CN113176572A - Sea surface wave spectrum inversion method and system based on circular scanning SAR - Google Patents
Sea surface wave spectrum inversion method and system based on circular scanning SAR Download PDFInfo
- Publication number
- CN113176572A CN113176572A CN202110460618.6A CN202110460618A CN113176572A CN 113176572 A CN113176572 A CN 113176572A CN 202110460618 A CN202110460618 A CN 202110460618A CN 113176572 A CN113176572 A CN 113176572A
- Authority
- CN
- China
- Prior art keywords
- wave spectrum
- sub
- spectrum
- image
- inversion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 174
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000012545 processing Methods 0.000 claims abstract description 20
- 238000004364 calculation method Methods 0.000 claims abstract description 15
- 238000010606 normalization Methods 0.000 claims abstract description 12
- 230000004927 fusion Effects 0.000 claims abstract description 11
- 238000005316 response function Methods 0.000 claims description 10
- 238000012886 linear function Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 3
- 230000003595 spectral effect Effects 0.000 claims 2
- 230000000903 blocking effect Effects 0.000 claims 1
- 238000004088 simulation Methods 0.000 claims 1
- 238000012546 transfer Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 101000802640 Homo sapiens Lactosylceramide 4-alpha-galactosyltransferase Proteins 0.000 description 1
- 102100035838 Lactosylceramide 4-alpha-galactosyltransferase Human genes 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009022 nonlinear effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9021—SAR image post-processing techniques
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种基于环扫SAR的海面波浪谱反演方法及系统,该方法包括:获取环扫SAR数据并对环扫SAR数据进行分块处理,得到多个子图像;对子图像进行归一化处理,得到归一化后的子图像;对归一化后的子图像进行交叉谱计算和波浪谱反演,得到对应子图像反演的波浪谱数据;将子图像反演的波浪谱数据进行融合,得到最终波浪谱信息。该系统包括:数据划分模块、归一化模块、波浪谱反演模块和融合模块。通过使用本发明,可以有效地克服单视向SAR的方位向非线性导致的误差,实现对波浪谱的大范围高时间精度观测。本发明作为一种基于环扫SAR的海面波浪谱反演方法及系统,可广泛应用于卫星遥感数据处理领域。
The invention discloses a sea surface wave spectrum inversion method and system based on ring-scanning SAR. The method includes: acquiring ring-scanning SAR data and performing block processing on the ring-scanning SAR data to obtain a plurality of sub-images; normalizing the sub-images Normalize the sub-image to obtain the normalized sub-image; perform cross-spectrum calculation and wave spectrum inversion on the normalized sub-image to obtain the wave spectrum data of the corresponding sub-image inversion; invert the wave spectrum of the sub-image The data are fused to obtain the final wave spectrum information. The system includes: data division module, normalization module, wave spectrum inversion module and fusion module. By using the present invention, the error caused by the nonlinearity of the azimuth direction of the one-way SAR can be effectively overcome, and the large-scale and high-time-precision observation of the wave spectrum can be realized. As a sea surface wave spectrum inversion method and system based on ring scanning SAR, the present invention can be widely used in the field of satellite remote sensing data processing.
Description
技术领域technical field
本发明涉及卫星遥感数据处理领域,尤其涉及一种基于环扫SAR的海面波浪谱反演方法及系统。The invention relates to the field of satellite remote sensing data processing, in particular to a sea surface wave spectrum inversion method and system based on a ring scan SAR.
背景技术Background technique
海浪是发生在海洋表面的一类典型的波动现象,是海洋动力学中最常见的一种形式。研究海浪运动对海洋工程作业、海洋开发、海洋捕捞与养殖、海洋灾害预测等活动具有重大意义。海浪的信息通常用波浪谱的形式表达,海浪的能量与频率之间具有特定的相关性,波浪谱表征了海浪的能量在频率和传播方向上的集中分布。波浪谱可以观测海域内海浪的波长、波高、周期和传播方向等要素,具有直观易读的特点。Ocean waves are a type of typical wave phenomenon that occurs on the ocean surface and are the most common form of ocean dynamics. The study of wave motion is of great significance to marine engineering operations, marine development, marine fishing and aquaculture, marine disaster prediction and other activities. The information of ocean waves is usually expressed in the form of wave spectrum. There is a specific correlation between the energy and frequency of ocean waves. The wave spectrum represents the concentrated distribution of the energy of ocean waves in frequency and propagation direction. The wave spectrum can observe the wavelength, wave height, period and propagation direction of the waves in the sea area, which is intuitive and easy to read.
合成孔径雷达(SyntheticApertureRadar,SAR)是目前能够测量海洋表面波浪谱的星载设备之一,是用于海浪观测最有效的手段。但是,传统SAR的刈幅和覆盖范围有限,不适合开阔海域大覆盖面积的观测要求,不能满足大范围波浪波谱测量的高时间分辨率要求。Synthetic Aperture Radar (SAR) is currently one of the spaceborne devices that can measure the wave spectrum on the ocean surface, and it is the most effective means for ocean wave observation. However, the swath and coverage of traditional SAR are limited, so they are not suitable for the observation requirements of large coverage areas in the open sea, and cannot meet the high temporal resolution requirements of large-scale wave spectrum measurements.
发明内容SUMMARY OF THE INVENTION
为了解决上述技术问题,本发明提供了一种基于环扫SAR的海面波浪谱反演方法及系统,提高刈幅和覆盖范围,有效地克服单视向SAR的方位向非线性导致的误差。In order to solve the above technical problems, the present invention provides a sea surface wave spectrum inversion method and system based on ring scan SAR, which can improve the swath and coverage, and effectively overcome the error caused by the azimuth nonlinearity of single-looking SAR.
本发明所采用的第一技术方案是:一种基于环扫SAR的海面波浪谱反演方法,包括以下步骤:The first technical solution adopted by the present invention is: a sea surface wave spectrum inversion method based on ring scan SAR, comprising the following steps:
S1、获取环扫SAR数据并对环扫SAR数据进行分块处理,得到多个子图像;S1. Acquire ring-scan SAR data and perform block processing on the ring-scan SAR data to obtain multiple sub-images;
S2、对子图像进行归一化处理,得到归一化后的子图像;S2, normalize the sub-image to obtain a normalized sub-image;
S3、对归一化后的子图像进行交叉谱计算和波浪谱反演,得到对应子图像反演的波浪谱数据;S3, performing cross-spectrum calculation and wave spectrum inversion on the normalized sub-image to obtain wave spectrum data inversion of the corresponding sub-image;
S4、将子图像反演的波浪谱数据进行融合,得到最终波浪谱信息。S4, fuse the wave spectrum data inverted from the sub-image to obtain final wave spectrum information.
进一步,所述对子图像进行归一化处理具体为非线性归一化处理,公式如下:Further, the normalization processing on the sub-image is specifically nonlinear normalization processing, and the formula is as follows:
上式中,I0(x,t)代表原始子图像,x=(x,y)代表图像域的二维坐标,x代表距离向,y为方位向,t代表时间,<I0>代表I0(x,t)的平均统计量,Is(x,t)代表归一化后的子图像,α1、α2表示对应参数。In the above formula, I 0 (x, t) represents the original sub-image, x=(x, y) represents the two-dimensional coordinates of the image domain, x represents the distance direction, y is the azimuth direction, t represents time, and <I 0 > represents The average statistic of I 0 (x, t ), Is (x, t) represents the normalized sub-image, and α 1 and α 2 represent the corresponding parameters.
进一步,所述对归一化的子图像进行交叉谱计算和波浪谱反演,得到对应子图像反演的波浪谱数据这一步骤,其具体包括:Further, the step of performing cross-spectrum calculation and wave spectrum inversion on the normalized sub-image to obtain the wave spectrum data inversion of the corresponding sub-image specifically includes:
S31、基于交叉谱正演模型对归一化的图像进行处理,得到观察交叉谱;S31. Process the normalized image based on the cross-spectrum forward model to obtain the observed cross-spectrum;
S32、获取风速风向信息并生成初猜波浪谱;S32. Obtain wind speed and direction information and generate a preliminary guessed wave spectrum;
S33、通过初猜波浪谱进行正演计算得到初猜交叉谱,即仿真交叉谱;S33. Perform forward calculation through the initial guessed wave spectrum to obtain the initial guessed cross-spectrum, that is, the simulated cross-spectrum;
S34、基于预设的价格函数、观察交叉谱和初猜交叉谱,判断是否达到收敛条件;S34. Based on the preset price function, observing the cross-spectrum and guessing the cross-spectrum, determine whether the convergence condition is reached;
S35、判断是否达到收敛条件,计算迭代步长和方向导数并对波浪谱进行修正,得到修正后的波浪谱;S35, judging whether the convergence condition is reached, calculating the iterative step size and the directional derivative, and correcting the wave spectrum to obtain the corrected wave spectrum;
S36、返回步骤S33,迭代直至达到收敛条件,得到对应子图像反演的波浪谱数据。S36. Return to step S33, iterate until the convergence condition is reached, and obtain wave spectrum data corresponding to the sub-image inversion.
进一步,所述预设的价格函数公式如下:Further, the preset price function formula is as follows:
J=∫[|Pql(k',t)-Pobs(k',t)|2+μ|S(k')-Sg(k')|2]·Wp(k')dk'J=∫[|P ql (k',t)-P obs (k',t)| 2 +μ|S(k')-S g (k')| 2 ]·W p (k')dk '
上式中,Wp为一个非负权重函数,Pobs(k',t)为观察交叉谱,Pql(k',t)为初猜交叉谱,k'为初始波数域,μ为一加权比例系数,S(k')为反演得到的波浪谱,Sg(k')为初猜谱,k为(kx,ky)二维波数域。In the above formula, W p is a non-negative weight function, P obs (k', t) is the observed cross-spectrum, P ql (k', t) is the initial guessed cross-spectrum, k' is the initial wavenumber domain, and μ is a Weighted scale coefficient, S(k') is the wave spectrum obtained by inversion, S g (k') is the initial guess spectrum, and k is the (k x , k y ) two-dimensional wavenumber domain.
进一步,所述修正后的波浪谱的表达式如下:Further, the expression of the modified wave spectrum is as follows:
Sn+1(k)=Sn(k)+β1ΔS1(k)+β2ΔS2(k)Sn +1 (k)= Sn (k)+β 1 ΔS 1 (k)+β 2 ΔS 2 (k)
上式中,Sn(k)为第n次迭代得到的波浪谱,Sn+1(k)为第n+1次迭代的波浪谱,ΔS1(k)和ΔS2(k)代表步长,β1和β2代表修正系数。In the above formula, Sn (k) is the wave spectrum obtained at the nth iteration, Sn +1 (k) is the wave spectrum obtained at the n+1th iteration, ΔS 1 (k) and ΔS 2 (k) represent the step long, β 1 and β 2 represent correction coefficients.
进一步,所述将子图像反演的波浪谱数据进行融合,得到最终波浪谱信息这一步骤,其具体包括:Further, the step of fusing the wave spectrum data inverted from the sub-images to obtain the final wave spectrum information specifically includes:
S41、计算子图像对应的点响应函数、波浪谱线性函数和波浪谱;S41, calculate the point response function, the wave spectrum linear function and the wave spectrum corresponding to the sub-image;
S42、将对应的点响应函数、波浪谱线性函数和波浪谱进行加权融合,得到多角度融合后的波浪谱。S42. Perform weighted fusion of the corresponding point response function, the wave spectrum linear function and the wave spectrum to obtain a multi-angle fusion wave spectrum.
进一步,所述最终波浪谱信息S(k)的计算公式如下:Further, the calculation formula of the final wave spectrum information S(k) is as follows:
上式中,Hn(k)、Tn(k)、Sn(k)分别为第n副子孔径图像的分辨率点响应函数、线性调制系数以及波浪谱。In the above formula, H n (k), T n (k), and Sn (k) are the resolution point response function, linear modulation coefficient and wave spectrum of the nth sub-aperture image, respectively.
本发明所采用的第二技术方案是:一种基于环扫SAR的海面波浪谱反演系统,包括:The second technical solution adopted by the present invention is: a sea surface wave spectrum inversion system based on ring scan SAR, comprising:
数据划分模块,用于获取环扫SAR数据并对环扫SAR数据进行分块处理,得到多个子图像;The data division module is used to obtain the ring scan SAR data and perform block processing on the ring scan SAR data to obtain multiple sub-images;
归一化模块,用于对子图像进行归一化处理,得到归一化后的子图像;The normalization module is used to normalize the sub-image to obtain the normalized sub-image;
波浪谱反演模块,用于对归一化后的子图像进行交叉谱计算和波浪谱反演,得到对应子图像反演的波浪谱数据;The wave spectrum inversion module is used to perform cross-spectrum calculation and wave spectrum inversion on the normalized sub-images, and obtain the wave spectrum data of the corresponding sub-image inversion;
融合模块,将子图像反演的波浪谱数据进行融合,得到最终波浪谱信息。The fusion module fuses the wave spectrum data inverted from the sub-images to obtain the final wave spectrum information.
本发明方法及系统的有益效果是:本发明通过交叉谱对波浪谱进行反演,克服了波浪谱波向180°模糊的问题;同时针对环扫SAR方位角360°旋转的特点,修正了方位向位移传递函数,最终将不同视向的子图像的反演结果进行融合,有效地克服单视向SAR的方位向非线性导致的误差,实现对波浪谱大范围高时间分辨率的观察。The beneficial effects of the method and system of the invention are as follows: the invention inverts the wave spectrum through the cross spectrum, which overcomes the problem of 180° ambiguity of the wave spectrum; Finally, the inversion results of sub-images in different viewing directions are fused, which effectively overcomes the error caused by the azimuth nonlinearity of single-looking SAR, and realizes the observation of the wave spectrum in a wide range with high time resolution.
附图说明Description of drawings
图1是本发明一种基于环扫SAR的海面波浪谱反演方法的总流程图;Fig. 1 is the general flow chart of a kind of sea surface wave spectrum inversion method based on ring scan SAR of the present invention;
图2是本发明具体实施例环扫SAR的示意图;2 is a schematic diagram of a ring scan SAR according to a specific embodiment of the present invention;
图3是本发明具体实施例子图像全局坐标系到局部坐标系的转换示意图;Fig. 3 is the conversion schematic diagram of the image global coordinate system to the local coordinate system of the specific embodiment of the present invention;
图4是本发明具体实施例波浪谱反演的示意图。FIG. 4 is a schematic diagram of wave spectrum inversion according to a specific embodiment of the present invention.
图5是本发明一种基于环扫SAR的海面波浪谱反演系统的结构框图。FIG. 5 is a structural block diagram of a sea surface wave spectrum inversion system based on ring scan SAR according to the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。The present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The numbers of the steps in the following embodiments are only set for the convenience of description, and the sequence between the steps is not limited in any way, and the execution sequence of each step in the embodiments can be adapted according to the understanding of those skilled in the art Sexual adjustment.
环扫SAR是一种边飞行边环扫的新体制曲线雷达,雷达载体在以速度向前飞行的同时,天线以垂直地面为轴快速进行匀速扫描,在地面形成近似环状的成像区域,通过将多个环状区域进行叠加,形成超宽的观测刈幅,环扫SAR示意图如图2所示。Ring-scan SAR is a new system of curved radar that scans while flying. While the radar carrier is flying forward at a speed, the antenna quickly scans at a constant speed with the vertical ground as the axis, forming an approximate annular imaging area on the ground. Multiple annular regions are superimposed to form an ultra-wide observation swath. The schematic diagram of the ring scan SAR is shown in Figure 2.
参照图1,本发明提供了一种基于环扫SAR的海面波浪谱反演方法,该方法包括以下步骤:1, the present invention provides a sea surface wave spectrum inversion method based on ring scan SAR, the method includes the following steps:
S1、获取环扫SAR数据并对环扫SAR数据进行分块处理,得到多个子图像;S1. Acquire ring-scan SAR data and perform block processing on the ring-scan SAR data to obtain multiple sub-images;
S2、对子图像进行归一化处理,得到归一化后的子图像;S2, normalize the sub-image to obtain a normalized sub-image;
S3、对归一化后的子图像进行交叉谱计算和波浪谱反演,得到对应子图像反演的波浪谱数据;S3, performing cross-spectrum calculation and wave spectrum inversion on the normalized sub-image to obtain wave spectrum data inversion of the corresponding sub-image;
S4、将子图像反演的波浪谱数据进行融合,得到最终波浪谱。S4, fuse the wave spectrum data inverted from the sub-image to obtain the final wave spectrum.
进一步作为本方法的优选实施例,所述获取环扫SAR数据并对环扫SAR数据进行分块处理,得到多个子图像这一步骤,其具体包括:Further as a preferred embodiment of the method, the step of obtaining the ring-scan SAR data and performing block processing on the ring-scan SAR data to obtain a plurality of sub-images specifically includes:
S11、获取环扫SAR数据;S11. Obtain ring scan SAR data;
S12、按方位角将环扫SAR数据划分为多个子图像,并将子图像从全局坐标系转换到局部的斜距-方位坐标系。S12. Divide the ring-scan SAR data into a plurality of sub-images according to the azimuth angle, and convert the sub-images from the global coordinate system to the local slant range-azimuth coordinate system.
具体地,海浪到交叉谱的传递函数与视向角有很大的关系,而不同视向角的数据不能统一处理。因此需要将环扫SAR图像进行分块处理,由于每个子图像的视向角较小,子图像内的传递函数近似一致,所以可以对子图像进行统一处理。Specifically, the transfer function from the waves to the cross-spectrum has a great relationship with the viewing angle, and the data of different viewing angles cannot be processed uniformly. Therefore, the ring scan SAR image needs to be processed in blocks. Since the viewing angle of each sub-image is small and the transfer functions in the sub-images are approximately the same, the sub-images can be processed uniformly.
对于环扫SAR来说,子图像像素数和坐标轴的方向会随着方位角的变化而变化,为了对不同方位角进行统一处理,需将各个角度的反演结果插值到相同的分辨率,并旋转到统一的方位角。由于方位向近似为沿波束扫描方向,为了方便处理,将局部图像从全局坐标系转换到局部的斜距-方位坐标系,如图3所示,转换后的方位向指向为与雷达视向垂直的方向。For ring scan SAR, the number of sub-image pixels and the direction of the coordinate axis will change with the azimuth angle. In order to uniformly process different azimuth angles, the inversion results of each angle need to be interpolated to the same resolution. and rotate to a uniform azimuth. Since the azimuth direction is approximately along the beam scanning direction, for the convenience of processing, the local image is converted from the global coordinate system to the local slant range-azimuth coordinate system, as shown in Figure 3, the converted azimuth direction is perpendicular to the radar viewing direction direction.
进一步作为本方法的优选实施例,所述对子图像进行归一化处理具体为非线性归一化处理,公式如下:Further as a preferred embodiment of the method, the normalization processing on the sub-image is specifically nonlinear normalization processing, and the formula is as follows:
上式中,I0(x,t)代表原始子图像,x=(x,y)代表图像域的二维坐标,x代表距离向,y为方位向,t代表时间,<I0>代表I0(x,t)的平均统计量,Is(x,t)代表归一化后的子图像,α1、α2表示对应参数。In the above formula, I 0 (x, t) represents the original sub-image, x=(x, y) represents the two-dimensional coordinates of the image domain, x represents the distance direction, y is the azimuth direction, t represents time, and <I 0 > represents The average statistics of I 0 (x, t ), Is (x, t) represents the normalized sub-image, and α 1 and α 2 represent corresponding parameters.
具体地,由于雷达信号符合指数分布,非线性调制更符合海面雷达信号的真实情况,非线性归一化后图像的灰度分布明显更对称。Specifically, since the radar signal conforms to the exponential distribution, the nonlinear modulation is more in line with the real situation of the sea surface radar signal, and the gray distribution of the image after nonlinear normalization is obviously more symmetrical.
进一步作为本方法的优选实施例,参照图4,所述对归一化的子图像进行交叉谱计算和波浪谱反演,得到对应子图像反演的波浪谱数据这一步骤,其具体包括:Further as a preferred embodiment of the method, referring to FIG. 4 , the step of performing cross-spectrum calculation and wave spectrum inversion on the normalized sub-image to obtain the wave spectrum data corresponding to the inversion of the sub-image specifically includes:
S31、基于交叉谱正演模型对归一化的图像进行处理,得到观察交叉谱;S31. Process the normalized image based on the cross-spectrum forward model to obtain the observed cross-spectrum;
S32、获取风速风向信息并生成初猜波浪谱;S32. Obtain wind speed and direction information and generate a preliminary guessed wave spectrum;
S33、对通过初猜波浪谱进行正演计算得到初猜交叉谱,即仿真交叉谱;S33. Perform forward calculation on the initial guessed wave spectrum to obtain the initial guessed cross-spectrum, that is, the simulated cross-spectrum;
具体地,交叉谱函数可以表示为:Specifically, the cross-spectral function can be expressed as:
P(k,t)=∫dxe-ikxG(x,t,k)-δ(k)P(k,t)=∫dxe- ikx G(x,t,k)-δ(k)
其中,k为(kx,ky)二维波数域,G(x,t,k)为:Among them, k is the (k x , k y ) two-dimensional wavenumber field, and G(x, t, k) is:
其中,ρab(x,t)、μab(x,t)为相关系数,ab代表x,y和I,x,y和I分别表示ξx,ξy和I0<I0>-1,公式为:Among them, ρ ab (x, t), μ ab (x, t) are correlation coefficients, ab represents x, y and I, x, y and I represent ξ x , ξ y and I 0 <I 0 > -1 respectively , the formula is:
μab(x,t)=ρab(x,t)-ρab(O,0)μ ab (x,t)=ρ ab (x,t)-ρ ab (0,0)
其中,S(k)为波浪谱,O为原点,Nab(k,t)为Ta(k)和Tb(k)的传递函数:where S(k) is the wave spectrum, O is the origin, and Nab (k,t) is the transfer function of T a (k) and T b (k):
其中,ωt表示在时间间隔t内波数分量随频率发生的相移,g为重力加速度。Ta(k)和Tb(k)代表距离向位移Tx(k),后向散射TI(k)传递函数和方位向位移传递函数Ty(k)。Tx(k)和TI(k)表示为:where ωt represents the phase shift of the wavenumber component with frequency during the time interval t, g is the acceleration of gravity. T a (k) and T b (k) represent the range displacement T x (k), the backscatter T I (k) transfer function and the azimuth displacement transfer function Ty (k). T x (k) and T I (k) are expressed as:
其中,θ是入射角,β是布拉格波的风增长率,ω是天线旋转角速度。where θ is the angle of incidence, β is the wind growth rate of Bragg waves, and ω is the angular velocity of the antenna rotation.
对于正侧视来说,方位向位移传递函数Ty(k)为:For the side view, the azimuth displacement transfer function Ty (k) is:
其中,R为斜距距离,v为雷达载体飞行速度。Among them, R is the slant range distance, and v is the flight speed of the radar carrier.
但是,对于环扫SAR来说,在不同的方位向角,方位向位移并不一致,需改进环扫SAR的方位向位移传递函数为:However, for the ring-scan SAR, the azimuth displacement is not consistent at different azimuth angles. The azimuth displacement transfer function of the ring-scan SAR needs to be improved as follows:
其中,为方位角。in, is the azimuth angle.
S34、基于预设的价格函数、观察交叉谱和初猜交叉谱,判断是否达到收敛条件;S34. Based on the preset price function, observing the cross-spectrum and guessing the cross-spectrum, determine whether the convergence condition is reached;
S35、判断是否达到收敛条件,计算迭代步长和方向导数并对波浪谱进行修正,得到修正后的波浪谱;S35, judging whether the convergence condition is reached, calculating the iterative step size and the directional derivative, and correcting the wave spectrum to obtain the corrected wave spectrum;
S36、返回步骤S33,迭代直至达到收敛条件,得到对应子图像反演的波浪谱数据。S36. Return to step S33, iterate until the convergence condition is reached, and obtain wave spectrum data corresponding to the sub-image inversion.
具体地,对于波浪谱这种复杂问题,由于最陡梯度法迭代慢,对步长选取比较敏感,易陷入到局部最小值,所以将其改进为拟牛顿法,这种方法迭代快,对于较为理想的二次型价格函数往往能在一两步得到最优解。所以,这里对于两种梯度方向,计算最优步长,其中第一种步长为局部梯度,第二种步长为本地迭代与上次迭代得到的波浪谱的差:Specifically, for the complex problem of wave spectrum, since the steepest gradient method has slow iteration and is more sensitive to the selection of step size, it is easy to fall into a local minimum, so it is improved to a quasi-Newton method, which iterates quickly and is relatively An ideal quadratic price function often leads to an optimal solution in one or two steps. Therefore, here, for the two gradient directions, the optimal step size is calculated, where the first step size is the local gradient, and the second step size is the difference between the local iteration and the wave spectrum obtained by the previous iteration:
那么在第n步迭代的时候,交叉谱对这两个方向的导数分别为:Then at the n-th iteration, the derivatives of the cross-spectrum to these two directions are:
其中Pn(k)为第n步迭代得到的交叉谱。迭代后的波浪谱为:where P n (k) is the cross spectrum obtained by the nth iteration. The iterative wave spectrum is:
Sn+1(k)=Sn(k)+α1ΔS1(k)+α2ΔS2(k)Sn +1 (k)=S n (k)+α 1 ΔS 1 (k)+α 2 ΔS 2 (k)
最优步长可以通过最小化下式得到:The optimal step size can be obtained by minimizing:
通过求近似最小值解下列方程求α1和α2:Solve the following equations to find α 1 and α 2 by finding an approximate minimum:
化简后可以表示为:After simplification, it can be expressed as:
A·β=BA·β=B
其中β=[β1 β2]T,B=[B1 B2]T。where β=[β 1 β 2 ] T , B=[B 1 B 2 ] T .
矩阵A的四个元素分别为:A11=∫[|dP1 n(k)|2+μ|ΔS1(k)|2]W(k)dk,The four elements of matrix A are: A 11 =∫[|dP 1 n (k)| 2 +μ|ΔS 1 (k)| 2 ]W(k)dk,
矩阵B的两个元素分别为:The two elements of matrix B are:
这样步长可以用下式求解:This step size can be solved by the following equation:
β=A-1Bβ=A -1 B
进一步作为本方法优选实施例,所述预设的价格函数公式如下:Further as a preferred embodiment of this method, the preset price function formula is as follows:
J=∫[|Pql(k',t)-Pobs(k',t)|2+μ|S(k')-Sg(k')|2]·Wp(k')dk'J=∫[|P ql (k',t)-P obs (k',t)| 2 +μ|S(k')-S g (k')| 2 ]·W p (k')dk '
上式中,Wp为一个非负权重函数,Pobs(k',t)为观察交叉谱,Pql(k',t)为初猜交叉谱,k'为初始波数域,μ为一加权比例系数,S(k')为反演得到的波浪谱,Sg(k')为初猜谱。In the above formula, W p is a non-negative weight function, P obs (k', t) is the observed cross-spectrum, P ql (k', t) is the initial guessed cross-spectrum, k' is the initial wavenumber domain, and μ is a Weighted scale factor, S(k') is the wave spectrum obtained by inversion, and S g (k') is the initial guess spectrum.
具体地,由于SAR图像在高频区域波浪谱存在严重的非线性作用,另外环扫SAR往往分辨率较低,对高频的风浪区域反演精度有限,因此反演的代价函数还需要参考依据风浪模型得到的初猜波浪谱,因此价格函数可以改为:Specifically, due to the serious nonlinear effect of SAR images in the wave spectrum in the high-frequency region, and the low resolution of the ring-scan SAR, the inversion accuracy of the high-frequency wind and wave region is limited, so the cost function of the inversion also needs reference. The initial guess of the wave spectrum obtained by the wind wave model, so the price function can be changed to:
J=∫[|Pql(k',t)-Pobs(k',t)|2+μ|S(k')-Sg(k')|2]·Wp(k')dk'J=∫[|P ql (k',t)-P obs (k',t)| 2 +μ|S(k')-S g (k')| 2 ]·W p (k')dk '
其中,μ为一加权比例系数,S(k')为反演得到的波浪谱,Sg(k')为初猜谱。Among them, μ is a weighted proportional coefficient, S(k') is the wave spectrum obtained by inversion, and Sg (k') is the initial guess spectrum.
进一步作为本方法优选实施例,所述修正后的波浪谱的表达式如下:Further as a preferred embodiment of this method, the expression of the modified wave spectrum is as follows:
Sn+1(k)=Sn(k)+α1ΔS1(k)+α2ΔS2(k)Sn +1 (k)=S n (k)+α 1 ΔS 1 (k)+α 2 ΔS 2 (k)
上式中,Sn(k)为第n次迭代得到的波浪谱,Sn+1(k)为第n+1次迭代的波浪谱,ΔS1(k)和ΔS2(k)代表步长,β1和β2代表修正系数。In the above formula, Sn (k) is the wave spectrum obtained at the nth iteration, Sn +1 (k) is the wave spectrum obtained at the n+1th iteration, ΔS 1 (k) and ΔS 2 (k) represent the step long, β 1 and β 2 represent correction coefficients.
进一步作为本方法优选实施例,所述将子图像反演的波浪谱数据进行融合,得到最终波浪谱信息这一步骤,其具体包括:Further as a preferred embodiment of this method, the step of fusing the wave spectrum data inverted from the sub-images to obtain the final wave spectrum information specifically includes:
S41、计算子图像对应的点响应函数、波浪谱线性函数和波浪谱;S41, calculate the point response function, the wave spectrum linear function and the wave spectrum corresponding to the sub-image;
S42、将对应的点响应函数、波浪谱线性函数和波浪谱进行加权融合,得到多角度融合后的波浪谱。S42. Perform weighted fusion of the corresponding point response function, the wave spectrum linear function and the wave spectrum to obtain a multi-angle fusion wave spectrum.
具体地,对不同方位向的子图像进行波浪谱反演后,还需将这些反演结果进行融合得到最终的波浪谱。由于环扫SAR成像的传递函数在不同方位向是不同的,而且不同方位向的分辨率也不一样,导致不同方位向的SAR图像对不同方向的波浪谱的敏感度不同。因此融合策略即通过敏感度不同对波数进行加权,敏感度高的方位向给予更高的加权值。Specifically, after the wave spectrum inversion is performed on sub-images in different azimuths, the inversion results need to be fused to obtain the final wave spectrum. Because the transfer functions of ring-scan SAR imaging are different in different azimuths, and the resolutions in different azimuths are also different, SAR images in different azimuths have different sensitivities to wave spectra in different directions. Therefore, the fusion strategy weights the wavenumber by different sensitivities, and the azimuth with high sensitivity is given a higher weighting value.
采用线性近似,则波浪谱和图像谱的关系可以表示为:Using a linear approximation, the relationship between the wave spectrum and the image spectrum can be expressed as:
P(k)≈H(k)[S(k)|T(k)|2+S(-k)|T(-k)|2]P(k)≈H(k)[S(k)|T(k)| 2 +S(-k)|T(-k)| 2 ]
其中H(k)为给出的点响应函数T(k)为波浪谱的线性传递函数:where H(k) is the given point response function T(k) is the linear transfer function of the wave spectrum:
T(k)≈Trb+Tvb+Tt+Th T(k)≈T rb +T vb +T t +T h
其中Trb、Tvb、Tt、Th分别为距离聚速、速度聚束、倾斜和流体动力调制。where T rb , T vb , T t , and Th are distance focusing, velocity focusing, tilt and hydrodynamic modulation, respectively.
进一步作为本方法优选实施例,所述最终波浪谱信息S(k)的计算公式如下:Further as a preferred embodiment of this method, the calculation formula of the final wave spectrum information S(k) is as follows:
上式中,Hn(k)、Tn(k)、Sn(k)分别为第n副子孔径图像的分辨率点响应函数、线性调制系数以及波浪谱。In the above formula, H n (k), T n (k), and Sn (k) are the resolution point response function, linear modulation coefficient and wave spectrum of the nth sub-aperture image, respectively.
如图5所示,一种基于环扫SAR的海面波浪谱反演系统,包括:As shown in Figure 5, a sea surface wave spectrum inversion system based on ring scan SAR includes:
数据划分模块,用于获取环扫SAR数据并对环扫SAR数据进行分块处理,得到多个子图像;The data division module is used to obtain the ring scan SAR data and perform block processing on the ring scan SAR data to obtain multiple sub-images;
归一化模块,用于对子图像进行归一化处理,得到归一化后的子图像;The normalization module is used to normalize the sub-image to obtain the normalized sub-image;
波浪谱反演模块,用于对归一化后的子图像进行交叉谱计算和波浪谱反演,得到对应子图像反演的波浪谱数据;The wave spectrum inversion module is used to perform cross-spectrum calculation and wave spectrum inversion on the normalized sub-images, and obtain the wave spectrum data of the corresponding sub-image inversion;
融合模块,将子图像反演的波浪谱数据进行融合,得到最终波浪谱信息。The fusion module fuses the wave spectrum data inverted from the sub-images to obtain the final wave spectrum information.
上述方法实施例中的内容均适用于本系统实施例,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。The contents in the above method embodiments are all applicable to the present system embodiments, the specific functions implemented by the present system embodiments are the same as the above method embodiments, and the beneficial effects achieved are also the same as those achieved by the above method embodiments.
以上是对本发明的优选实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The preferred implementation of the present invention has been specifically described above, but the present invention is not limited to the described embodiments, and those skilled in the art can make various equivalent deformations or replacements without departing from the spirit of the present invention, These equivalent modifications or substitutions are all included within the scope defined by the claims of the present application.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110460618.6A CN113176572B (en) | 2021-04-27 | 2021-04-27 | Sea surface wave spectrum inversion method and system based on circular SAR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110460618.6A CN113176572B (en) | 2021-04-27 | 2021-04-27 | Sea surface wave spectrum inversion method and system based on circular SAR |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113176572A true CN113176572A (en) | 2021-07-27 |
CN113176572B CN113176572B (en) | 2023-10-20 |
Family
ID=76926641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110460618.6A Expired - Fee Related CN113176572B (en) | 2021-04-27 | 2021-04-27 | Sea surface wave spectrum inversion method and system based on circular SAR |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113176572B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115184880A (en) * | 2022-06-14 | 2022-10-14 | 北京理工大学重庆创新中心 | A method for determining the ambiguity of millimeter-wave radar angle measurement |
CN116258787A (en) * | 2023-05-15 | 2023-06-13 | 自然资源部第一海洋研究所 | A Wave Direction Spectrum Algorithm Applicable to Wave Images |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101587500A (en) * | 2008-05-23 | 2009-11-25 | 中国科学院电子学研究所 | Computer emulation method for sea-surface imaging of bistatic synthetic aperture radar |
CN102928841A (en) * | 2012-10-30 | 2013-02-13 | 西安电子科技大学 | Series inversion-based airborne circular scanning SAR (Synthetic Aperture Radar) imaging method |
CN104331588A (en) * | 2014-03-06 | 2015-02-04 | 浙江海洋学院 | A joint inversion device of sea surface wind field and sea waves |
JP2017104476A (en) * | 2015-03-09 | 2017-06-15 | 炭 親良 | Beam forming method, measurement imaging apparatus, and communication apparatus |
CN107064934A (en) * | 2017-04-21 | 2017-08-18 | 山东省科学院海洋仪器仪表研究所 | A kind of optimized algorithm of SAR wave modes Directional Spectrum of Wind Wave product |
CN109283495A (en) * | 2018-09-06 | 2019-01-29 | 南京信息工程大学 | An X-band Radar Current Inversion Method Based on Cross Spectrum Analysis |
CN112014842A (en) * | 2020-09-16 | 2020-12-01 | 国家海洋技术中心 | Effective wave height estimation method and system for high-resolution three-signal full-polarization SAR data |
-
2021
- 2021-04-27 CN CN202110460618.6A patent/CN113176572B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101587500A (en) * | 2008-05-23 | 2009-11-25 | 中国科学院电子学研究所 | Computer emulation method for sea-surface imaging of bistatic synthetic aperture radar |
CN102928841A (en) * | 2012-10-30 | 2013-02-13 | 西安电子科技大学 | Series inversion-based airborne circular scanning SAR (Synthetic Aperture Radar) imaging method |
CN104331588A (en) * | 2014-03-06 | 2015-02-04 | 浙江海洋学院 | A joint inversion device of sea surface wind field and sea waves |
JP2017104476A (en) * | 2015-03-09 | 2017-06-15 | 炭 親良 | Beam forming method, measurement imaging apparatus, and communication apparatus |
CN107064934A (en) * | 2017-04-21 | 2017-08-18 | 山东省科学院海洋仪器仪表研究所 | A kind of optimized algorithm of SAR wave modes Directional Spectrum of Wind Wave product |
CN109283495A (en) * | 2018-09-06 | 2019-01-29 | 南京信息工程大学 | An X-band Radar Current Inversion Method Based on Cross Spectrum Analysis |
CN112014842A (en) * | 2020-09-16 | 2020-12-01 | 国家海洋技术中心 | Effective wave height estimation method and system for high-resolution three-signal full-polarization SAR data |
Non-Patent Citations (3)
Title |
---|
XIANGFEI WEI等: "Airborne SAR Imaging Algorithm for Ocean Waves Based on Optimum Focus Setting", 《REMOTE SENSING》, vol. 11, no. 5, pages 1 - 20 * |
戈书睿等: "基于同步风场的机载SAR海浪参数反演方法", 《海洋科学》, vol. 40, no. 11, pages 138 - 147 * |
李泽军等: "SAR图像反演浅海地形的一种改进方法", 《电子测量技术》, vol. 35, no. 4, pages 86 - 89 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115184880A (en) * | 2022-06-14 | 2022-10-14 | 北京理工大学重庆创新中心 | A method for determining the ambiguity of millimeter-wave radar angle measurement |
CN116258787A (en) * | 2023-05-15 | 2023-06-13 | 自然资源部第一海洋研究所 | A Wave Direction Spectrum Algorithm Applicable to Wave Images |
CN116258787B (en) * | 2023-05-15 | 2023-10-17 | 自然资源部第一海洋研究所 | A wave direction spectrum algorithm suitable for wave images |
Also Published As
Publication number | Publication date |
---|---|
CN113176572B (en) | 2023-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107367716B (en) | A kind of high-precision satellite-borne SAR geometric calibration method | |
CN105510913B (en) | Heterologous optics and SAR remote sensing image joint positioning method based on the correction of class optics image space | |
Honegger et al. | High-resolution bathymetry estimates via X-band marine radar: 1. beaches | |
CN106054194B (en) | A kind of spaceborne radar and ground-based radar reflectivity factor data three-dimensional fusion method | |
CN107132537B (en) | A method for improving the on-orbit performance of SAR satellites based on electromechanical joint scanning | |
CN112034460B (en) | Circular arc aperture radar imaging method and radar based on antenna phase pattern compensation | |
CN102866393B (en) | A SAR Doppler Parameter Estimation Method Based on POS and DEM Data | |
CN113176572A (en) | Sea surface wave spectrum inversion method and system based on circular scanning SAR | |
CN107843895A (en) | A kind of Dual-Doppler weather radar dimensional wind inversion method | |
CN115079109A (en) | Synthetic aperture radar imaging quality index evaluation system | |
CN104361563B (en) | GPS-based (global positioning system based) geometric precision correction method of hyperspectral remote sensing images | |
CN105929400B (en) | Based on change speed of a ship or plane carried SAR compensation data method under the constant PRF accurately measured | |
KR102028323B1 (en) | Synthetic Aperture Radar Image Enhancement Apparatus and System | |
CN114415174B (en) | A three-dimensional deformation inversion method for navigation satellite interferometric SAR | |
CN111652931A (en) | A geolocation method, apparatus, device, and computer-readable storage medium | |
CN106872979B (en) | Sea wave parameter acquisition method based on sea surface fluctuation moving target SAR image refocusing | |
CN110632616B (en) | Micro-motion imaging method of airborne inverse synthetic aperture laser radar under sparse sampling | |
CN106932762A (en) | Diameter radar image actinometry error calibration method | |
CN117665809B (en) | Method for inverting forest canopy height | |
CN117745779A (en) | Optical and SAR common aperture consistency imaging method | |
CN116359860A (en) | Calibration method of on-orbit pattern of spaceborne microwave scatterometer based on active scaler | |
CN108415016B (en) | Method for calculating flight direction speed measurement accuracy index of synthetic aperture radar satellite | |
CN118091566B (en) | Automatic extraction and application method for interference SAR external calibration signal | |
CN113409223B (en) | Distance blur suppression method and device based on particle swarm algorithm and projection method | |
CN113466802B (en) | Range ambiguity suppression method based on particle swarm optimization and optimal beamforming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20231020 |
|
CF01 | Termination of patent right due to non-payment of annual fee |