CN113178342A - Preparation method of compact ordered self-supporting MOFs electrode and micro super capacitor - Google Patents

Preparation method of compact ordered self-supporting MOFs electrode and micro super capacitor Download PDF

Info

Publication number
CN113178342A
CN113178342A CN202110479700.3A CN202110479700A CN113178342A CN 113178342 A CN113178342 A CN 113178342A CN 202110479700 A CN202110479700 A CN 202110479700A CN 113178342 A CN113178342 A CN 113178342A
Authority
CN
China
Prior art keywords
film
solution
mofs
electrode
polystyrene microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110479700.3A
Other languages
Chinese (zh)
Other versions
CN113178342B (en
Inventor
杨文耀
程正富
伏春平
夏继宏
张晓宇
李毅
徐建华
杨邦朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Arts and Sciences
Original Assignee
Chongqing University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Arts and Sciences filed Critical Chongqing University of Arts and Sciences
Priority to CN202110479700.3A priority Critical patent/CN113178342B/en
Publication of CN113178342A publication Critical patent/CN113178342A/en
Application granted granted Critical
Publication of CN113178342B publication Critical patent/CN113178342B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The invention relates to the technical field of electrode preparation, in particular to a preparation method of a compact ordered self-supporting MOFs electrode and a micro super capacitor, wherein the method comprises the following steps: compressing a polytetrafluoroethylene mask plate on the flexible PE film to obtain a film A; spraying 1-2 ml of the solution A to the film A by adopting a spraying method to obtain a film B; spraying 1-2 ml of the solution B to the film B by adopting a spraying method to obtain a film C; placing the film C in an air draft cabinet for heating; placing the film C in vacuum and keeping the temperature at 60 ℃ for 24h to obtain an interdigital electrode A; soaking the interdigital electrode A in deionized water and ethanol, cleaning for 2-3 times, and removing the ethanol; and (3) placing the interdigital electrode A in a dichloromethane solution, and dissolving the polystyrene microspheres and the PE film to obtain the self-supporting MOFs electrode. The invention can not increase the resistance of the electrode and can not cause obstruction to the transmission of electrons, thereby improving the performance of the MOFs electrode and solving the technical problems of low performance and complex preparation method of the MOFs electrode prepared by the prior art.

Description

Preparation method of compact ordered self-supporting MOFs electrode and micro super capacitor
Technical Field
The invention relates to the technical field of electrode preparation, in particular to a preparation method of a compact ordered self-supporting MOFs electrode and a micro super capacitor.
Background
The super capacitor is a novel energy storage device, has the advantages of high specific power, long cycle life and high charging and discharging speed compared with a battery, and is increasingly widely applied. The metal organic framework compounds (MOFs) are crystalline porous materials with periodic network structures formed by connecting inorganic metal centers (metal ions or metal clusters) and bridged organic ligands through self-assembly, and the MOFs have the characteristics of both the rigidity of inorganic materials and the flexibility of organic materials. The material has the characteristics of large specific surface area, large pore volume and adjustable pores, and is an ideal material for preparing the super capacitor.
For example, chinese patent CN109019786A discloses a method for preparing a composite electrode material, which comprises: modifying the MOFs high-molecular mixture to the surface of an electrode in a surface loading manner; the method for modifying the MOFs high-molecular mixture to the surface of the electrode in a surface loading mode comprises the steps of mixing the MOFs material, an adhesive and a conductive agent in an organic solvent to form the MOFs high-molecular mixture; uniformly stirring the MOFs high-molecular mixture, and uniformly covering the MOFs high-molecular mixture on the surface of an electrode; drying the electrode with the surface covered with the MOFs high polymer mixture, wherein the drying temperature of the electrode is 30-100 ℃; in the MOFs high molecular mixture, the concentration of the MOFs material is 0.01-0.05 g/mL, the concentration of the adhesion agent is 0.05-0.20 g/mL, and the concentration of the conductive agent is 0.05-0.20 g/mL.
The MOFs material has a stable structure and poor compatibility with a titanium electrode in direct compounding, is easy to fall off from the surface of the electrode in the using process, is mixed with an adhesive, and can be fixed on the surface of the electrode. However, both the MOFs material and the adhesive are not conductive, which increases the resistance of the electrode and is not beneficial to the transfer of electrons, thereby reducing the performance of the electrode, and the preparation method is complex.
Disclosure of Invention
The invention provides a preparation method of a compact ordered self-supporting MOFs electrode, which solves the technical problems of low performance and complex preparation method of MOFs electrodes prepared by the prior art.
Based on the above, one of the objectives of the present invention is to provide a method for preparing compact ordered self-supporting MOFs electrodes; the invention also aims to provide a miniature super capacitor with compact ordered self-supporting MOFs electrodes.
The basic scheme provided by the invention is as follows: the preparation method of the compact ordered self-supporting MOFs electrode comprises the following steps:
s1, pressing a polytetrafluoroethylene mask plate on the flexible PE film, and spin-coating a polystyrene microsphere aqueous solution for 2-5 times; drying at the temperature of 60 ℃ for 0.5-2 h to obtain a polystyrene microsphere film with an interdigital structure, and marking as a film A; the thickness of the film A is determined according to the spin coating times and the concentration of the polystyrene microsphere aqueous solution;
s2, dissolving 0.001-0.01 mol of cobalt nitrate hexahydrate in a mixed solution of 40ml of methanol and 40ml of ethanol, and reacting for more than 30min to obtain a solution A; spraying 1-2 ml of solution A to the film A by adopting a spraying method, so that the solution A is uniformly covered and permeated into pores of the polystyrene microsphere, and obtaining the polystyrene microsphere/cobalt nitrate film with an interdigital structure after being uniformly covered by the solution A by permeation, and marking as a film B;
s3, dissolving 0.004-0.04 mol of methylimidazole and 0.0003-0.003 mol of benzyltrimethylammonium bromide in a mixed solution of 40ml of methanol and 40ml of ethanol, and stirring for more than 30min to obtain a solution B; spraying 1-2 ml of solution B to the film B by a spraying method, so that the solution B uniformly covers and permeates the polystyrene microsphere/cobalt nitrate film, and obtaining a polystyrene microsphere/cobalt nitrate/methylimidazole film with an interdigital structure after the solution B uniformly permeates and covers, and marking as a film C;
s4, placing the film C in an air draft cabinet, placing the film C for 1-2 hours at the temperature of 25 ℃, and then placing the film C for 0.5-1 hour at the temperature of 40 ℃; then placing the film C in vacuum, heating from 40 ℃ to 100 ℃, and keeping the constant temperature at 100 ℃ for 0.5-1 h;
s5, repeating the steps S2-S4 for 3-5 times, and removing the mask plate;
s6, placing the film C in vacuum, and keeping the film C at the temperature of 60 ℃ for 24 hours to obtain a polystyrene microsphere/MOFs interdigital electrode, which is marked as an interdigital electrode A;
s7, soaking the interdigital electrode A in deionized water and ethanol, and cleaning for 2-3 times; placing the interdigital electrode A in vacuum, keeping the interdigital electrode A at the temperature of 60 ℃ for 0.5-1 h, and removing ethanol;
s8, placing the interdigital electrode A, namely the polystyrene microsphere/MOFs interdigital electrode, in a dichloromethane solution, performing ultrasonic treatment for 2-10 min, and dissolving the polystyrene microsphere and the PE film to obtain the porous, uniform and compact MOFs self-supporting film, namely the self-supporting MOFs electrode.
The working principle and the advantages of the invention are as follows:
(1) placing the interdigital electrode A in a dichloromethane solution, and carrying out ultrasonic treatment for 2-10 min to dissolve the polystyrene microspheres and the PE film, so as to obtain a self-supporting MOFs electrode; by adopting the mode, compared with the mode of mixing the MOFs material with the adhesive, the adhesive is not used, the resistance of the electrode cannot be increased, the transmission of electrons cannot be hindered, and the performance of the MOFs electrode can be improved;
(2) placing the film C at the temperature of 25 ℃ for 1-2 h, and at the temperature of 40 ℃ for 0.5-1 h; placing the film B in vacuum, heating the film B from 40 ℃ to 100 ℃, and keeping the temperature for 0.5-1 h; the temperature is gradually increased in such a way, MOFs materials are generated through reaction, and meanwhile, the volatilization speed is slowed down, the reaction time is prolonged, and cracking can be prevented; the film C is placed in vacuum and kept at the temperature of 60 ℃ for 24 hours, which is beneficial to full reaction;
(3) spraying 1-2 ml of the solution A to the film A by adopting a spraying method, so that the solution A can uniformly cover and permeate into pores of the polystyrene microspheres as much as possible, and the uniformity of the solution A in the pores of the polystyrene microspheres is improved; spraying 1-2 ml of the solution B to the film B by adopting a spraying method, so that the solution B can uniformly cover and permeate the polystyrene microsphere/cobalt nitrate film as much as possible, and the uniformity of the solution B in the film C is improved;
(4) the polytetrafluoroethylene mask plate is tightly pressed on the flexible PE film, the polystyrene microsphere aqueous solution is spin-coated, the interdigital thickness can be conveniently increased through the spin-coating times, the spin-coating times and the concentration of the polystyrene microsphere aqueous solution jointly determine the thickness of the polystyrene microsphere film with the interdigital structure, and the operation is easy and the realization is convenient.
The invention does not adopt an adhesive, does not increase the resistance of the electrode, does not hinder the transfer of electrons, improves the performance of the MOFs electrode, and solves the technical problems of low performance and complex preparation method of the MOFs electrode prepared by the prior art.
Further, in S1, the particle size of the polystyrene microsphere aqueous solution is 500 nm-2 um, and the molar concentration is 1-2.5%.
Further, in S1, the thickness of the film A is 10 to 100 μm.
Further, in S2, the pressure source is nitrogen, and 1-2 ml of the solution A is sprayed on the film A by adopting nitrogen; in S3, the pressure source is nitrogen, and 1-2 ml of the solution B is sprayed on the film B by adopting nitrogen.
Further, immediately after the spraying of the solution A, the solution B was sprayed.
The invention also provides a miniature super capacitor with compact ordered self-supporting MOFs electrodes, wherein the electrodes are self-supporting MOFs electrodes.
The working principle and the advantages of the invention are as follows: because the self-supporting MOFs electrode does not adopt an adhesive in the preparation process, compared with the method of mixing the MOFs material and the adhesive, the resistance of the electrode is small, the transfer process of electrons is smooth, and the performance of the MOFs electrode is high, so that the performance of the miniature supercapacitor is good.
Drawings
Fig. 1 is a microstructure diagram of an interdigital electrode a in an embodiment of a method for preparing a compact ordered self-supporting MOFs electrode of the present invention.
Fig. 2 is a microstructure diagram of a supported MOFs electrode according to an embodiment of the method for preparing a compact ordered self-supported MOFs electrode of the present invention.
Detailed Description
The following is further detailed by the specific embodiments:
example 1
The preparation method of the compact ordered self-supporting MOFs electrode comprises the following specific implementation processes:
s1, pressing a polytetrafluoroethylene mask plate on the flexible PE film, and spin-coating a polystyrene microsphere aqueous solution for 2-5 times; drying at the temperature of 60 ℃ for 0.5-2 h to obtain a polystyrene microsphere film with an interdigital structure, and marking as a film A; the thickness of the film A is determined by the spin coating times and the concentration of the polystyrene microsphere aqueous solution. In this embodiment, the particle size of the polystyrene microsphere aqueous solution is 500 nm-2 um, the molar concentration is 1-2.5%, and the thickness of the film A is 10-100 μm.
The interdigital thickness can be conveniently increased through the number of times of spin coating, the thickness of the polystyrene microsphere film with the interdigital structure is determined by the number of times of spin coating and the concentration of the polystyrene microsphere aqueous solution, and the method is easy to operate and convenient to realize.
S2, dissolving 0.001-0.01 mol of cobalt nitrate hexahydrate in a mixed solution of 40ml of methanol and 40ml of ethanol, and reacting for more than 30min to obtain a solution A; spraying 1-2 ml of the solution A to the film A by adopting a spraying method, wherein the pressure source is nitrogen, and spraying 1-2 ml of the solution A to the film A by adopting nitrogen; and enabling the solution A to uniformly cover and permeate into pores of the polystyrene microspheres to obtain the polystyrene microsphere/cobalt nitrate film with the interdigital structure after the solution A is uniformly penetrated and covered, and marking as a film B. And (3) spraying 1-2 ml of the solution A to the film A by adopting a spraying method, so that the solution A can be uniformly covered and permeated into the pores of the polystyrene microspheres as much as possible, and the uniformity of the solution A in the pores of the polystyrene microspheres is improved.
S3, dissolving 0.004-0.04 mol of methylimidazole and 0.0003-0.003 mol of benzyltrimethylammonium bromide in a mixed solution of 40ml of methanol and 40ml of ethanol, and stirring for more than 30min to obtain a solution B; spraying 1-2 ml of the solution B to the film B by adopting a spraying method, wherein the pressure source is nitrogen, spraying 1-2 ml of the solution B to the film B by adopting nitrogen, and immediately spraying the solution A to the film B; and enabling the solution B to uniformly cover and permeate the polystyrene microsphere/cobalt nitrate film to obtain the polystyrene microsphere/cobalt nitrate/methylimidazole film with the interdigital structure after the solution B is uniformly covered and permeated, and recording the film as a film C. And spraying 1-2 ml of the solution B to the film B by adopting a spraying method, so that the solution B can uniformly cover and permeate the polystyrene microsphere/cobalt nitrate film as far as possible, and the uniformity of the solution B in the film C is improved.
S4, placing the film C in an air draft cabinet, placing the film C for 1-2 hours at the temperature of 25 ℃, and then placing the film C for 0.5-1 hour at the temperature of 40 ℃; and then placing the film C in vacuum, raising the temperature from 40 ℃ to 100 ℃, and keeping the constant temperature at the temperature of 100 ℃ for 0.5-1 h. In such a way, the temperature is gradually increased, the MOFs material is generated through reaction, and meanwhile, the volatilization speed is slowed down, the reaction time is prolonged, and the cracking can be prevented; the film C was placed in vacuum and kept at 60 ℃ for 24h to facilitate a full reaction.
And S5, repeating the steps S2-S4 for 3-5 times, and removing the mask plate.
S6, placing the film C in vacuum and keeping the temperature at 60 ℃ for 24h to obtain the polystyrene microsphere/MOFs interdigital electrode, which is marked as interdigital electrode A, as shown in the attached figure 1.
S7, soaking the interdigital electrode A in deionized water and ethanol, and cleaning for 2-3 times; and placing the interdigital electrode A in vacuum, keeping the interdigital electrode A at the temperature of 60 ℃ for 0.5-1 h, and removing the ethanol.
S8, placing the interdigital electrode A, namely the polystyrene microsphere/MOFs interdigital electrode, in a dichloromethane solution, performing ultrasonic treatment for 2-10 min, dissolving the polystyrene microsphere and the PE film, and obtaining the porous, uniform and compact MOFs self-supporting thin film, namely the self-supporting MOFs electrode, as shown in the attached figure 2. In this way, compared with the mixing of the MOFs material and the adhesive, the adhesive is not used, the resistance of the electrode is not increased, and the transmission of electrons is not hindered, so that the performance of the MOFs electrode can be improved.
Example 2
The difference from the embodiment 1 is that the invention provides a compact micro-supercapacitor with ordered self-supporting MOFs electrodes, and the electrodes are self-supporting MOFs electrodes. Because the self-supporting MOFs electrode does not adopt an adhesive in the preparation process, compared with the method of mixing the MOFs material and the adhesive, the resistance of the electrode is small, the transfer process of electrons is smooth, and the performance of the MOFs electrode is high, so that the performance of the miniature supercapacitor is good.
The foregoing is merely an example of the present invention, and common general knowledge in the field of known specific structures and characteristics is not described herein in any greater extent than that known in the art at the filing date or prior to the priority date of the application, so that those skilled in the art can now appreciate that all of the above-described techniques in this field and have the ability to apply routine experimentation before this date can be combined with one or more of the present teachings to complete and implement the present invention, and that certain typical known structures or known methods do not pose any impediments to the implementation of the present invention by those skilled in the art. It should be noted that, for those skilled in the art, without departing from the structure of the present invention, several changes and modifications can be made, which should also be regarded as the protection scope of the present invention, and these will not affect the effect of the implementation of the present invention and the practicability of the patent. The scope of the claims of the present application shall be determined by the contents of the claims, and the description of the embodiments and the like in the specification shall be used to explain the contents of the claims.

Claims (7)

1. The preparation method of the compact ordered self-supporting MOFs electrode is characterized by comprising the following steps:
s1, pressing a polytetrafluoroethylene mask plate on the flexible PE film, and spin-coating a polystyrene microsphere aqueous solution for 2-5 times; drying at the temperature of 60 ℃ for 0.5-2 h to obtain a polystyrene microsphere film with an interdigital structure, and marking as a film A; the thickness of the film A is determined according to the spin coating times and the concentration of the polystyrene microsphere aqueous solution;
s2, dissolving 0.001-0.01 mol of cobalt nitrate hexahydrate in a mixed solution of 40ml of methanol and 40ml of ethanol, and reacting for more than 30min to obtain a solution A; spraying 1-2 ml of solution A to the film A by adopting a spraying method, so that the solution A is uniformly covered and permeated into pores of the polystyrene microsphere, and obtaining the polystyrene microsphere/cobalt nitrate film with an interdigital structure after being uniformly covered by the solution A by permeation, and marking as a film B;
s3, dissolving 0.004-0.04 mol of methylimidazole and 0.0003-0.003 mol of benzyltrimethylammonium bromide in a mixed solution of 40ml of methanol and 40ml of ethanol, and stirring for more than 30min to obtain a solution B; spraying 1-2 ml of solution B to the film B by a spraying method, so that the solution B uniformly covers and permeates the polystyrene microsphere/cobalt nitrate film, and obtaining a polystyrene microsphere/cobalt nitrate/methylimidazole film with an interdigital structure after the solution B uniformly permeates and covers, and marking as a film C;
s4, placing the film C in an air draft cabinet, placing the film C for 1-2 hours at the temperature of 25 ℃, and then placing the film C for 0.5-1 hour at the temperature of 40 ℃; then placing the film C in vacuum, heating from 40 ℃ to 100 ℃, and keeping the constant temperature at 100 ℃ for 0.5-1 h;
s5, repeating the steps S2-S4 for 3-5 times, and removing the mask plate;
s6, placing the film C in vacuum, and keeping the film C at the temperature of 60 ℃ for 24 hours to obtain a polystyrene microsphere/MOFs interdigital electrode, which is marked as an interdigital electrode A;
s7, soaking the interdigital electrode A in deionized water and ethanol, and cleaning for 2-3 times; placing the interdigital electrode A in vacuum, keeping the interdigital electrode A at the temperature of 60 ℃ for 0.5-1 h, and removing ethanol;
s8, placing the interdigital electrode A, namely the polystyrene microsphere/MOFs interdigital electrode, in a dichloromethane solution, performing ultrasonic treatment for 2-10 min, and dissolving the polystyrene microsphere and the PE film to obtain the porous, uniform and compact MOFs self-supporting film, namely the self-supporting MOFs electrode.
2. The method for preparing compact ordered self-supporting MOFs electrodes according to claim 1, wherein in S1, the particle size of the polystyrene microsphere aqueous solution is 500 nm-2 um, and the molar concentration is 1-2.5%.
3. The method for preparing compact, ordered, self-supporting MOFs electrodes according to claim 2, wherein in S1, the thickness of film A is 10-100 μm.
4. The method for preparing compact ordered self-supporting MOFs electrodes according to claim 3, wherein in S2, the pressure source is nitrogen, and 1-2 ml of solution A is sprayed on the film A by using nitrogen; in S3, the pressure source is nitrogen, and 1-2 ml of the solution B is sprayed on the film B by adopting nitrogen.
5. The method for preparing compact, ordered, self-supporting MOFs electrodes according to claim 4, wherein solution A is sprayed immediately after solution B is sprayed.
6. The miniature super capacitor with compact ordered self-supporting MOFs electrodes is characterized in that the electrodes are self-supporting MOFs electrodes.
7. The miniature supercapacitor of compact, ordered, self-supporting MOFs electrodes of claim 6, wherein the electrode is prepared by a method comprising:
s1, pressing a polytetrafluoroethylene mask plate on the flexible PE film, and spin-coating a polystyrene microsphere aqueous solution for 2-5 times; drying at the temperature of 60 ℃ for 0.5-2 h to obtain a polystyrene microsphere film with an interdigital structure, and marking as a film A; the thickness of the film A is determined according to the spin coating times and the concentration of the polystyrene microsphere aqueous solution;
s2, dissolving 0.001-0.01 mol of cobalt nitrate hexahydrate in a mixed solution of 40ml of methanol and 40ml of ethanol, and reacting for more than 30min to obtain a solution A; spraying 1-2 ml of solution A to the film A by adopting a spraying method, so that the solution A is uniformly covered and permeated into pores of the polystyrene microsphere, and obtaining the polystyrene microsphere/cobalt nitrate film with an interdigital structure after being uniformly covered by the solution A by permeation, and marking as a film B;
s3, dissolving 0.004-0.04 mol of methylimidazole and 0.0003-0.003 mol of benzyltrimethylammonium bromide in a mixed solution of 40ml of methanol and 40ml of ethanol, and stirring for more than 30min to obtain a solution B; spraying 1-2 ml of solution B to the film B by a spraying method, so that the solution B uniformly covers and permeates the polystyrene microsphere/cobalt nitrate film, and obtaining a polystyrene microsphere/cobalt nitrate/methylimidazole film with an interdigital structure after the solution B uniformly permeates and covers, and marking as a film C;
s4, placing the film C in an air draft cabinet, placing the film C for 1-2 hours at the temperature of 25 ℃, and then placing the film C for 0.5-1 hour at the temperature of 40 ℃; then placing the film C in vacuum, heating from 40 ℃ to 100 ℃, and keeping the constant temperature at 100 ℃ for 0.5-1 h;
s5, repeating the steps S2-S4 for 3-5 times, and removing the mask plate;
s6, placing the film C in vacuum, and keeping the film C at the temperature of 60 ℃ for 24 hours to obtain a polystyrene microsphere/MOFs interdigital electrode, which is marked as an interdigital electrode A;
s7, soaking the interdigital electrode A in deionized water and ethanol, and cleaning for 2-3 times; placing the interdigital electrode A in vacuum, keeping the interdigital electrode A at the temperature of 60 ℃ for 0.5-1 h, and removing ethanol;
s8, placing the interdigital electrode A, namely the polystyrene microsphere/MOFs interdigital electrode, in a dichloromethane solution, performing ultrasonic treatment for 2-10 min, and dissolving the polystyrene microsphere and the PE film to obtain the porous, uniform and compact MOFs self-supporting film, namely the self-supporting MOFs electrode.
CN202110479700.3A 2021-04-30 2021-04-30 Preparation method of compact ordered self-supporting MOFs electrode Active CN113178342B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110479700.3A CN113178342B (en) 2021-04-30 2021-04-30 Preparation method of compact ordered self-supporting MOFs electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110479700.3A CN113178342B (en) 2021-04-30 2021-04-30 Preparation method of compact ordered self-supporting MOFs electrode

Publications (2)

Publication Number Publication Date
CN113178342A true CN113178342A (en) 2021-07-27
CN113178342B CN113178342B (en) 2022-03-25

Family

ID=76925940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110479700.3A Active CN113178342B (en) 2021-04-30 2021-04-30 Preparation method of compact ordered self-supporting MOFs electrode

Country Status (1)

Country Link
CN (1) CN113178342B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730212B1 (en) * 2000-10-03 2004-05-04 Hrl Laboratories, Llc Sensor for chemical and biological materials
CN102928474A (en) * 2012-11-28 2013-02-13 吉林大学 Moisture-sensitive sensor based on titanium-containing organic framework material and preparation method thereof
WO2017223046A1 (en) * 2016-06-20 2017-12-28 North Carolina State University Metal-organic frameworks and methods of making and use thereof
CN109485867A (en) * 2018-11-23 2019-03-19 重庆文理学院 A kind of preparation method and applications of metal organic framework compound
US20190128830A1 (en) * 2017-10-27 2019-05-02 Stmicroelectronics S.R.L. Mox-based gas sensor and manufacturing method thereof
CN110412087A (en) * 2019-08-07 2019-11-05 吉林大学 One kind being based on NiCoxFe2-xO4Isopropanol gas sensor of nanocube material and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730212B1 (en) * 2000-10-03 2004-05-04 Hrl Laboratories, Llc Sensor for chemical and biological materials
CN102928474A (en) * 2012-11-28 2013-02-13 吉林大学 Moisture-sensitive sensor based on titanium-containing organic framework material and preparation method thereof
WO2017223046A1 (en) * 2016-06-20 2017-12-28 North Carolina State University Metal-organic frameworks and methods of making and use thereof
US20190128830A1 (en) * 2017-10-27 2019-05-02 Stmicroelectronics S.R.L. Mox-based gas sensor and manufacturing method thereof
CN109485867A (en) * 2018-11-23 2019-03-19 重庆文理学院 A kind of preparation method and applications of metal organic framework compound
CN110412087A (en) * 2019-08-07 2019-11-05 吉林大学 One kind being based on NiCoxFe2-xO4Isopropanol gas sensor of nanocube material and preparation method thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HE, X; MAO, XL; XU, JH;ET AL.: ""Flexible binder-free hierarchical copper sulfide/carbon cloth hybrid supercapacitor electrodes and the application as negative electrodes in asymmetric supercapacitor"", 《 JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》 *
KOO, WT; JANG, HY; KIM, ID;ET AL.: ""MOF derived ZnCo2O4 porous hollow spheres functionalized with Ag nanoparticles for a long-ycle and high-capacity lithium ion battery anode"", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
ZHANG, DZ; WU, D; YANG, ZM;ET AL.: ""Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructure"", 《 JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》 *
方明;樊磊;曾一笑;谭秋林;孙东;: ""集成阵列叉指电极介电泳芯片粒子分离"", 《微纳电子技术》 *
杨文耀;段良菊;郭晓朋;查小婷;张晓宇;: ""多孔TiO_2/NaPSS复合湿敏材料制备与性能研究"", 《电子元件与材料》 *
程鑫;张莹;王广平;张宇鹏;陆斌武;阮圣平;刘彩霞;: ""金属有机骨架材料ZIF-8(I_2)的湿敏性能"", 《中国科技论文》 *
郑华靖;蒋亚东;徐建华;杨亚杰;: ""修饰LB膜法制备的PEDOT薄膜对HCl气体气敏性的影响"", 《高等学校化学学报》 *

Also Published As

Publication number Publication date
CN113178342B (en) 2022-03-25

Similar Documents

Publication Publication Date Title
CN110038437B (en) Preparation method of organic-inorganic piperazine polyamide composite ceramic nanofiltration membrane
CN104722212B (en) A kind of preparation method of covalent triazine skeleton doping hybridized film
CN110698710B (en) Method for preparing covalent organic framework material film by quantitative layer-by-layer self-assembly
CN111082147B (en) Preparation method of photonic crystal lithium sulfur battery based on large-area thick film controllable texture
CN103253648A (en) Preparation method of carbon nanotube by growing on foamed nickel substrate
CN112701268B (en) Flexible integrated carbon-coated tungsten oxide/carbon nanotube film composite electrode and preparation method thereof
CN104961124A (en) Method for manufacturing graphene paper
CN109888113A (en) Calcium titanium ore bed and preparation method thereof, perovskite solar battery
US20220073349A1 (en) Preparation Method of Carbon Nitride Electrode Material
CN110052183A (en) A kind of method that collosol and gel coating combines vapour deposition process to prepare MOF film
CN108063258A (en) A kind of preparation method for the binding agent for improving lithium battery silicon electrode cyclical stability
CN104681778A (en) Method for preparing thin thermal battery electrolyte pole piece based on slurry coating method
CN113680326A (en) Sulfonic acid COFs membrane and preparation method and application thereof
CN113178342B (en) Preparation method of compact ordered self-supporting MOFs electrode
CN107180704A (en) A kind of preparation method of the sour nickel/polyaniline tri compound nano line array electrode of the sour nickel tungsten of cobalt
CN113178341B (en) Super capacitor based on MOFs material
CN104681781A (en) Slurry coating process-based method for preparing thin thermal battery positive electrode and electrolyte combination electrode piece
WO2022160824A1 (en) Preparation method for novel solid electrolyte
CN110518224A (en) A kind of preparation method of lithium ion battery carbon silicon anode material
CN108390070B (en) Tin-antimony oxide anode material coating, preparation method thereof and titanium-based tin-antimony oxide electrode of flow battery
CN114649116B (en) Preparation method of electrode material, preparation method of electrochemical driver and application
CN107665996B (en) Three-dimensional porous nickel hollow fiber electrode material, preparation method and battery based on electrode
CN109599490A (en) Binary mixed solvent system and its preparing the purposes in perovskite material
CN108511688A (en) A kind of thermal treatment producing method of silicium cathode pole piece
CN107899378A (en) A kind of application of metal organic complex film as gas separation membrane

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant