103352167A (en) Low-yield ratio and high-strength steel for bridges and manufacturing method thereof
CN109536846B (en) High-toughness hot-rolled steel plate with yield strength of 700MPa and manufacturing method thereof
CN107686943B (en) 370 MPa-yield-strength rare earth weather-resistant bridge steel plate and preparation method thereof
WO2022052335A1 (en) Thick low-carbon-equivalent high-toughness wear-resistant steel plate and manufacturing method therefor
CN114182165A (en) Low-yield-ratio high-toughness Q500qE bridge steel and production method thereof
CN113957336B (en) Production method of low-cost high-toughness Q460qNHD steel plate
CN102234743A (en) Low carbon martensite steel plate and production method
CN111349859B (en) Large-thickness 500 MPa-level high-Z-direction laminar-performance low-temperature container steel plate rolled by composite blank and manufacturing method thereof
CN114686768A (en) 360HB-450 HB-grade wear-resistant steel and production method thereof
CN114480962A (en) Steel for 620 MPa-grade coal mine hydraulic support and manufacturing method thereof
CN113512677A (en) Production method of steel for super-thick bridge structure
CN114381658A (en) 800 MPa-grade low-welding-crack-sensitivity steel plate and manufacturing method thereof
CN111041329B (en) High-strength high-toughness steel plate for ocean engineering and production method thereof
CN110846570A (en) High-toughness Q460-grade high-strength steel plate and manufacturing method thereof
CN111020397A (en) High-strength high-toughness normalizing Q370 bridge steel plate with good welding performance and production method thereof
CN115341141A (en) Weather-proof bridge steel with low yield ratio and preparation method thereof
CN115558851A (en) Hot rolled steel plate for 370 MPa-level engineering structure and manufacturing method thereof
CN112111690B (en) Thin-specification high-strength container plate and preparation method thereof
CN114107816A (en) X65 MS-grade acid-resistant pipeline steel hot-rolled coil with low cost and high strength and toughness and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant