CN113177889B - 图像处理方法及装置、电子设备和存储介质 - Google Patents

图像处理方法及装置、电子设备和存储介质 Download PDF

Info

Publication number
CN113177889B
CN113177889B CN202110459998.1A CN202110459998A CN113177889B CN 113177889 B CN113177889 B CN 113177889B CN 202110459998 A CN202110459998 A CN 202110459998A CN 113177889 B CN113177889 B CN 113177889B
Authority
CN
China
Prior art keywords
image
fuzzy
predicted
prediction
kernel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110459998.1A
Other languages
English (en)
Other versions
CN113177889A (zh
Inventor
陈亮
张佳维
任思捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen TetrasAI Technology Co Ltd
Original Assignee
Shenzhen TetrasAI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen TetrasAI Technology Co Ltd filed Critical Shenzhen TetrasAI Technology Co Ltd
Priority to CN202110459998.1A priority Critical patent/CN113177889B/zh
Publication of CN113177889A publication Critical patent/CN113177889A/zh
Application granted granted Critical
Publication of CN113177889B publication Critical patent/CN113177889B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Image Processing (AREA)

Abstract

本公开涉及一种图像处理方法及装置、电子设备和存储介质,所述方法包括:根据模糊图像和预设线性图像模糊模型,确定所述模糊图像对应的目标模糊核,所述预设线性图像模糊模型用于控制所述模糊图像中的饱和像素点符合线性成像过程;根据所述目标模糊核,对所述模糊图像进行迭代去模糊处理,得到所述模糊图像对应的目标清晰图像。

Description

图像处理方法及装置、电子设备和存储介质
技术领域
本公开涉及计算机技术领域,尤其涉及一种图像处理方法及装置、电子设备和存储介质。
背景技术
图像盲去模糊是指根据模糊图像进行模糊核估计,并根据估计得到的模糊核从模糊图像中恢复出清晰图像的过程,是计算机视觉和图像处理领域的热门研究话题。在弱光条件下(例如,夜间)拍摄图像时,由于受到光照和曝光时间的影响,拍摄得到的图像往往既存在一定程度的模糊,同时也存在一定量的饱和像素点。区别于非饱和像素点,对饱和像素点而言,它们的成像过程是非线性的。因此,在对包含饱和像素点的模糊图像进行盲去模糊的情况下,受到饱和像素点的影响,导致模糊核估计不准确,进而导致去模糊效果较差。
发明内容
本公开提出了一种图像处理方法及装置、电子设备和存储介质的技术方案。
根据本公开的一方面,提供了一种图像处理方法,包括:根据模糊图像和预设线性图像模糊模型,确定所述模糊图像对应的目标模糊核,所述预设线性图像模糊模型用于控制所述模糊图像中的饱和像素点符合线性成像过程;根据所述目标模糊核,对所述模糊图像进行迭代去模糊处理,得到所述模糊图像对应的目标清晰图像。
在本公开实施例中,根据模糊图像和预设线性图像模糊模型,确定模糊图像对应的目标模糊核,由于预设线性图像模糊模型用于控制模糊图像中的饱和像素点符合线性成像过程,使得在对模糊图像进行模糊核估计时可以充分利用模糊图像中的饱和像素点,以得到精度较高的目标模糊核,进而根据目标模糊核对模糊图像进行迭代去模糊处理后,可以得到清晰度较高的目标清晰图像,从而有效提高了对包含饱和像素点的模糊图像的去模糊效果。
在一种可能的实现方式中,所述根据模糊图像和预设线性图像模糊模型,确定所述模糊图像对应的目标模糊核,包括:根据所述模糊图像和所述预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,确定所述目标模糊核,所述基于最大后验概率的能量函数中包括保真度项、第一先验项和第二先验项,所述保真度项用于反映所述模糊图像和所述目标清晰图像与所述目标模糊核的卷积之间的相似性,所述第一先验项是所述目标清晰图像对应的先验项,所述第二先验项是所述目标模糊核对应的先验项。
通过对基于最大后验概率的能量函数进行迭代优化,使得可以在无任何图像预处理操作的情况下,有效确定模糊图像对应的精度较高的目标模糊核,提高了目标模糊核的估计效率,进而可以使得减少了整体去模糊处理的运行时间,提高了去模糊效率。
在一种可能的实现方式中,所述根据所述模糊图像和所述预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,确定所述目标模糊核,包括:根据所述模糊图像和所述预设线性图像模糊模型,通过对所述基于最大后验概率的能量函数进行迭代优化,生成所述模糊图像对应的第一预测清晰图像;根据所述模糊图像和所述第一预测清晰图像,通过对所述基于最大后验概率的能量函数进行迭代优化,确定所述目标模糊核。
通过对基于最大后验概率的能量函数进行迭代优化,交替更新第一预测清晰图像和模糊核,在交替更新达到预设迭代条件的情况下,可以有效得到精度较高的目标模糊核。
在一种可能的实现方式中,所述根据所述模糊图像和所述预设线性图像模糊模型,通过对所述基于最大后验概率的能量函数进行迭代优化,生成所述模糊图像对应的第一预测清晰图像,包括:获取对所述模糊图像进行第j次模糊核预测之后生成的第j个第一预测模糊核;根据所述模糊图像、所述预设线性图像模糊模型以及所述第j个第一预测模糊核,通过对所述基于最大后验概率的能量函数进行迭代优化,生成所述第一预测清晰图像,j是大于或等于0的整数。
根据模糊图像、预设线性图像模糊模型以及第j个第一预测模糊核,通过对基于最大后验概率的能量函数进行迭代优化,可以生成用于进行第(j+1)次模糊核预测的第一预测清晰图像,以使得可以有效执行后续的第(j+1)次模糊核预测。
在一种可能的实现方式中,所述根据所述模糊图像和所述第一预测清晰图像,通过对所述基于最大后验概率的能量函数进行迭代优化,确定所述目标模糊核,包括:获取对所述模糊图像进行第j次模糊核预测之后生成的第j个第一预测模糊核;根据所述模糊图像、所述第一预测清晰图像、所述第j个第一预测模糊核以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(j+1)次模糊核预测,生成第(j+1)个第一预测模糊核;在(j+1)达到第一预设迭代次数的情况下,将所述第(j+1)个第一预测模糊核确定为所述目标模糊核。
基于最大后验概率的能量函数进行第一预设次数的迭代模糊核预测,可以提高最终得到的目标模糊核的精度。
在一种可能的实现方式中,在j=0的情况下,第0个第一预测模糊核是高斯模糊核。
在对模糊图像进行模糊核预测的初始化过程中,即j=0的情况下,设置第0个第一预测模糊核是高斯模糊核,以使得可以顺利执行后续的模糊核预测过程。
在一种可能的实现方式中,所述根据所述模糊图像、所述预设线性图像模糊模型以及所述第j个第一预测模糊核,通过对所述基于最大后验概率的能量函数进行迭代优化,生成所述第一预测清晰图像,包括:获取对所述模糊图像进行第t次去模糊处理后生成的第t个第二预测清晰图像;根据所述第j个第一预测模糊核、所述第t个第二预测清晰图像、第t个第一权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(t+1)次去模糊处理,生成第(t+1)个第二预测清晰图像,t是大于或等于0的整数;在(t+1)达到第二预设迭代次数的情况下,将所述第(t+1)个第二预测清晰图像确定为所述第一预测清晰图像。
在一种可能的实现方式中,所述方法还包括:在(t+1)未达到所述第二预设迭代次数的情况下,根据所述模糊图像、所述预设线性图像模糊模型、所述第j个第一预测模糊核以及所述第(t+1)个第二预测清晰图像,确定用于对所述模糊图像进行第(t+2)次去模糊处理的第(t+1)个第一权重矩阵;根据所述第j个第一预测模糊核、所述第(t+1)个第二预测清晰图像、所述第(t+1)个第一权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(t+2)次去模糊处理,生成第(t+2)个第二预测清晰图像;在(t+2)达到所述第二预设迭代次数的情况下,将所述第(t+2)个第二预测清晰图像确定为所述第一预测清晰图像。
通过交替迭代更新模糊图像对应的第一权重矩阵和第二预测清晰图像,可以在达到第二预设迭代次数的情况下,得到本次交替迭代更新生成的符合条件的第一预测清晰图像,以使得为后续进行模糊核估计做好准备
在一种可能的实现方式中,在j=0且t=0的情况下,第0个第二预测清晰图像是所述模糊图像,第0个第一权重矩阵是全1矩阵。
在对模糊图像进行模糊核预测的初始化过程中,即j=0且t=0的情况下,设置第0个第二预测清晰图像是模糊图像,第0个第一权重矩阵是全1矩阵,以使得可以顺利执行后续的对基于最大后验概率的能量函数的迭代优化过程。
在一种可能的实现方式中,所述根据所述模糊图像、所述第一预测清晰图像、所述第j个第一预测模糊核以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(j+1)次模糊核预测,生成第(j+1)个第一预测模糊核,包括:根据所述模糊图像、所述第一预测清晰图像、所述第j个第一预测模糊核以及所述基于最大后验概率的能量函数,对所述模糊图像进行多次迭代模糊核预测,生成所述第(j+1)个第一预测模糊核。
在一种可能的实现方式中,所述根据所述模糊图像、所述第一预测清晰图像、所述第j个第一预测模糊核以及所述基于最大后验概率的能量函数,对所述模糊图像进行多次迭代模糊核预测,生成所述第(j+1)个第一预测模糊核,包括:根据所述模糊图像、所述第一预测清晰图像以及第x个第二预测模糊核,确定用于对所述模糊图像进行第(x+1)次模糊核预测的第(x+1)个第二权重矩阵,x是大于或等于0的整数,在x=0的情况下,第0个第二预测模糊核是所述第j个第一预测模糊核;根据所述模糊图像、所述第x个第二预测模糊核、所述第(x+1)个第二权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(x+1)次模糊核预测,生成第(x+1)个第二预测模糊核;在(x+1)达到第三预设迭代次数的情况下,将所述第(x+1)个第二预测模糊核确定为所述第(j+1)个第一预测模糊核。
通过交替迭代更新模糊图像对应的第二权重矩阵和第二预测模糊核,可以在达到第三预设迭代次数的情况下,得到本次交替迭代更新生成的符合条件的第一预测模糊核,以使得可以通过多次循环更新第一预测模糊核,最终得到精度较高的目标模糊核。
在一种可能的实现方式中,所述根据所述目标模糊核,对所述模糊图像进行迭代去模糊处理,得到所述模糊图像对应的目标清晰图像,包括:获取对所述模糊图像进行第y次去模糊处理后生成的第y个第三预测清晰图像;根据所述目标模糊核、所述第y个第三预测清晰图像、第y个第三权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(y+1)次去模糊处理,生成第(y+1)个第三预测清晰图像,y是大于或等于0的整数;在(y+1)达到第四预设迭代次数的情况下,将所述第(y+1)个第三预测清晰图像确定为所述目标清晰图像。
在一种可能的实现方式中,所述方法还包括:在(y+1)未达到所述第四预设迭代次数的情况下,根据所述模糊图像、所述预设线性图像模糊模型、所述目标模糊核以及所述第(y+1)个第三预测清晰图像,确定用于对所述模糊图像进行第(y+2)次去模糊处理的第(y+1)个第三权重矩阵;根据所述目标模糊核、所述第(y+1)个第三预测清晰图像、所述第(y+1)个第三权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(y+2)次去模糊处理,生成第(y+2)个第三预测清晰图像;在(y+2)达到所述第四预设迭代次数的情况下,将所述第(y+2)个第三预测清晰图像确定为所述目标清晰图像。
通过交替迭代更新模糊图像对应的第三权重矩阵和第三预测清晰图像,可以在达到第四预设迭代次数的情况下,得到本次交替迭代更新生成的符合条件的目标清晰图像。
在一种可能的实现方式中,在y=0的情况下,第0个第三预测清晰图像是所述模糊图像,第0个第三权重矩阵是全1矩阵。
在根据目标模糊核对模糊图像进行迭代去模糊处理的初始化过程中,即y=0的情况下,设置第0个第三预测清晰图像是模糊图像,第0个第三权重矩阵是全1矩阵,以使得可以顺利执行后续的迭代去模糊处理过程。
根据本公开的一方面,提供了一种图像处理装置,包括:确定模块,用于根据模糊图像和预设线性图像模糊模型,确定所述模糊图像对应的目标模糊核,所述预设线性图像模糊模型用于控制所述模糊图像中的饱和像素点符合线性成像过程;去模糊处理模块,用于根据所述目标模糊核,对所述模糊图像进行迭代去模糊处理,得到所述模糊图像对应的目标清晰图像。
根据本公开的一方面,提供了一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行上述方法。
根据本公开的一方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,而非限制本公开。根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,这些附图示出了符合本公开的实施例,并与说明书一起用于说明本公开的技术方案。
图1示出根据本公开实施例的一种图像处理方法的流程图;
图2示出根据本公开实施例的一种图像处理装置的框图;
图3示出根据本公开实施例的一种电子设备的框图;
图4示出根据本公开实施例的一种电子设备的框图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中术语“至少一种”表示多种中的任意一种或多种中的至少两种的任意组合,例如,包括A、B、C中的至少一种,可以表示包括从A、B和C构成的集合中选择的任意一个或多个元素。
另外,为了更好地说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
图1示出根据本公开实施例的一种图像处理方法的流程图。该图像处理方法可以由终端设备或服务器等电子设备执行,终端设备可以为用户设备(User Equipment,UE)、移动设备、用户终端、蜂窝电话、无绳电话、个人数字助理(Personal Digital Assistant,PDA)、手持设备、计算设备、车载设备、可穿戴设备等,该图像处理方法可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。或者,可通过服务器执行该图像处理方法。如图1所示,该图像处理方法可以包括:
S11、根据模糊图像和预设线性图像模糊模型,确定模糊图像对应的目标模糊核。
其中,预设线性图像模糊模型用于控制模糊图像中的饱和像素点符合线性成像过程。
模糊图像可以是图像采集设备在弱光条件下(例如,夜间)拍摄得到的,由于弱光条件下照明不足,图像采集设备为了达到正常曝光,需要增加曝光时间或增加感光度,但是,增加曝光时间可能会导致拍摄过程出现抖动而造成图像模糊。
此外,弱光条件下的照明不良的场景,通常都具有场景动态范围比较大的特性,例如,在夜景图像中,经常会有路灯或霓虹灯等非常亮的区域,以及其它相对照明不足的暗区域,因此,即使在合理的曝光时间内,弱光条件下拍摄得到的图像,也会出现某些区域比较亮而某些区域比较暗。对于一般的图像而言,单个颜色通道的动态范围是0-255。对于动态范围较大的场景,非常明亮的区域会因为超出图像采集设备的动态范围而被截止到图像采集设备能够输出的最大值(例如,输出灰度值为255),这些因超过图像采集设备动态范围而被截止的像素点被称为饱和像素点。
弱光条件下拍摄得到的图像往往既存在一定程度的模糊,同时也存在一定量的饱和像素点。在模糊图像对应的模糊核未知,对模糊图像进行盲去模糊的情况下,提出了用于控制饱和像素点符合线性成像过程的预设线性图像模糊模型,使得在模糊核估计过程中可以充分利用模糊图像中的饱和像素点,得到精度较高的目标模糊核。后文会结合本公开可能的实现方式,对确定目标模糊核的过程做详细描述,此处不作赘述。
S12、根据目标模糊核,对模糊图像进行迭代去模糊处理,得到模糊图像对应的目标清晰图像。
由于确定了模糊图像对应的目标模糊核,可以利用目标模糊核,对模糊图像进行迭代去模糊处理。由于此时目标模糊核已知,因此,迭代去模糊处理的过程可以为非盲去模糊处理过程,下述简称为去模糊处理过程。后文会结合本公开可能的实现方式,对迭代去模糊处理过程进行详细描述,此处不作赘述。
在本公开实施例中,根据模糊图像和预设线性图像模糊模型,确定模糊图像对应的目标模糊核,由于预设线性图像模糊模型用于控制模糊图像中的饱和像素点符合线性成像过程,使得在对模糊图像进行模糊核估计时可以充分利用模糊图像中的饱和像素点,以得到精度较高的目标模糊核,进而根据目标模糊核对模糊图像进行迭代去模糊处理后,可以得到清晰度较高的目标清晰图像,从而有效提高了对包含饱和像素点的模糊图像的去模糊效果。
在一种可能的实现方式中,本公开实施例提出了下述公式(1)所示的用于控制模糊图像中的饱和像素点符合线性成像过程的预设线性图像模糊模型:
Figure BDA0003042067130000061
其中,B、I和K分别表示模糊图像、清晰图像和模糊核,M是模糊图像B对应的第一权重矩阵,包括模糊图像B中的像素点对应的置信度值,i是模糊图像B中的像素点,Mi是M中包括的像素点i对应的置信度值,
Figure BDA0003042067130000063
表示哈达玛(Hadamard)乘积运算符号,
Figure BDA0003042067130000062
表示卷积运算符号。
在一种可能的实现方式中,根据模糊图像和预设线性图像模糊模型,确定模糊图像对应的目标模糊核,包括:根据模糊图像和预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,确定目标模糊核,基于最大后验概率的能量函数中包括保真度项、第一先验项和第二先验项,保真度项用于反映模糊图像和目标清晰图像与目标模糊核的卷积之间的相似性,第一先验项是目标清晰图像对应的先验项,第二先验项是目标模糊核对应的先验项。
通过对基于最大后验概率的能量函数进行迭代优化,使得可以在无任何图像预处理操作的情况下,有效确定模糊图像对应的精度较高的目标模糊核,提高了目标模糊核的估计效率,进而可以使得减少了整体去模糊处理的运行时间,提高了去模糊效率。
根据模糊图像和上述公式(1)所示的预设线性图像模糊模型,通过对下述公式(2)所示的基于最大后验概率的能量函数进行迭代优化,可以得到模糊图像对应的精度较高的目标模糊核:
Figure BDA0003042067130000071
其中,L(·)是保真度项,用于反映模糊图像B和去模糊后的目标清晰图像I与目标模糊核K的卷积
Figure BDA0003042067130000072
之间的相似性,PI(I)是目标清晰图像I对应的第一先验项,PK(K)是目标模糊核K对应的第二先验项,λ和β是权重参数。λ和β的具体取值可以根据实际情况确定,例如,λ的具体起取值是0.008,β的具体取值是2,本公开对此不作具体限定。基于最大后验概率的能量函数除了可以采用上述公式(2)所示的表达形式外,还可以采用其它表达形式,本公开对此不作具体限定。
在一种可能的实现方式中,根据模糊图像和预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,确定目标模糊核,包括:根据模糊图像和预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,生成模糊图像对应的第一预测清晰图像;根据模糊图像和第一预测清晰图像,通过对基于最大后验概率的能量函数进行迭代优化,确定目标模糊核。
通过对基于最大后验概率的能量函数进行迭代优化,交替更新第一预测清晰图像和模糊核,在交替更新达到预设迭代条件的情况下,可以有效得到精度较高的目标模糊核。
在交替迭代更新的过程中,第一预测清晰图像和模糊核二者固定其一,对另一个进行更新。例如,对模糊核进行固定,通过对基于最大后验概率的能量函数进行迭代优化,迭代更新得到第一预测清晰图像;对第一预测图像进行固定,通过对基于最大后验概率的能量函数进行迭代优化,迭代更新得到模糊核。
由于第一预测清晰图像和模糊核是分开确定的,因此,可以将上述公式(2)所示的基于最大后验概率的能量函数进行转换,得到下述公式(3)所示的用于生成第一预测清晰图像的基于最大后验概率的第一能量函数,以及下述公式(4)所示的用于确定模糊核的基于最大后验概率的第二能量函数:
Figure BDA0003042067130000081
利用上述公式(3)和公式(4)执行以下模糊核预测过程:对上述公式(3)所示的基于最大后验概率的第一能量函数进行tmax次迭代优化,生成第一预测清晰图像;进而利用第一预测清晰图像,对上述公式(4)所示的基于最大后验概率的第二能量函数进行xmax次迭代优化,生成第一预测模糊核。对上述模糊核预测过程重复执行jmax次,以使得可以根据第一预测模糊核,提高最终得到的目标模糊核的精度。
在一种可能的实现方式中,预先设置tmax、xmax和jmax的具体取值,其具体取值可以是经验性设置得到的,也可以是根据去模糊过程的实际情况进行设置的,本公开对此不作具体限定。
在一示例中,tmax的具体取值可以设置为50。tmax还可以设置为其它具体取值,本公开对此不作具体限定。
假设tmax设置为50,即需要对上述公式(3)所示的基于最大后验概率的第一能量函数进行tmax=50次迭代优化,得到最终的第一预测清晰图像。但是,若在实际迭代优化过程中,上述公式(3)所示的基于最大后验概率的第一能量函数提前达到收敛,则可以提前结束迭代优化。例如,对上述公式(3)所示的基于最大后验概率的第一能量函数进行第40次(t=2<tmax)优化,生成的第一预测清晰图像,与对上述公式(3)所示的基于最大后验概率的第一能量函数进行第41次(t=3<tmax)优化,生成的第一预测清晰图像相同,或者差值小于阈值的情况下,表示上述公式(3)所示的基于最大后验概率的第一能量函数提前达到收敛,则可以提前结束迭代优化,即不再对上述公式(3)所示的基于最大后验概率的第一能量函数进行第42次至第50次的迭代优化。
在一示例中,xmax的具体取值可以设置为5,jmax的具体取值可以设置为4。xmax和jmax还可以设置为其它具体取值,本公开对此不作具体限定。
与上述对公式(3)所示的基于最大后验概率的第一能量函数进行迭代优化的过程类似,对上述公式(4)所示的基于最大后验概率的第二能量函数的迭代优化过程,以及对模糊核预测过程重复执行jmax次的过程,均可以在函数提前达到收敛的情况下,提前结束迭代优化,此处不再赘述。
在一种可能的实现方式中,在j=0的情况下,第0个第一预测模糊核是高斯模糊核。
在对模糊图像进行模糊核预测的初始化过程中,即j=0的情况下,设置第0个第一预测模糊核是高斯模糊核,以使得可以顺利执行后续的模糊核预测过程。第0个第一预测模糊核是高斯模糊核除了可以设置为高斯模糊核之外,还可以初始化设置为其它模糊核,本公开对此不作具体限定。
在一种可能的实现方式中,在j=0且t=0的情况下,第0个第二预测清晰图像是模糊图像,第0个第一权重矩阵是全1矩阵。
在对模糊图像进行模糊核预测的初始化过程中,即j=0且t=0的情况下,设置第0个第二预测清晰图像是模糊图像,第0个第一权重矩阵是全1矩阵,以使得可以顺利执行后续的对基于最大后验概率的第一能量函数和第二能量函数的迭代优化过程。第0个第二预测清晰图像除了可以设置为模糊图像之外,还可以设置为其它形式,第0个第一权重矩阵除了可以设置为全1矩阵之外,还可以设置为其它形式,本公开对此不作具体限定。
在一种可能的实现方式中,根据模糊图像和预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,生成模糊图像对应的第一预测清晰图像,包括:获取对模糊图像进行第j次模糊核预测之后生成的第j个第一预测模糊核;根据模糊图像、预设线性图像模糊模型以及第j个第一预测模糊核,通过对基于最大后验概率的能量函数进行迭代优化,生成第一预测清晰图像,j是大于或等于0的整数。
根据模糊图像、预设线性图像模糊模型以及第j个第一预测模糊核,通过对基于最大后验概率的能量函数进行迭代优化,可以生成用于进行第(j+1)次模糊核预测的第一预测清晰图像,以使得可以有效执行后续的第(j+1)次模糊核预测。
仍以上述公式(3)为例,根据模糊图像、预设线性图像模糊模型以及第j个第一预测模糊核,通过对公式(3)所示的基于最大后验概率的第一能量函数进行tmax次迭代优化,以生成用于进行第(j+1)次模糊核预测的第一预测清晰图像。
在一示例中,根据模糊图像、预设线性图像模糊模型以及第j个第一预测模糊核,可以通过下述公式(5),将上述公式(3)所示的基于最大后验概率的第一能量函数的一阶导数设置为0,以实现对上述公式(3)所示的基于最大后验概率的第一能量函数的迭代优化:
Figure BDA0003042067130000091
其中,KT是K的矩阵转置,PI'(I)是PI(I)的一阶导数。
基于上述公式(3)和公式(5),可以得到下述公式(6)用于迭代更新生成第二预测清晰图像:
Figure BDA0003042067130000092
其中,It是第t次迭代更新生成的第t个第二预测清晰图像,It+1是第(t+1)次迭代更新生成的第(t+1)个第二预测清晰图像。
在一示例中,为了对上述公式(4)所示的基于最大后验概率的第二能量函数进行xmax次迭代优化,可以将上述公式(2)中的保真度项转换为下述公式(7):
Figure BDA0003042067130000101
其中,w是第二权重矩阵,
Figure BDA0003042067130000102
是在度量标准为第二权重矩阵w的情况下的范数,C是一个常数。C的具体取值可以根据实际情况确定,本公开对此不作具体限定。
基于上述公式(4)和公式(7),可以得到下述公式(8)用于迭代更新生成第二预测模糊核:
Figure BDA0003042067130000103
其中,
Figure BDA0003042067130000104
表示梯度算子符号。
在一种可能的实现方式中,根据模糊图像、预设线性图像模糊模型以及第j个第一预测模糊核,通过对基于最大后验概率的能量函数进行迭代优化,生成第一预测清晰图像,包括:获取对模糊图像进行第t次去模糊处理后生成的第t个第二预测清晰图像;根据第j个第一预测模糊核、第t个第二预测清晰图像、第t个第一权重矩阵以及基于最大后验概率的能量函数,对模糊图像进行第(t+1)次去模糊处理,生成第(t+1)个第二预测清晰图像,t是大于或等于0的整数;在(t+1)达到第二预设迭代次数的情况下,将第(t+1)个第二预测清晰图像确定为第一预测清晰图像。
在一种可能的实现方式中,该图像处理方法还包括:在(t+1)未达到第二预设迭代次数的情况下,根据模糊图像、预设线性图像模糊模型、第j个第一预测模糊核以及第(t+1)个第二预测清晰图像,确定用于对模糊图像进行第(t+2)次去模糊处理的第(t+1)个第一权重矩阵;根据第j个第一预测模糊核、第(t+1)个第二预测清晰图像、第(t+1)个第一权重矩阵以及基于最大后验概率的能量函数,对模糊图像进行第(t+2)次去模糊处理,生成第(t+2)个第二预测清晰图像;在(t+2)达到第二预设迭代次数的情况下,将第(t+2)个第二预测清晰图像确定为第一预测清晰图像。
通过交替迭代更新模糊图像对应的第一权重矩阵和第二预测清晰图像,可以在达到第二预设迭代次数的情况下,得到本次交替迭代更新生成的符合条件的第一预测清晰图像,以使得为后续进行模糊核估计做好准备。
交替迭代更新模糊图像对应的第一权重矩阵和第二预测清晰图像,即对上述公式(3)所示的基于最大后验概率的第一能量函数进行tmax次迭代优化,因此,第二预设迭代次数为tmax。tmax的具体取值以及迭代优化过程与上述描述内容相似,此处不再赘述。
在一示例中,在初始化过程中,即j=0且t=0的情况下,第0个第二预测清晰图像Ij=0,t=0是模糊图像,第0个第一权重矩阵Wj=0,t=0是全1矩阵。利用上述公式(1)和公式(6)执行tmax次迭代更新,在tmax次迭代更新的任一更新过程中,第j=0个预测模糊核Kj=0是高斯模糊核,且固定不变。
在t=0的情况下,利用上述公式(6),根据第0个第一预测模糊核Kj=0、第0个第二预测清晰图像Ij=0,t=0以及第0个第一权重矩阵Mj=0,t=0,对模糊图像进行第1次去模糊处理,生成第1个第二预测清晰图像Ij=0,t=1;利用上述公式(1),根据模糊图像B、第0个第一预测模糊核Kj=0以及第1个第二预测清晰图像Ij=0,t=1,确定模糊图像B对应的第1个第一权重矩阵Mj =0,t=1
在t=1的情况下,利用上述公式(6),根据第0个第一预测模糊核Kj=0、第1个第二预测清晰图像Ij=0,t=1以及第1个第一权重矩阵Mj=0,t=1,对模糊图像进行第2次去模糊处理,生成第2个第二预测清晰图像Ij=0,t=2;利用上述公式(1),根据模糊图像B、第0个第一预测模糊核Kj=0以及第2个第二预测清晰图像Ij=0,t=2,确定模糊图像B对应的第2个第一权重矩阵Mj =0,t=2
以此类推,直至t+1=tmax(第二预设迭代次数)的情况下,将生成的第(t+1)个第二预测清晰图像
Figure BDA0003042067130000111
确定为在第1次模糊核预测过程中(j=0),经过tmax迭代更新生成的模糊图像B对应的第一预测清晰图像。
在一种可能的实现方式中,根据模糊图像、第一预测清晰图像、第j个第一预测模糊核以及基于最大后验概率的能量函数,对模糊图像进行第(j+1)次模糊核预测,生成第(j+1)个第一预测模糊核,包括:根据模糊图像、第一预测清晰图像、第j个第一预测模糊核以及基于最大后验概率的能量函数,对模糊图像进行多次迭代模糊核预测,生成第(j+1)个第一预测模糊核。
在一种可能的实现方式中,根据模糊图像、第一预测清晰图像、第j个第一预测模糊核以及基于最大后验概率的能量函数,对模糊图像进行多次迭代模糊核预测,生成第(j+1)个第一预测模糊核,包括:根据模糊图像、第一预测清晰图像以及第x个第二预测模糊核,确定用于对模糊图像进行第(x+1)次模糊核预测的第(x+1)个第二权重矩阵,x是大于或等于0的整数,在x=0的情况下,第0个第二预测模糊核是第j个第一预测模糊核;根据模糊图像、第x个第二预测模糊核、第(x+1)个第二权重矩阵以及基于最大后验概率的能量函数,对模糊图像进行第(x+1)次模糊核预测,生成第(x+1)个第二预测模糊核;在(x+1)达到第三预设迭代次数的情况下,将第(x+1)个第二预测模糊核确定为第(j+1)个第一预测模糊核。
通过交替迭代更新模糊图像对应的第二权重矩阵和第二预测模糊核,可以在达到第三预设迭代次数的情况下,得到本次交替迭代更新生成的符合条件的第一预测模糊核,以使得可以通过多次循环更新第一预测模糊核,最终得到精度较高的目标模糊核。
交替迭代更新模糊图像对应的第二权重矩阵和第二预测模糊核,即对上述公式(4)所示的基于最大后验概率的第二能量函数进行xmax次迭代优化,因此,第三预设迭代次数为xmax。xmax的具体取值以及迭代优化过程与上述描述内容相似,此处不再赘述。
在一示例中,在初始化过程中,即j=0且x=0的情况下,第0个第二预测模糊核Kj =0,x=0是第j=0个第一预测模糊核Kj=0。利用上述公式(2)、公式(7)和公式(8)执行xmax次迭代更新,在xmax次迭代更新的任一更新过程中,第一预测清晰图像是上述在第1次模糊核预测过程中(j=0的情况下),经过tmax迭代更新生成的模糊图像B对应的第一预测清晰图像
Figure BDA0003042067130000121
且固定不变。
在x=0的情况下,利用上述公式(2),根据模糊图像B、第一预测清晰图像
Figure BDA0003042067130000122
以及第0个第二预测模糊核Kj=0,x=0,确定模糊图像对应的第0个第一权重矩阵Mj=0,x=0;利用上述公式(7),根据模糊图像B、第一预测清晰图像
Figure BDA0003042067130000123
第0个第二预测模糊核Kj=0,x=0以及第0个第一权重矩阵Mj=0,x=0,确定模糊图像B对应的第1个第二权重矩阵wj=0,x=1;利用上述公式(8),根据模糊图像B、第0个第二预测模糊核Kj=0,x=0以及第1个第二权重矩阵wj =0,x=1,确定第1个第二预测模糊核Kj=0,x=1
在x=1的情况下,利用上述公式(2),根据模糊图像B、第一预测清晰图像
Figure BDA0003042067130000124
以及第1个第二预测模糊核Kj=0,x=1,确定模糊图像对应的第1个第一权重矩阵Mj=0,x=1;利用上述公式(7),根据模糊图像B、第一预测清晰图像
Figure BDA0003042067130000125
第1个第二预测模糊核Kj=0,x=1以及第1个第一权重矩阵Mj=0,x=1,确定模糊图像B对应的第2个第二权重矩阵wj=0,x=2;利用上述公式(8),根据模糊图像B、第1个第二预测模糊核Kj=0,x=1以及第2个第二权重矩阵wj =0,x=2,确定第2个第二预测模糊核Kj=0,x=2
以此类推,直至x+1=xmax(第三预设迭代次数)的情况下,将生成的第(x+1)个第二预测模糊核
Figure BDA0003042067130000131
确定为在第1次模糊核预测过程中(j=0),经过xmax迭代更新生成的模糊图像B对应的第1个第一预测模糊核
Figure BDA0003042067130000132
在一种可能的实现方式中,根据模糊图像和第一预测清晰图像,通过对基于最大后验概率的能量函数进行迭代优化,确定目标模糊核,包括:根据模糊图像、第一预测清晰图像、第j个第一预测模糊核以及基于最大后验概率的能量函数,对模糊图像进行第(j+1)次模糊核预测,生成第(j+1)个第一预测模糊核;在(j+1)达到第一预设迭代次数的情况下,将第(j+1)个第一预测模糊核确定为目标模糊核。
基于最大后验概率的能量函数进行第一预设次数的迭代模糊核预测,可以提高最终得到的目标模糊核的精度。第一预设迭代次数为jmax,jmax的具体取值以及迭代优化过程与上述描述内容相似,此处不再赘述。
仍以上述j=0的情况下执行的第1次模糊核预测过程为例,利用第1次模糊核预测过程中生成的第一预测清晰图像
Figure BDA0003042067130000133
和第1个第一预测模糊核
Figure BDA0003042067130000134
进行第2次模糊核预测(j=1)。
在j=1且t=0的情况下,第0个第二预测清晰图像Ij=1,t=0是第1次模糊核预测过程中生成的第一预测清晰图像
Figure BDA0003042067130000135
第0个第一权重矩阵Wj=1,t=0是全1矩阵。利用上述公式(1)和公式(6)执行tmax次迭代更新,在tmax次迭代更新的任一更新过程中,第j=1个预测模糊核Kj=1是第1次模糊核预测过程中生成的第1个第一预测模糊核
Figure BDA0003042067130000136
且固定不变。在第2次模糊核预测过程中,经过tmax次迭代更新,得到模糊图像B对应的第一预测清晰图像
Figure BDA0003042067130000137
在第2次模糊核预测过程中的tmax次迭代更新过程与上述在第1次模糊核预测过程中的tmax次迭代更新过程类似,此处不再赘述。
在j=1且x=0的情况下,第0个第二预测模糊核Kj=1,x=0是第1次模糊核预测过程中生成的第1个第一预测模糊核
Figure BDA0003042067130000138
利用上述公式(2)、公式(7)和公式(8)执行xmax次迭代更新,在xmax次迭代更新的任一更新过程中,第一预测清晰图像是上述在第2次模糊核预测过程中(j=1的情况下),经过tmax迭代更新生成的模糊图像B对应的第一预测清晰图像
Figure BDA0003042067130000141
且固定不变。在第2次模糊核预测过程中,经过xmax迭代更新,得到模糊图像B对应的第2个第一预测模糊核
Figure BDA0003042067130000142
以此类推,直至j+1=jmax(第一预设迭代次数)的情况下,将生成的第(j+1)个第一预测模糊核
Figure BDA0003042067130000143
确定为最终确定得到的模糊图像对应的目标模糊核。
在确定模糊图像对应的目标模糊核之后,即可以根据目标模糊核,对模糊图像进行迭代去模糊处理。下面对迭代去模糊过程进行详细描述。
在一种可能的实现方式中,根据目标模糊核,对模糊图像进行迭代去模糊处理,得到模糊图像对应的目标清晰图像,包括:获取对模糊图像进行第y次去模糊处理后生成的第y个第三预测清晰图像;根据目标模糊核、第y个第三预测清晰图像、第y个第三权重矩阵以及基于最大后验概率的能量函数,对模糊图像进行第(y+1)次去模糊处理,生成第(y+1)个第三预测清晰图像,y是大于或等于0的整数;在(y+1)达到第四预设迭代次数的情况下,将第(y+1)个第三预测清晰图像确定为目标清晰图像。
在一种可能的实现方式中,该图像处理方法还包括:在(y+1)未达到第四预设迭代次数的情况下,根据模糊图像、预设线性图像模糊模型、目标模糊核以及第(y+1)个第三预测清晰图像,确定用于对模糊图像进行第(y+2)次去模糊处理的第(y+1)个第三权重矩阵;根据目标模糊核、第(y+1)个第三预测清晰图像、第(y+1)个第三权重矩阵以及基于最大后验概率的能量函数,对模糊图像进行第(y+2)次去模糊处理,生成第(y+2)个第三预测清晰图像;在(y+2)达到第四预设迭代次数的情况下,将第(y+2)个第三预测清晰图像确定为目标清晰图像。
通过交替迭代更新模糊图像对应的第三权重矩阵和第三预测清晰图像,可以在达到第四预设迭代次数的情况下,得到本次交替迭代更新生成的符合条件的目标清晰图像。
交替迭代更新模糊图像对应的第三权重矩阵和第三预测清晰图像,即对上述公式(3)所示的基于最大后验概率的第一能量函数进行ymax次迭代优化,因此,第二预设迭代次数为ymax。ymax的具体取值以及迭代优化过程与上述tmax相似,此处不再赘述。
在一种可能的实现方式中,在y=0的情况下,第0个第三预测清晰图像是模糊图像,第0个第三权重矩阵是全1矩阵。
在根据目标模糊核对模糊图像进行迭代去模糊处理的初始化过程中,即y=0的情况下,设置第0个第三预测清晰图像是模糊图像,第0个第三权重矩阵是全1矩阵,以使得可以顺利执行后续的迭代去模糊处理过程。第0个第三预测清晰图像除了可以设置为模糊图像之外,还可以设置为其它形式,第0个第三权重矩阵除了可以设置为全1矩阵之外,还可以设置为其它形式,本公开对此不作具体限定。
在一示例中,在初始化过程中,即y=0的情况下,第0个第三预测清晰图像Iy=0是模糊图像,第0个第三权重矩阵My=0是全1矩阵。利用上述公式(1)和公式(6)执行ymax次迭代更新。
在y=0的情况下,利用上述公式(6),根据目标模糊核
Figure BDA0003042067130000151
第0个第三预测清晰图像Iy=0以及第0个第三权重矩阵My=0,对模糊图像进行第1次去模糊处理,生成第1个第三预测清晰图像Iy=1;利用上述公式(1),根据模糊图像B、目标模糊核
Figure BDA0003042067130000152
以及第1个第三预测清晰图像Iy=1,确定模糊图像B对应的第1个第三权重矩阵My=1
在y=1的情况下,利用上述公式(6),根据目标模糊核
Figure BDA0003042067130000153
第1个第三预测清晰图像Iy=1以及第1个第三权重矩阵My=1,对模糊图像进行第2次去模糊处理,生成第2个第三预测清晰图像Iy=2;利用上述公式(1),根据模糊图像B、目标模糊核
Figure BDA0003042067130000154
以及第2个第三预测清晰图像Iy=2,确定模糊图像B对应的第2个第一权重矩阵My=2
以此类推,直至y+1=ymax(第四预设迭代次数)的情况下,将生成的第(y+1)个第三预测清晰图像
Figure BDA0003042067130000155
确定为目标清晰图像。
在本公开实施例中,根据模糊图像和预设线性图像模糊模型,确定模糊图像对应的目标模糊核,由于预设线性图像模糊模型用于控制模糊图像中的饱和像素点符合线性成像过程,使得在对模糊图像进行模糊核估计时可以充分利用模糊图像中的饱和像素点,以得到精度较高的目标模糊核,进而根据目标模糊核对模糊图像进行迭代去模糊处理后,可以得到清晰度较高的目标清晰图像,从而有效提高了对包含饱和像素点的模糊图像的去模糊效果。
可以理解,本公开提及的上述各个方法实施例,在不违背原理逻辑的情况下,均可以彼此相互结合形成结合后的实施例,限于篇幅,本公开不再赘述。本领域技术人员可以理解,在具体实施方式的上述方法中,各步骤的具体执行顺序应当以其功能和可能的内在逻辑确定。
此外,本公开还提供了图像处理装置、电子设备、计算机可读存储介质、程序,上述均可用来实现本公开提供的任一种图像处理方法,相应技术方案和描述和参见方法部分的相应记载,不再赘述。
图2示出根据本公开实施例的一种图像处理装置的框图。如图2所示,装置20包括:
确定模块21,用于根据模糊图像和预设线性图像模糊模型,确定模糊图像对应的目标模糊核,预设线性图像模糊模型用于控制模糊图像中的饱和像素点符合线性成像过程;
去模糊处理模块22,用于根据目标模糊核,对模糊图像进行迭代去模糊处理,得到模糊图像对应的目标清晰图像。
在一种可能的实现方式中,确定模块21,包括:
第一确定子模块,用于根据模糊图像和预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,确定目标模糊核,基于最大后验概率的能量函数中包括保真度项、第一先验项和第二先验项,保真度项用于反映模糊图像和目标清晰图像与目标模糊核的卷积之间的相似性,第一先验项是目标清晰图像对应的先验项,第二先验项是目标模糊核对应的先验项。
在一种可能的实现方式中,第一确定子模块,包括:
第一确定单元,用于根据模糊图像和预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,生成模糊图像对应的第一预测清晰图像;
第二确定单元,用于根据模糊图像和第一预测清晰图像,通过对基于最大后验概率的能量函数进行迭代优化,确定目标模糊核。
在一种可能的实现方式中,第一确定单元,包括:
第一获取子单元,用于获取对模糊图像进行第j次模糊核预测之后生成的第j个第一预测模糊核;
第一确定子单元,用于根据模糊图像、预设线性图像模糊模型以及第j个第一预测模糊核,通过对基于最大后验概率的能量函数进行迭代优化,生成第一预测清晰图像,j是大于或等于0的整数。
在一种可能的实现方式中,第二确定单元,包括:
第二获取子单元,用于获取对模糊图像进行第j次模糊核预测之后生成的第j个第一预测模糊核;
第二确定子单元,用于根据模糊图像、第一预测清晰图像、第j个第一预测模糊核以及基于最大后验概率的能量函数,对模糊图像进行第(j+1)次模糊核预测,生成第(j+1)个第一预测模糊核;
第三确定子单元,用于在(j+1)达到第一预设迭代次数的情况下,将第(j+1)个第一预测模糊核确定为目标模糊核。
在一种可能的实现方式中,在j=0的情况下,第0个第一预测模糊核是高斯模糊核。
在一种可能的实现方式中,第一确定子单元,具体用于:
获取对模糊图像进行第t次去模糊处理后生成的第t个第二预测清晰图像;
根据第j个第一预测模糊核、第t个第二预测清晰图像、第t个第一权重矩阵以及基于最大后验概率的能量函数,对模糊图像进行第(t+1)次去模糊处理,生成第(t+1)个第二预测清晰图像,t是大于或等于0的整数;
在(t+1)达到第二预设迭代次数的情况下,将第(t+1)个第二预测清晰图像确定为第一预测清晰图像。
在一种可能的实现方式中,第一确定子单元,还具体用于:
在(t+1)未达到第二预设迭代次数的情况下,根据模糊图像、预设线性图像模糊模型、第j个第一预测模糊核以及第(t+1)个第二预测清晰图像,确定用于对模糊图像进行第(t+2)次去模糊处理的第(t+1)个第一权重矩阵;
根据第j个第一预测模糊核、第(t+1)个第二预测清晰图像、第(t+1)个第一权重矩阵以及所述基于最大后验概率的能量函数,对模糊图像进行第(t+2)次去模糊处理,生成第(t+2)个第二预测清晰图像;
在(t+2)达到第二预设迭代次数的情况下,将第(t+2)个第二预测清晰图像确定为第一预测清晰图像。
在一种可能的实现方式中,在j=0且t=0的情况下,第0个第二预测清晰图像是所述模糊图像,第0个第一权重矩阵是全1矩阵。
在一种可能的实现方式中,第二确定子单元,具体用于:
根据模糊图像、第一预测清晰图像、第j个第一预测模糊核以及基于最大后验概率的能量函数,对模糊图像进行多次迭代模糊核预测,生成第(j+1)个第一预测模糊核。
在一种可能的实现方式中,第二确定子单元,还具体用于:
根据模糊图像、第一预测清晰图像以及第x个第二预测模糊核,确定用于对模糊图像进行第(x+1)次模糊核预测的第(x+1)个第二权重矩阵,x是大于或等于0的整数,在x=0的情况下,第0个第二预测模糊核是第j个第一预测模糊核;
根据模糊图像、第x个第二预测模糊核、第(x+1)个第二权重矩阵以及基于最大后验概率的能量函数,对模糊图像进行第(x+1)次模糊核预测,生成第(x+1)个第二预测模糊核;
在(x+1)达到第三预设迭代次数的情况下,将第(x+1)个第二预测模糊核确定为第(j+1)个第一预测模糊核。
在一种可能的实现方式中,去模糊处理模块22,具体用于:
获取对模糊图像进行第y次去模糊处理后生成的第y个第三预测清晰图像;
根据目标模糊核、第y个第三预测清晰图像、第y个第三权重矩阵以及所述基于最大后验概率的能量函数,对模糊图像进行第(y+1)次去模糊处理,生成第(y+1)个第三预测清晰图像,y是大于或等于0的整数;
在(y+1)达到第四预设迭代次数的情况下,将第(y+1)个第三预测清晰图像确定为所述目标清晰图像。
在一种可能的实现方式中,去模糊处理模块22,还具体用于:
在(y+1)未达到第四预设迭代次数的情况下,根据模糊图像、预设线性图像模糊模型、目标模糊核以及第(y+1)个第三预测清晰图像,确定用于对模糊图像进行第(y+2)次去模糊处理的第(y+1)个第三权重矩阵;
根据目标模糊核、第(y+1)个第三预测清晰图像、第(y+1)个第三权重矩阵以及基于最大后验概率的能量函数,对模糊图像进行第(y+2)次去模糊处理,生成第(y+2)个第三预测清晰图像;
在(y+2)达到第四预设迭代次数的情况下,将第(y+2)个第三预测清晰图像确定为目标清晰图像。
在一种可能的实现方式中,在y=0的情况下,第0个第三预测清晰图像是模糊图像,第0个第三权重矩阵是全1矩阵。
在一些实施例中,本公开实施例提供的装置具有的功能或包含的模块可以用于执行上文方法实施例描述的方法,其具体实现可以参照上文方法实施例的描述,为了简洁,这里不再赘述。
本公开实施例还提出一种计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现上述方法。计算机可读存储介质可以是易失性或非易失性计算机可读存储介质。
本公开实施例还提出一种电子设备,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为调用所述存储器存储的指令,以执行上述方法。
本公开实施例还提供了一种计算机程序产品,包括计算机可读代码,当计算机可读代码在设备上运行时,设备中的处理器执行用于实现如上任一实施例提供的图像处理方法的指令。
本公开实施例还提供了另一种计算机程序产品,用于存储计算机可读指令,指令被执行时使得计算机执行上述任一实施例提供的图像处理方法的操作。
电子设备可以被提供为终端、服务器或其它形态的设备。
图3示出根据本公开实施例的一种电子设备的框图。如图3所示,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等终端。
参照图3,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为电子设备800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述电子设备800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当电子设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到电子设备800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如互补金属氧化物半导体(CMOS)或电荷耦合装置(CCD)图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。电子设备800可以接入基于通信标准的无线网络,如无线网络(WiFi),第二代移动通信技术(2G)或第三代移动通信技术(3G),或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器804,上述计算机程序指令可由电子设备800的处理器820执行以完成上述方法。
图4示出根据本公开实施例的一种电子设备的框图。如图4所示,电子设备1900可以被提供为一服务器。参照图4,电子设备1900包括处理组件1922,其进一步包括一个或多个处理器,以及由存储器1932所代表的存储器资源,用于存储可由处理组件1922的执行的指令,例如应用程序。存储器1932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1922被配置为执行指令,以执行上述方法。
电子设备1900还可以包括一个电源组件1926被配置为执行电子设备1900的电源管理,一个有线或无线网络接口1950被配置为将电子设备1900连接到网络,和一个输入输出(I/O)接口1958。电子设备1900可以操作基于存储在存储器1932的操作系统,例如微软服务器操作系统(Windows ServerTM),苹果公司推出的基于图形用户界面操作系统(MacOSXTM),多用户多进程的计算机操作系统(UnixTM),自由和开放原代码的类Unix操作系统(LinuxTM),开放原代码的类Unix操作系统(FreeBSDTM)或类似。
在示例性实施例中,还提供了一种非易失性计算机可读存储介质,例如包括计算机程序指令的存储器1932,上述计算机程序指令可由电子设备1900的处理组件1922执行以完成上述方法。
本公开可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本公开的各个方面的计算机可读程序指令。
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是(但不限于)电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
用于执行本公开操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本公开的各个方面。
这里参照根据本公开实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本公开的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
附图中的流程图和框图显示了根据本公开的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
该计算机程序产品可以具体通过硬件、软件或其结合的方式实现。在一个可选实施例中,所述计算机程序产品具体体现为计算机存储介质,在另一个可选实施例中,计算机程序产品具体体现为软件产品,例如软件开发包(Software Development Kit,SDK)等等。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (17)

1.一种图像处理方法,其特征在于,包括:
根据模糊图像和预设线性图像模糊模型,确定所述模糊图像对应的目标模糊核,所述预设线性图像模糊模型用于控制所述模糊图像中的饱和像素点符合线性成像过程;
根据所述目标模糊核,对所述模糊图像进行迭代去模糊处理,得到所述模糊图像对应的目标清晰图像。
2.根据权利要求1所述的方法,其特征在于,所述根据模糊图像和预设线性图像模糊模型,确定所述模糊图像对应的目标模糊核,包括:
根据所述模糊图像和所述预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,确定所述目标模糊核,所述基于最大后验概率的能量函数中包括保真度项、第一先验项和第二先验项,所述保真度项用于反映所述模糊图像和所述目标清晰图像与所述目标模糊核的卷积之间的相似性,所述第一先验项是所述目标清晰图像对应的先验项,所述第二先验项是所述目标模糊核对应的先验项。
3.根据权利要求2所述的方法,其特征在于,所述根据所述模糊图像和所述预设线性图像模糊模型,通过对基于最大后验概率的能量函数进行迭代优化,确定所述目标模糊核,包括:
根据所述模糊图像和所述预设线性图像模糊模型,通过对所述基于最大后验概率的能量函数进行迭代优化,生成所述模糊图像对应的第一预测清晰图像;
根据所述模糊图像和所述第一预测清晰图像,通过对所述基于最大后验概率的能量函数进行迭代优化,确定所述目标模糊核。
4.根据权利要求3所述的方法,其特征在于,所述根据所述模糊图像和所述预设线性图像模糊模型,通过对所述基于最大后验概率的能量函数进行迭代优化,生成所述模糊图像对应的第一预测清晰图像,包括:
获取对所述模糊图像进行第j次模糊核预测之后生成的第j个第一预测模糊核;
根据所述模糊图像、所述预设线性图像模糊模型以及所述第j个第一预测模糊核,通过对所述基于最大后验概率的能量函数进行迭代优化,生成所述第一预测清晰图像,j是大于或等于0的整数。
5.根据权利要求3所述的方法,其特征在于,所述根据所述模糊图像和所述第一预测清晰图像,通过对所述基于最大后验概率的能量函数进行迭代优化,确定所述目标模糊核,包括:
获取对所述模糊图像进行第j次模糊核预测之后生成的第j个第一预测模糊核;
根据所述模糊图像、所述第一预测清晰图像、所述第j个第一预测模糊核以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(j+1)次模糊核预测,生成第(j+1)个第一预测模糊核;
在(j+1)达到第一预设迭代次数的情况下,将所述第(j+1)个第一预测模糊核确定为所述目标模糊核。
6.根据权利要求4或5所述的方法,其特征在于,在j=0的情况下,第0个第一预测模糊核是高斯模糊核。
7.根据权利要求4所述的方法,其特征在于,所述根据所述模糊图像、所述预设线性图像模糊模型以及所述第j个第一预测模糊核,通过对所述基于最大后验概率的能量函数进行迭代优化,生成所述第一预测清晰图像,包括:
获取对所述模糊图像进行第t次去模糊处理后生成的第t个第二预测清晰图像;
根据所述第j个第一预测模糊核、所述第t个第二预测清晰图像、第t个第一权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(t+1)次去模糊处理,生成第(t+1)个第二预测清晰图像,t是大于或等于0的整数;
在(t+1)达到第二预设迭代次数的情况下,将所述第(t+1)个第二预测清晰图像确定为所述第一预测清晰图像。
8.根据权利要求7所述的方法,其特征在于,所述方法还包括:
在(t+1)未达到所述第二预设迭代次数的情况下,根据所述模糊图像、所述预设线性图像模糊模型、所述第j个第一预测模糊核以及所述第(t+1)个第二预测清晰图像,确定用于对所述模糊图像进行第(t+2)次去模糊处理的第(t+1)个第一权重矩阵;
根据所述第j个第一预测模糊核、所述第(t+1)个第二预测清晰图像、所述第(t+1)个第一权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(t+2)次去模糊处理,生成第(t+2)个第二预测清晰图像;
在(t+2)达到所述第二预设迭代次数的情况下,将所述第(t+2)个第二预测清晰图像确定为所述第一预测清晰图像。
9.根据权利要求7或8所述的方法,其特征在于,在j=0且t=0的情况下,第0个第二预测清晰图像是所述模糊图像,第0个第一权重矩阵是全1矩阵。
10.根据权利要求5所述的方法,其特征在于,所述根据所述模糊图像、所述第一预测清晰图像、所述第j个第一预测模糊核以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(j+1)次模糊核预测,生成第(j+1)个第一预测模糊核,包括:
根据所述模糊图像、所述第一预测清晰图像、所述第j个第一预测模糊核以及所述基于最大后验概率的能量函数,对所述模糊图像进行多次迭代模糊核预测,生成所述第(j+1)个第一预测模糊核。
11.根据权利要求10所述的方法,其特征在于,所述根据所述模糊图像、所述第一预测清晰图像、所述第j个第一预测模糊核以及所述基于最大后验概率的能量函数,对所述模糊图像进行多次迭代模糊核预测,生成所述第(j+1)个第一预测模糊核,包括:
根据所述模糊图像、所述第一预测清晰图像以及第x个第二预测模糊核,确定用于对所述模糊图像进行第(x+1)次模糊核预测的第(x+1)个第二权重矩阵,x是大于或等于0的整数,在x=0的情况下,第0个第二预测模糊核是所述第j个第一预测模糊核;
根据所述模糊图像、所述第x个第二预测模糊核、所述第(x+1)个第二权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(x+1)次模糊核预测,生成第(x+1)个第二预测模糊核;
在(x+1)达到第三预设迭代次数的情况下,将所述第(x+1)个第二预测模糊核确定为所述第(j+1)个第一预测模糊核。
12.根据权利要求2至5中任意一项所述的方法,其特征在于,所述根据所述目标模糊核,对所述模糊图像进行迭代去模糊处理,得到所述模糊图像对应的目标清晰图像,包括:
获取对所述模糊图像进行第y次去模糊处理后生成的第y个第三预测清晰图像;
根据所述目标模糊核、所述第y个第三预测清晰图像、第y个第三权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(y+1)次去模糊处理,生成第(y+1)个第三预测清晰图像,y是大于或等于0的整数;
在(y+1)达到第四预设迭代次数的情况下,将所述第(y+1)个第三预测清晰图像确定为所述目标清晰图像。
13.根据权利要求12所述的方法,其特征在于,所述方法还包括:
在(y+1)未达到所述第四预设迭代次数的情况下,根据所述模糊图像、所述预设线性图像模糊模型、所述目标模糊核以及所述第(y+1)个第三预测清晰图像,确定用于对所述模糊图像进行第(y+2)次去模糊处理的第(y+1)个第三权重矩阵;
根据所述目标模糊核、所述第(y+1)个第三预测清晰图像、所述第(y+1)个第三权重矩阵以及所述基于最大后验概率的能量函数,对所述模糊图像进行第(y+2)次去模糊处理,生成第(y+2)个第三预测清晰图像;
在(y+2)达到所述第四预设迭代次数的情况下,将所述第(y+2)个第三预测清晰图像确定为所述目标清晰图像。
14.根据权利要求12所述的方法,其特征在于,在y=0的情况下,第0个第三预测清晰图像是所述模糊图像,第0个第三权重矩阵是全1矩阵。
15.一种图像处理装置,其特征在于,包括:
确定模块,用于根据模糊图像和预设线性图像模糊模型,确定所述模糊图像对应的目标模糊核,所述预设线性图像模糊模型用于控制所述模糊图像中的饱和像素点符合线性成像过程;
去模糊处理模块,用于根据所述目标模糊核,对所述模糊图像进行迭代去模糊处理,得到所述模糊图像对应的目标清晰图像。
16.一种电子设备,其特征在于,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为调用所述存储器存储的指令,以执行权利要求1至14中任意一项所述的方法。
17.一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至14中任意一项所述的方法。
CN202110459998.1A 2021-04-27 2021-04-27 图像处理方法及装置、电子设备和存储介质 Active CN113177889B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110459998.1A CN113177889B (zh) 2021-04-27 2021-04-27 图像处理方法及装置、电子设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110459998.1A CN113177889B (zh) 2021-04-27 2021-04-27 图像处理方法及装置、电子设备和存储介质

Publications (2)

Publication Number Publication Date
CN113177889A CN113177889A (zh) 2021-07-27
CN113177889B true CN113177889B (zh) 2022-03-01

Family

ID=76926665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110459998.1A Active CN113177889B (zh) 2021-04-27 2021-04-27 图像处理方法及装置、电子设备和存储介质

Country Status (1)

Country Link
CN (1) CN113177889B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663718A (zh) * 2012-03-19 2012-09-12 清华大学 一种全局不一致图像去模糊的方法及系统
CN104091312A (zh) * 2014-07-11 2014-10-08 中国人民解放军国防科学技术大学 一种根据图像频谱信息提取模糊核先验的单透镜成像方法
CN104933693A (zh) * 2015-07-02 2015-09-23 浙江大学 一种用于有饱和像素场景的多幅图像复原方法
WO2019148739A1 (zh) * 2018-01-31 2019-08-08 上海康斐信息技术有限公司 一种模糊图像综合处理方法和系统
CN110930433A (zh) * 2019-11-21 2020-03-27 华南理工大学 一种基于图像复原的高速移动对象机器视觉目标检测方法
CN111047544A (zh) * 2020-01-08 2020-04-21 华中科技大学 一种基于非线性退化模型的饱和图像去模糊方法
CN112040202A (zh) * 2020-08-18 2020-12-04 重庆港宇高科技开发有限公司 场景识别方法、装置及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139886B2 (en) * 2008-06-23 2012-03-20 Microsoft Corporation Blur estimation
US9245328B2 (en) * 2012-03-29 2016-01-26 Nikon Corporation Algorithm for minimizing latent sharp image cost function and point spread function with a spatial mask in a fidelity term
CN105976332B (zh) * 2016-05-03 2019-03-01 北京大学深圳研究生院 基于图像中亮条纹信息的图像去模糊方法
US20180089809A1 (en) * 2016-09-27 2018-03-29 Nikon Corporation Image deblurring with a multiple section, regularization term
CN108391060B (zh) * 2018-03-26 2021-02-09 华为技术有限公司 一种图像处理方法、图像处理装置和终端
CN109919871A (zh) * 2019-03-05 2019-06-21 重庆大学 基于图像和模糊核混合约束的模糊核估计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102663718A (zh) * 2012-03-19 2012-09-12 清华大学 一种全局不一致图像去模糊的方法及系统
CN104091312A (zh) * 2014-07-11 2014-10-08 中国人民解放军国防科学技术大学 一种根据图像频谱信息提取模糊核先验的单透镜成像方法
CN104933693A (zh) * 2015-07-02 2015-09-23 浙江大学 一种用于有饱和像素场景的多幅图像复原方法
WO2019148739A1 (zh) * 2018-01-31 2019-08-08 上海康斐信息技术有限公司 一种模糊图像综合处理方法和系统
CN110930433A (zh) * 2019-11-21 2020-03-27 华南理工大学 一种基于图像复原的高速移动对象机器视觉目标检测方法
CN111047544A (zh) * 2020-01-08 2020-04-21 华中科技大学 一种基于非线性退化模型的饱和图像去模糊方法
CN112040202A (zh) * 2020-08-18 2020-12-04 重庆港宇高科技开发有限公司 场景识别方法、装置及存储介质

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Deblurring Shaken and Partially Saturated Images";Oliver Whyte, at el.;《2011 IEEE International Conference on Computer Vision Workshops》;20111231;745-752 *
"Enhanced Sparse Model for Blind Deblurring";Liang Chen, at el.;《ECCV》;20201231;631-646 *
"OID: Outlier Identifying and Discarding in Blind Image Deblurring";Liang Chen, at el.;《ECCV》;20201231;598-613 *
"具有显著异常值的模糊图像去卷积算法研究";李振翮;《中国优秀硕士学位论文全文数据库 信息科技辑》;20210115(第01期);I138-1976 *
"基于局部最大梯度的单幅图像去模糊方法研究";陈亮;《中国优秀硕士学位论文全文数据库 信息科技辑》;20200215(第02期);138-1598 *
"基于自适应先验的图像盲去模糊";毛财胜;《中国优秀硕士学位论文全文数据库 信息科技辑》;20210215(第02期);I138-1039 *

Also Published As

Publication number Publication date
CN113177889A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
CN110390394B (zh) 批归一化数据的处理方法及装置、电子设备和存储介质
CN111507408B (zh) 图像处理方法及装置、电子设备和存储介质
CN111445414B (zh) 图像处理方法及装置、电子设备和存储介质
CN111340731B (zh) 图像处理方法及装置、电子设备和存储介质
CN111539410B (zh) 字符识别方法及装置、电子设备和存储介质
WO2022247103A1 (zh) 图像处理方法及装置、电子设备和计算机可读存储介质
CN110675355B (zh) 图像重建方法及装置、电子设备和存储介质
CN111583142B (zh) 图像降噪方法及装置、电子设备和存储介质
WO2022021932A1 (zh) 降噪方法及装置、电子设备、存储介质和计算机程序产品
CN111369482B (zh) 图像处理方法及装置、电子设备和存储介质
CN113177890B (zh) 图像处理方法及装置、电子设备和存储介质
CN113139947A (zh) 图像处理方法及装置、电子设备和存储介质
CN112785672A (zh) 图像处理方法及装置、电子设备和存储介质
CN113689361B (zh) 图像处理方法及装置、电子设备和存储介质
CN111784773A (zh) 图像处理方法及装置、神经网络训练方法及装置
CN113506229B (zh) 神经网络训练和图像生成方法及装置
CN109635926B (zh) 用于神经网络的注意力特征获取方法、装置及存储介质
CN113660531A (zh) 视频处理方法及装置、电子设备和存储介质
CN111369438B (zh) 图像处理方法及装置、电子设备和存储介质
CN112102300A (zh) 计数方法及装置、电子设备和存储介质
CN113177889B (zh) 图像处理方法及装置、电子设备和存储介质
CN113689362B (zh) 图像处理方法及装置、电子设备和存储介质
CN112651880B (zh) 视频数据处理方法及装置、电子设备和存储介质
CN113034407B (zh) 图像处理方法及装置、电子设备和存储介质
CN111369456B (zh) 图像去噪方法及装置、电子设备和存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant