CN113172632A - 一种基于图像的简化机器人视觉伺服控制方法 - Google Patents

一种基于图像的简化机器人视觉伺服控制方法 Download PDF

Info

Publication number
CN113172632A
CN113172632A CN202110515835.0A CN202110515835A CN113172632A CN 113172632 A CN113172632 A CN 113172632A CN 202110515835 A CN202110515835 A CN 202110515835A CN 113172632 A CN113172632 A CN 113172632A
Authority
CN
China
Prior art keywords
image
robot
workpiece
servo control
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110515835.0A
Other languages
English (en)
Inventor
孟祥印
彭杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU RUITE DIGITAL TECHNOLOGY CO LTD
Original Assignee
CHENGDU RUITE DIGITAL TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU RUITE DIGITAL TECHNOLOGY CO LTD filed Critical CHENGDU RUITE DIGITAL TECHNOLOGY CO LTD
Priority to CN202110515835.0A priority Critical patent/CN113172632A/zh
Publication of CN113172632A publication Critical patent/CN113172632A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本发明公开一种基于图像的简化机器人视觉伺服控制方法,应用于机器人智能控制领域,针对现有视觉伺服方法存在的计算量大、控制精度低的问题,本发明方法通过获取期望图像,并对期望图像进行处理,得到工件的图像特征作为期望特征;然后通过多次试探性运动,测试出图像空间与机器人笛卡尔空间的映射比例;最终在机器人处于能采集到工件图像信息的任意位置时,通过实时采集处理当前位置下的图像信息,根据映射比例计算与期望图像偏差值,根据偏差值控制机器人进行下一步运动。本发明的方法不仅减小了控制过程的计算量,并且提高了系统的实时性。

Description

一种基于图像的简化机器人视觉伺服控制方法
技术领域
本发明属于机器人智能控制领域,特别涉及一种平面视觉下机器人伺服控制技术。
背景技术
目前在工业现场工作的下上料工业机器人,一般都是通过示教规划好机器人的所有动作来对机器人进行控制,但这样的控制受机器人抓取目标对象的位姿严格限制,满足不了当前工业中柔性化、智能化的工作需求。随着图像处理和机器人相关技术的进步,机器视觉技术被越来越多的应用于引导工业机器人完成各项灵活的工作任务中,大大增加了工业机器人的自主性和灵活性。视觉伺服主要分为两种形式,基于位置和基于图像。
基于位置的视觉伺服需要前期做大量的调试与标定工作,但很多工业现场环境较差,这种环境下使用基于位置的视觉伺服会存在标定效果差,长时间工作出现累计误差的现象。基于图像的伺服控制方法需要计算机器人关节坐标与目标图像特征之间的映射关系,即图像雅克比矩阵,并通过大量的矩阵运算将图像特征的变化转变为机器人各个自由度的变化。此方法需要大量的计算,一些配置较差的工控机无法应付如此数量级的运算,不能保证控制的实时性。
如专利公布号为CN102791214A的发明专利公布了一种实时速度优化的不经校准的视觉伺服方法,该方法首先构建由跟踪点指向目标点的跟踪向量,然后将此向量先转变为角度坐标系下的机器人向量再将机器人向量映射至机器人三维空间,最后通过逆运动学指导机器人进行下一步动作。但该方法存在以下几个问题:(1)该方法所使用的图像采集设备是医用内窥镜,方法主要应用于医学领域而不是工业现场;(2)该方法的跟踪点和目标点都只有位置参数而没有姿态参数,在工业领域,机器人对工件进行抓取时,一般都需要考虑姿态;(3)此方法由于是用于医疗领域,对控制过程的柔性要求较高,需要通过反馈实时对跟踪效果进行评估,并更新速率因数,这需要进行大量的计算。而在工业领域,对精度和效率的要求更高。
因此,需要一种应用于工业现场的简化的机器人视觉伺服控制方法,此方法需要在保证精度的前提下,减小计算量提高控制的实时性与效率。
发明内容
为解决上述技术问题,本发明提出一种基于图像的简化机器人视觉伺服控制方法,可以不用进行标定就能直接使用,且计算量小,实时性好。
本发明采用的技术方案为:一种基于图像的简化机器人视觉伺服控制方法,包括:
S1、获取期望图像:使用示教器控制机器人移动至能抓取到工件的位置,启动相机采集当前位置下的工件图像信息;
S2、图像处理:对采集到的期望图像进行图像处理,得到工件的图像特征作为期望特征;
S3、映射比例因子求解:通过多次试探性运动,测试出图像空间与机器人笛卡尔空间的映射比例;
S4、伺服控制:在机器人处于能采集到工件图像信息的任意位置时,通过实时采集处理当前位置下的图像信息,根据映射比例计算与期望图像偏差值,根据偏差值控制机器人进行下一步运动。
所述伺服控制基于笛卡尔坐标系,所述笛卡尔坐标系包括6个参数,分别是X、Y、Z、A、B、C,其中X、Y、Z控制机器人在三维坐标系下沿三条轴线平动;A、B、C控制机器人在三维坐标系下沿三条轴线转动,控制机器人笛卡尔坐标系中6个参数之中的Z、A、B保持不变,将机器人约束为X、Y、Z的3自由度。
步骤S2所述工件的图像特征具体为:在处理过后的图像中提取3个特征点,分别是质心点(u1,v1)和长边两个端点(u2,v2)、(u3,v3)的位置,以质心位置作为工件位置,以长边与水平中轴线的夹角angle作为工件姿态。
步骤S2具体包括以下分步骤:
S21、将相机采集到的工件图像使用线性变换进行对比度增强;
S22、将对比度增强之后的图像进行高斯滤波;
S23、基于图像像素点的类间方差,使用Otsu法(大津法)进行图像分割完成图像的二值化,将工件从原始图像中提取出来;
S24、提取工件的图像特征,具体的:提取3个特征点,分别是质心点(u1,v1)和长边两个端点(u2,v2)、(u3,v3)的位置,以质心位置作为工件位置,以长边与水平中轴线的夹角angle作为工件姿态。
确定工件质心点位置的过程为:将S23中提取出来的工件图像按照连通区域分隔开,对每个连通区域运用计算几何距算法定位出其质心的位置。
确定工件长边两个端点的过程为:采用Canny边缘检测算子确定工件的边缘,利用Hough变换找出边缘图像中所有线段,然后从这些直线中找出最长线段作为工件的长边,从而得到工件长边两个端点。
步骤S3具体为:
S31、使用示教器控制机器人在笛卡尔坐标系下,沿X、Y方向以及C转角做若干次小幅度测试运动;
S32、每次运动后,启动相机采集当前位置下的工件图像信息,并提取其图像特征;
S33、每次运动后,记录其与前一次运动后位置的偏差,具体包括:图像特征中的偏差Δu、Δv、Δangle,机器人笛卡尔坐标系中的偏差ΔX、ΔY、ΔC;
Δu、Δv为两次运动图像识别到的工件质心坐标(u,v)的差值,Δangle为两次运动图像识别到的工件姿态角度的偏差;ΔX、ΔY为两次运动工件世界坐标质心(x,y)的差值,ΔC表示两次运动世界坐标系下的工件姿态角度的偏差;
S34、构建方程
Figure BDA0003062037310000031
得到每两次运动之间对应特征的映射比例因子,通过求平均得到各特征最终的映射比例因子。
步骤S4具体为:
S41、控制机器人移动到能采集到工件图像信息的任意位置,定义这一位置为机器人的当前位置;
S42、启动相机采集当前位置下的工件图像信息,并提取其图像特征;
S43、计算出当前图像与期望图像的偏差值,使用映射比例因子计算出机器人笛卡尔坐标系的偏差值,根据这一偏差值控制机器人完成向期望图像位置的移动。
在进行伺服控制时,首先确定长边与水平中轴线的夹角angle,并控制机器人笛卡尔坐标系的转角顺时针旋转(90-angle)/kC;旋转之后再通过Δu、Δv确定ΔX、ΔY,进而控制机器人在笛卡尔坐标系中做对应的运动。
本发明的有益效果:本发明的方法采用图像进行伺服控制,避免了前期大量的标定工作,本发明对传统基于图像的伺服控制方法进行简化,将机器人的自由度约束为3,简化了伺服控制的流程,又使用映射比例因子代替图像雅可比矩阵,大大减小了控制过程的计算量,提高了系统的实时性、伺服控制精度以及系统的稳定性。
附图说明
图1是本发明用于平面视觉下工件抓取的流程图。
图2是本发明中相机与机器人手爪的位置关系图。
图3是图像特征中的三个特征点的示意图。
图4是期望位置与当前位置图像坐标系的关系示意图。
具体实施方式
为便于本领域技术人员理解本发明的技术内容,下面结合附图对本发明内容进一步阐释。
如图1所示,一种基于图像的简化机器人视觉伺服控制方法,所述方法包括以下步骤:
S1:获取期望图像:首先通过机器人示教器控制机器人移动到能够抓取到工件的位置,再使用相机采集机器人当前位置下的工件图像信息。如图2所示,相机设置于机械手爪旁边,通过相机采集到的图像来确定机器人手爪的位置和姿态;
S2:图像处理:将采集到的期望图像上传至图像处理模块进行图像处理,得到工件的图像特征作为期望特征。本实施例提供的图像处理方式,包括如下步骤:
S21:将相机采集到的工件图像使用线性变换进行对比度增强;
S22:将对比度增强之后的图像进行高斯滤波,去除噪声对提取图像特征的影响;
S23:基于图像像素点的类间方差,使用Otsu法进行图像分割完成图像的二值化,将工件从原始图像中提取出来;
S24:将S23中提取出来的工件图像按照连通区域分隔开,统计计算所有连通区域的面积,根据工件面积的大小,完成工件的分类,以便能够将不同工件区分开来,抓取到正确的目标工件,并用Canny边缘检测算子确定工件的边缘。
S3:映射比例因子求解:通过多次试探性运动,测试出图像空间与机器人笛卡尔空间的映射比例。在一个实施例中,使用该方法进行映射比例因子求解的步骤如下:
S31:使用示教器控制机器人在笛卡尔坐标系下,沿X,Y方向以及C转角做10次小幅度测试运动;本领域的技术人员应注意,本实施例这里的10次是个近似取值,在实际应用中次数越多得到的比例系数越准确。
S32:每次运动后,启动相机采集当前位置下的工件图像信息,并提取其图像特征;
S33:每次运动后,记录其与前一次运动后位置的偏差,包括图像特征中的偏差Δu,Δv,Δangle和机器人笛卡尔坐标系中的偏差ΔX,ΔY,ΔC;
S34:构建方程
Figure BDA0003062037310000041
得到每两次运动之间对应特征的映射比例因子,并将这10次测试结果的均值作为最终的映射比例因子。本步骤中的特征即为两次运动各自识别到的特征组信息,一个特征组信息包括:质心点(u1,v1)和长边两个端点(u2,v2)、(u3,v3)。
kX、kY分别表示机器人两次运动后工件世界坐标质心(x,y)变化量与图像坐标质心(u,v)变化量的映射比例。kc则表示角度的变化比例。
S4:伺服控制:在机器人处于能采集到工件图像信息的任意位置时,通过实时采集处理当前位置下的图像信息,并与期望图像作对比,控制机器人进行下一步运动。在一个实施例中,使用该方法进行伺服控制的步骤如下:
S41:控制机器人移动到能采集到工件图像信息的任意位置,定义这一位置为机器人的当前位置;
S42:启动相机采集当前位置下的工件图像信息,并提取其图像特征;
S43:计算出当前图像与期望图像的偏差值E,使用映射比例因子计算出机器人笛卡尔坐标系的偏差值,根据这一偏差值控制机器人完成向期望图像位置的移动。
机器人笛卡尔坐标系有6个参数,分别是X、Y、Z、A、B、C。其中X、Y、Z控制机器人在三维坐标系下沿三条轴线平动;A、B、C控制机器人在三维坐标系下沿三条轴线转动。在本发明方法中,控制机器人笛卡尔坐标系中6个参数之中的Z、A、B保持不变,将机器人的自由度约束为3。
如图2所示,步骤S2-S4所述的图像特征具体指工件上面的三个点,分别是质心点(u1,v1)和长边两个端点(u2,v2)、(u3,v3)的位置,以质心位置作为工件位置,以长边与水平中轴线的夹角angle作为工件姿态。
定位工件质心点位置和长边两个端点的位置的方法为:对每个连通区域运用计算几何距算法定位出其质心的位置,利用Hough变换找出边缘图像中所有线段,然后从这些直线中找出最长线段作为工件的长边,根据Hough变换算子即可得到每条边的端点。
如图3所示,虚线表示期望位置,实线表示当前实际位置。在进行伺服控制时,首先确定长边与水平中轴线的夹角angle,并控制机器人笛卡尔坐标系的转角顺时针旋转(90-angle)/kC。旋转之后再通过Δu、Δv确定ΔX、ΔY,进而控制机器人在笛卡尔坐标系中做对应的运动。
在最后进行伺服控制时,当该方法响应所述机器人实际位置相对于期望位置的偏差E大于位置偏差阈值e的图像处理结果时,指示所述机器人在抓取工件之前先基于所述位置偏差调整自身位置;响应所述机器人实际位置相对于期望位置的偏差E小于或等于位置偏差阈值e的图像处理结果时,指示所述机器人抓取工件。
这里的阈值是根据控制精度需求来设置的,比如上料精度需要1mm以内,我们就可以设置阈值为1mm以下,这样视觉识别误差小于阈值时,控制机器人即可在1mm范围内进行上料,阈值取值越大,机器人控制精度就越差,阈值取值越小精度控制就越高,取值根据自己控制需求来定,但最小不能超过机器人自身的最小控制精度。
这里的偏差调整是指:比如机器人移动完成后,与之前预先标定的能够抓取工件的位置相差2mm,就需要控制机器人向期望抓取位置移动这2mm,但是由于相机畸变等影响,可能不能一次性移动到位,就可能一次移动1.5mm,一次移动0.5mm,这样就通过两次的移动调整,移动到了期望抓取位置。
本发明的方法与传统方法的性能对比如表1所示:
表1本发明的方法与现有方法的对比
Figure BDA0003062037310000061
系统稳定性,由于基于图像的视觉伺服控制,是根据图像变化控制机器人关节移动,这样可能出现工件移出摄像机的视野范围外,这样系统将无法获取视觉信息,则无法正确移动,所以系统稳定性较差,而基于位置和本发明提出的简化方法,都是控制机器人在笛卡尔坐标系下运动,是在规定区域内移动,不会丢失工件视野,所以稳定性较好。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (9)

1.一种基于图像的简化机器人视觉伺服控制方法,其特征在于,包括:
S1、获取期望图像:使用示教器控制机器人移动至能抓取到工件的位置,启动相机采集当前位置下的工件图像信息;
S2、图像处理:对采集到的期望图像进行图像处理,得到工件的图像特征作为期望特征;
S3、映射比例因子求解:通过多次试探性运动,测试出图像空间与机器人笛卡尔空间的映射比例;
S4、伺服控制:在机器人处于能采集到工件图像信息的任意位置时,通过实时采集处理当前位置下的图像信息,根据映射比例计算与期望图像偏差值,根据偏差值控制机器人进行下一步运动。
2.根据权利要求1所述的一种基于图像的简化机器人视觉伺服控制方法,其特征在于,述伺服控制基于笛卡尔坐标系,所述笛卡尔坐标系包括6个参数,分别是X、Y、Z、A、B、C,其中X、Y、Z控制机器人在三维坐标系下沿三条轴线平动;A、B、C控制机器人在三维坐标系下沿三条轴线转动,控制机器人笛卡尔坐标系中6个参数之中的Z、A、B保持不变,将机器人约束为X、Y、Z的3自由度。
3.根据权利要求2所述的一种基于图像的简化机器人视觉伺服控制方法,其特征在于,步骤S2所述工件的图像特征具体为:在处理过后的图像中提取3个特征点,分别是质心点(u1,v1)和长边两个端点(u2,v2)、(u3,v3)的位置,以质心位置作为工件位置,以长边与水平中轴线的夹角angle作为工件姿态。
4.根据权利要求3所述的一种基于图像的简化机器人视觉伺服控制方法,其特征在于,步骤S2具体包括以下分步骤:
S21、将相机采集到的工件图像使用线性变换进行对比度增强;
S22、将对比度增强之后的图像进行高斯滤波;
S23、基于图像像素点的类间方差,使用Otsu法进行图像分割完成图像的二值化,将工件从原始图像中提取出来;
S24、提取工件的图像特征,具体的:提取3个特征点,分别是质心点(u1,v1)和长边两个端点(u2,v2)、(u3,v3)的位置,以质心位置作为工件位置,以长边与水平中轴线的夹角angle作为工件姿态。
5.根据权利要求4所述的一种基于图像的简化机器人视觉伺服控制方法,其特征在于,确定工件质心点位置的过程为:将S23中提取出来的工件图像按照连通区域分隔开,对每个连通区域运用计算几何距算法定位出其质心的位置。
6.根据权利要求5所述的一种基于图像的简化机器人视觉伺服控制方法,其特征在于,确定工件长边两个端点的过程为:采用Canny边缘检测算子确定工件的边缘,利用Hough变换找出边缘图像中所有线段,然后从这些直线中找出最长线段作为工件的长边,从而得到工件长边两个端点。
7.根据权利要求6所述的一种基于图像的简化机器人视觉伺服控制方法,其特征在于,步骤S3具体为:
S31、使用示教器控制机器人在笛卡尔坐标系下,沿X、Y方向以及C转角做若干次小幅度测试运动;
S32、每次运动后,启动相机采集当前位置下的工件图像信息,并提取其图像特征;
S33、每次运动后,记录其与前一次运动后位置的偏差,具体包括:图像特征中的偏差Δu、Δv、Δangle,机器人笛卡尔坐标系中的偏差ΔX、ΔY、ΔC;
其中,Δu、Δv为两次运动图像识别到的工件质心坐标(u,v)的差值,Δangle为两次运动图像识别到的工件姿态角度的偏差;ΔX、ΔY为两次运动工件世界坐标质心(x,y)的差值,ΔC表示两次运动世界坐标系下的工件姿态角度的偏差;
S34、构建方程
Figure FDA0003062037300000021
得到每两次运动之间对应特征的映射比例因子,通过求平均得到各特征最终的映射比例因子。
8.根据权利要求7所述的一种基于图像的简化机器人视觉伺服控制方法,其特征在于,步骤S4具体为:
S41、控制机器人移动到能采集到工件图像信息的任意位置,定义这一位置为机器人的当前位置;
S42、启动相机采集当前位置下的工件图像信息,并提取其图像特征;
S43、计算出当前图像与期望图像的偏差值,使用映射比例因子计算出机器人笛卡尔坐标系的偏差值,根据这一偏差值控制机器人完成向期望图像位置的移动。
9.根据权利要求8所述的一种基于图像的简化机器人视觉伺服控制方法,其特征在于,在进行伺服控制时,首先确定长边与水平中轴线的夹角angle,并控制机器人笛卡尔坐标系的转角顺时针旋转(90-angle)/kC;旋转之后再通过Δu、Δv确定ΔX、ΔY,进而控制机器人在笛卡尔坐标系中做对应的运动。
CN202110515835.0A 2021-05-12 2021-05-12 一种基于图像的简化机器人视觉伺服控制方法 Pending CN113172632A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110515835.0A CN113172632A (zh) 2021-05-12 2021-05-12 一种基于图像的简化机器人视觉伺服控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110515835.0A CN113172632A (zh) 2021-05-12 2021-05-12 一种基于图像的简化机器人视觉伺服控制方法

Publications (1)

Publication Number Publication Date
CN113172632A true CN113172632A (zh) 2021-07-27

Family

ID=76929217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110515835.0A Pending CN113172632A (zh) 2021-05-12 2021-05-12 一种基于图像的简化机器人视觉伺服控制方法

Country Status (1)

Country Link
CN (1) CN113172632A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089767A (zh) * 2021-11-23 2022-02-25 成都瑞特数字科技有限责任公司 一种移动式复合机器人应用中瓶状物的定位与抓取方法
CN115446836A (zh) * 2022-09-17 2022-12-09 上海交通大学 一种基于多种图像特征信息混合的视觉伺服方法
CN116117799A (zh) * 2022-12-19 2023-05-16 广东建石科技有限公司 机器视觉跟踪补偿方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656564A (zh) * 2014-12-25 2015-05-27 安徽科鸣三维科技有限公司 一种基于图像的机器人视觉伺服控制系统
CN106295649A (zh) * 2015-05-15 2017-01-04 中云智慧(北京)科技有限公司 一种基于轮廓特征的目标识别方法
CN106737774A (zh) * 2017-02-23 2017-05-31 天津商业大学 一种无标定机械臂视觉伺服控制装置
CN106774309A (zh) * 2016-12-01 2017-05-31 天津工业大学 一种移动机器人同时视觉伺服与自适应深度辨识方法
CN106934813A (zh) * 2015-12-31 2017-07-07 沈阳高精数控智能技术股份有限公司 一种基于视觉定位的工业机器人工件抓取实现方法
CN108858202A (zh) * 2018-08-16 2018-11-23 中国科学院自动化研究所 基于“对准-趋近-抓取”的零件抓取装置的控制方法
US20200086483A1 (en) * 2018-09-15 2020-03-19 X Development Llc Action prediction networks for robotic grasping

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104656564A (zh) * 2014-12-25 2015-05-27 安徽科鸣三维科技有限公司 一种基于图像的机器人视觉伺服控制系统
CN106295649A (zh) * 2015-05-15 2017-01-04 中云智慧(北京)科技有限公司 一种基于轮廓特征的目标识别方法
CN106934813A (zh) * 2015-12-31 2017-07-07 沈阳高精数控智能技术股份有限公司 一种基于视觉定位的工业机器人工件抓取实现方法
CN106774309A (zh) * 2016-12-01 2017-05-31 天津工业大学 一种移动机器人同时视觉伺服与自适应深度辨识方法
CN106737774A (zh) * 2017-02-23 2017-05-31 天津商业大学 一种无标定机械臂视觉伺服控制装置
CN108858202A (zh) * 2018-08-16 2018-11-23 中国科学院自动化研究所 基于“对准-趋近-抓取”的零件抓取装置的控制方法
US20200086483A1 (en) * 2018-09-15 2020-03-19 X Development Llc Action prediction networks for robotic grasping

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
何万涛: "《面结构光投影三维测量技术》", 31 August 2020 *
俞朝晖: "《Visual C++数字图像处理与工程应用实践》", 31 July 2012 *
彭杰: "基于机器视觉的工业机器人上下料系统设计与开发", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
彭杰: "基于机器视觉的工件分拣及上下料系统", 《机床与液压》 *
方钰: "无标定视觉伺服移动机械臂运动控制研究与实现", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
秦伟洋: "基于雅可比矩阵的工业机器人手眼协调系统的研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089767A (zh) * 2021-11-23 2022-02-25 成都瑞特数字科技有限责任公司 一种移动式复合机器人应用中瓶状物的定位与抓取方法
CN114089767B (zh) * 2021-11-23 2024-03-26 成都瑞特数字科技有限责任公司 一种移动式复合机器人应用中瓶状物的定位与抓取方法
CN115446836A (zh) * 2022-09-17 2022-12-09 上海交通大学 一种基于多种图像特征信息混合的视觉伺服方法
CN115446836B (zh) * 2022-09-17 2023-09-12 上海交通大学 一种基于多种图像特征信息混合的视觉伺服方法
CN116117799A (zh) * 2022-12-19 2023-05-16 广东建石科技有限公司 机器视觉跟踪补偿方法、装置、电子设备及存储介质
CN116117799B (zh) * 2022-12-19 2023-08-04 广东建石科技有限公司 机器视觉跟踪补偿方法、装置、电子设备及存储介质

Similar Documents

Publication Publication Date Title
CN107901041B (zh) 一种基于图像混合矩的机器人视觉伺服控制方法
CN112132894B (zh) 一种基于双目视觉引导的机械臂实时跟踪方法
CN111300422B (zh) 基于视觉图像的机器人工件抓取位姿误差补偿方法
CN111775146B (zh) 一种工业机械臂多工位作业下的视觉对准方法
CN113172632A (zh) 一种基于图像的简化机器人视觉伺服控制方法
CN107186708B (zh) 基于深度学习图像分割技术的手眼伺服机器人抓取系统及方法
CN104552341B (zh) 移动工业机器人单点多视角挂表位姿误差检测方法
CN113211431B (zh) 基于二维码修正机器人系统的位姿估计方法
CN113706621B (zh) 基于带标记图像的标志点定位及姿态获取方法和系统
CN113421291B (zh) 利用点云配准技术和三维重建技术的工件位置找正方法
CN113103235B (zh) 一种基于rgb-d图像对柜体表面设备进行垂直操作的方法
CN114519738A (zh) 一种基于icp算法的手眼标定误差修正方法
Li et al. A hybrid visual servo control method for simultaneously controlling a nonholonomic mobile and a manipulator
CN112109072B (zh) 一种大型稀疏特征托盘精确6d位姿测量和抓取方法
CN105096341A (zh) 基于三焦张量和关键帧策略的移动机器人位姿估计方法
CN111993422A (zh) 基于无标定视觉的机器人轴孔对准控制方法
CN116766194A (zh) 基于双目视觉的盘类工件定位与抓取系统和方法
CN114770461B (zh) 一种基于单目视觉的移动机器人及其自动抓取方法
CN111331604A (zh) 一种基于机器视觉的阀门旋拧柔顺作业方法
CN116872216B (zh) 一种基于有限时间控制的机器人视觉伺服作业方法
CN112958960B (zh) 一种基于光学靶标的机器人手眼标定装置
CN113172659A (zh) 基于等效中心点识别的柔性机器人臂形测量方法及系统
CN112588621A (zh) 一种基于视觉伺服的农产品分拣方法及系统
Nakhaeinia et al. Adaptive robotic contour following from low accuracy RGB-D surface profiling and visual servoing
Zhou et al. Visual servo control system of 2-DOF parallel robot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210727