CN113171107B - 一种心率变异性信号的非接触式提取方法及系统 - Google Patents

一种心率变异性信号的非接触式提取方法及系统 Download PDF

Info

Publication number
CN113171107B
CN113171107B CN202110456475.1A CN202110456475A CN113171107B CN 113171107 B CN113171107 B CN 113171107B CN 202110456475 A CN202110456475 A CN 202110456475A CN 113171107 B CN113171107 B CN 113171107B
Authority
CN
China
Prior art keywords
signal
heartbeat
waveform
dynamic signal
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110456475.1A
Other languages
English (en)
Other versions
CN113171107A (zh
Inventor
陈哲正
朱祥维
蔡佳炜
傅其祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110456475.1A priority Critical patent/CN113171107B/zh
Publication of CN113171107A publication Critical patent/CN113171107A/zh
Application granted granted Critical
Publication of CN113171107B publication Critical patent/CN113171107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明公开了一种心率变异性信号的非接触式提取方法及系统,通过获取生命体接收到雷达信号后反射回来的回波信号;提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号;通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形;设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列。本发明相对于现有技术降低了非接触式信号的提取难度和提取成本。

Description

一种心率变异性信号的非接触式提取方法及系统
技术领域
本发明涉及生物医学工程处理的技术领域,特别是涉及一种心率变异性信号的非接触式提取方法及系统。
背景技术
心血管疾病作为世界范围内威胁人类健康的主要疾病之一,已经成为中国成人死亡的首要原因,也是21世纪中国所面临的主要公共卫生问题之一。血管疾病是高死亡率和高致残率的首要诱因,给全社会和广大居民都造成了很大的困扰。因此,有效防治心血管疾病,已经称为世界各国急需解决的重要课题之一,目前评估心血管疾病的主要指标是心率变异性参数,对心率变异性参数的检测已广泛应用于临床。
心率变异性(简称HRV)是指瞬时心率或瞬时心动周期的微小变化,即逐次心跳R-R间期不断波动的现象。通过心率变异的分析可获得对心脏节律控制的神经系统的有关信息,导出RRI序列。HRV分析从测量方法上由接触式测量和非接触式测量;从分析方法上有时域分析、频域分析和非线性分析。
使用接触式HRV分析的方法导出RRI序列是通过心电图机,由导联电极从胸前测量心电信号,然后记录心电周期变化,这种方法存在一定的局限性,电极贴片和导线会产生约束;而使用非接触式HRV分析的方法导出RRI序列主要是基于摄像头视频采集动态心率信号的HRV分析,这种方法所使用的设备成本高、数据大,隐私性差。
发明内容
本发明要解决的技术问题是:提供一种心率变异性信号的非接触式提取方法及系统,降低非接触式信号提取成本和提取难度。
为了解决上述技术问题,本发明提供了一种心率变异性信号的非接触式提取方法及系统,包括:
获取生命体接收到雷达信号后反射回来的回波信号;
提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号;
通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形;
设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列。
进一步的,提取所述心跳信号对应的RRI序列后,还包括:
当所述RRI序列为非正常RRI序列;
通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最小值;若所述RRI序列的最小值小于等于40时,则将所述RRI序列记为误判的虚假R波,并对所述误判的虚假R波代入第一预设公式中进行迭代计算,直至所述RRI序列的最小值大于40;
通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最大值;若所述RRI序列的最大值大于等于200时,将所述RRI序列记为漏判的虚假R波,并对所述漏判的虚假R波代入第二预设公式中进行迭代计算,直至所述RRI序列的最大值小于200。
进一步的,对所述动态信号进行信号分离,具体为:
S1、提取所述动态信号中的波形数据,确定所述波形数据中所有的极大值和极小值,再通过预设算法得出所述动态信号中的波形数据的上下包络均值,并将所述动态信号减去所述动态信号中的波形数据的上下包络均值,生成第一动态信号;
S2、若所述第一动态信号不满足固有模态函数的预设条件,则将所述第一动态信号作为步骤S1中的动态信号,返回步骤S1;
S3、若第一动态信号满足固有模态函数的预设条件,则将第一动态信号记为第i个固有模态函数;其中,i为正整数,i的初始值为1,i的取值范围为1到N;
S4、将原始动态信号减去步骤S3中的固有模态函数,生成第一余项,并将第一余项更新为步骤S1中的所述动态信号,返回步骤S1到步骤S3,并在步骤S3中将新生成的所述第一动态信号记为第i+1个固有模态函数;再执行步骤S4,直至所述第一余项的信号分量单调或只有一个极值,无法再生成新的固有模态函数,记为第二余项,再执行步骤S5;
S5、所述动态信号表示为N个固有模态函数和第二余项的和。进一步的,设置所述心跳波形的波峰检测门限值,具体为:
检测所述心跳波形极大值点并存储为所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为波峰检测门限值;
当心跳波形值回落到所述波峰检测门限值时,检测下一个周期的心跳波形极大值点并存储并覆盖所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为当前的波峰检测门限值。
进一步的,根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,具体为:
根据所述心跳信号的波形特征信息确定所述心跳波形的上升沿和下降沿,将所述预设的滑动窗口的宽度减去所述心跳波形上升沿的后半段到下降沿前半段所需的时延,得到单个心跳周期的基准位置,并根据所述波峰检测门限值确定所述心跳波形极大值点,从所述基准位置起第一个所述心跳波形极大值点为所述心跳波形的波峰。
进一步的,一种心率变异性信号的非接触式提取系统,其特征在于,包括:
信号收发模块用于获取生命体接收到雷达信号后反射回来的回波信号;
回波信号处理模块用于提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号;
心跳信号处理模块用于通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形;
数据提取模块用于设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列。
进一步的,所述数据提取模块提取RRI序列后,还包括:
当所述RRI序列为非正常RRI序列;
通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最小值;若所述RRI序列的最小值小于等于40时,则将所述RRI序列记为误判的虚假R波,并对所述误判的虚假R波代入第一预设公式中进行迭代计算,直至所述RRI序列的最小值大于40;
通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最大值;若所述RRI序列的最大值大于等于200时,将所述RRI序列记为漏判的虚假R波,并对所述漏判的虚假R波代入第二预设公式中进行迭代计算,直至所述RRI序列的最大值小于200。
进一步的,所述回波信号处理模块对所述动态信号进行信号分离,具体为:
S1、提取所述动态信号中的波形数据,确定所述波形数据中所有的极大值和极小值,再通过预设算法得出所述动态信号中的波形数据的上下包络均值,并将所述动态信号减去所述动态信号中的波形数据的上下包络均值,生成第一动态信号;
S2、若所述第一动态信号不满足固有模态函数的预设条件,则将所述第一动态信号作为步骤S1中的动态信号,返回步骤S1;
S3、若第一动态信号满足固有模态函数的预设条件,则将第一动态信号记为第i个固有模态函数;其中,i为正整数,i的初始值为1,i的取值范围为1到N;
S4、将原始动态信号减去步骤S3中的固有模态函数,生成第一余项,并将第一余项更新为步骤S1中的所述动态信号,返回步骤S1到步骤S3,并在步骤S3中将新生成的所述第一动态信号记为第i+1个固有模态函数;再执行步骤S4,直至所述第一余项的信号分量单调或只有一个极值,无法再生成新的固有模态函数,记为第二余项,再执行步骤S5;
S5、所述动态信号表示为N个固有模态函数和第二余项的和。
进一步的,所述数据提取模块设置所述心跳波形的波峰检测门限值,具体为:
检测所述心跳波形极大值点并存储为所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为波峰检测门限值;
当心跳波形值回落到所述波峰检测门限值时,检测下一个周期的心跳波形极大值点并存储并覆盖所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为当前的波峰检测门限值。
进一步的,所述数据提取模块根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,具体为:
根据所述心跳信号的波形特征信息确定所述心跳波形的上升沿和下降沿,将所述预设的滑动窗口的宽度减去所述心跳波形上升沿的后半段到下降沿前半段所需的时延,得到单个心跳周期的基准位置,并根据所述波峰检测门限值确定所述心跳波形极大值点,从所述基准位置起第一个所述心跳波形极大值点为所述心跳波形的波峰。
本发明实施例一种心率变异性信号的非接触式提取方法及系统,与现有技术相比,具有如下有益效果:
本发明提供了一种心率变异性信号的非接触式提取方法及系统,该方法通过获取生命体接收到雷达信号后反射回来的回波信号;提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号;通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形;设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列,该方法与现有技术相比,降低了非接触式信号提取难度和提取成本。
附图说明
图1是本发明提供的一种心率变异性信号的非接触式提取方法的一种实施例的流程示意图;
图2是本发明提供的一种心率变异性信号的非接触式提取系统的一种实施例的模块示意图。
具体实施方式
下面将结合本发明中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
参见图1,图1是本发明提供的一种心率变异性信号的非接触式提取方法的一种实施例的流程示意图,如图1所示,该方法包括步骤101到步骤104,具体如下:
步骤101:获取生命体接收到雷达信号后反射回来的回波信号。
本实施例中,利用脉冲体制的超宽带雷达,通过发射天线或其他能实现信号发射的信号发送设备向生命体的胸腔发射电磁波,再通过信号接收设备接收经生命体反射回来的雷达回波信号,所述生命体包括人体、动物或其他具有心跳功能的生命体。
步骤102:提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号。
本实施例中,对通过信号接收设备接收到的生命体的反射回来的回波信号,先去除回波信号中的基带的直流分量,再使用差分滤波器消除回波信号中的静态回波,在本实施例中,除了使用差分滤波器消除静态回波信号外,还可以使用其他能实现相同功能的滤波器,当回波信号中的静态回波被消除后,就可以提取回波信号中生命体的胸腔和心脏起伏的动态信号;
对提取到的动态信号进行心跳呼吸信号的分离,其分离过程分为步骤S1到步骤S5,具体为:
步骤S1:先提取动态信号中的波形数据,确定波形数据中包含的所有的极大值和极小值,再将动态信号中所有极大值对应的点和所有极小值对应的点,通过预设的三次样插值函数拟合出该动态信号的上包络线/>和下包络线/>,其中,动态信号中的极大值对应动态信号的上包络线/>,动态信号中的极小值对应动态信号的下包络线/>,根据公式/>
计算出该动态信号的上下包络均值,并将动态信号/>减去动态信号的上下包络均值/>,生成第一动态信号/>
S2、若第一动态信号不满足固有模态函数的预设条件,则将第一动态信号作为步骤S1中的动态信号/>,并返回步骤S1;其中,固有模态函数的预设条件为:1、极值点数与过零点数相等或至多差一个;2、在任意一点,局部极大值和局部极小值的包络线均值为0,即信号关于时间轴局部对称;
S3、若第一动态信号满足固有模态函数的预设条件,则将第一动态信号记为第i个固有模态函数/>;其中,i为正整数,i的初始值为1,i的取值范围为1到N;
S4、将原始动态信号减去步骤S3中的固有模态函数,生成第一余项,并将第一余项更新为步骤S1中的所述动态信号/>,返回步骤S1到步骤S3,执行相同的操作,并在步骤S3中将新生成的所述第一动态信号/>记为第i+1个固有模态函数/>;再执行步骤S4,直至所述第一余项的信号分量单调或只有一个极值,无法再生成新的固有模态函数,记为第二余项/>,再执行步骤S5;
S5、所述动态信号表示为N个固有模态函数/>和第二余项/>的和,即
根据上述步骤S1到步骤S5,完成对动态信号进行分离后,再依据心率变异性的正常生理范围40-200ms,及其对应的心率30-150bmp,求出心率的频率为0.5-2.5Hz,将此频率范围内的固有模态函数进行求和,即可分离心跳信号。
步骤103:通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形。
本实施例中,先使用预设的带有传递函数进行求导,该频率响公式为:
将心跳信号的数据点进行平方计算,且对上述所求导数的输出进行非线性放大,增强高频率部分的信号;再使用宽带为信号采样频率的六分之一的滑动窗口对心跳信号的数据的均值进行平滑处理,获得心跳信号的波形特征信息,继而得到心跳信号对应的心跳波形;其中,信号采样频率为100Hz。
步骤104:设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列。
本实施例中,检测所述心跳波形极大值点并存储为所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为波峰检测门限值;当心跳波形值回落到所述波峰检测门限值时,检测下一个周期的心跳波形极大值点并存储并覆盖所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为当前的波峰检测门限值;
根据所述心跳信号的波形特征信息确定所述心跳波形的上升沿和下降沿,将所述预设的滑动窗口的宽度减去所述心跳波形上升沿的后半段到下降沿前半段所需的时延,得到单个心跳周期的基准位置,并根据所述波峰检测门限值确定所述心跳波形极大值点,从所述基准位置起第一个所述心跳波形极大值点为所述心跳波形的波峰,基于以上,就可以提取出心跳信号对应的RRI序列。
若提取的RRI序列为非正常序列,还要对非正常的RRI序列作进一步的处理,提取正常的RRI序列,具体为:
步骤(1)通过滑动窗口遍历RRI序列,确定所述RRI序列的最小值;若所述RRI序列的最小值小于等于40时,则将所述RRI序列记为误判的虚假R波,记为,并对所述误判的虚假R波/>代入第一预设公式
中进行迭代计算,其中,位于滑动窗口/>的中间位置,/>为窗口内RRI平均值;同时计算均值/>与/>和相邻值的差,若/>,虚假R波将融入的心跳中;若/>,虚假R波将融入/>的心跳中。
重复上述步骤(1),直至所述RRI序列的最小值大于40;
步骤(2)通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最大值;若所述RRI序列的最大值大于等于200时,将所述RRI序列记为漏判的虚假R波,并对所述漏判的虚假R波,记为,代入第二预设公式
中进行迭代计算,若,以/>的值将/>分成新的RRI;若,以/>将/>分成新的RRI,重复上述步骤(2)直至所述RRI序列的最大值小于200。
经上述步骤(1)和步骤(2),可以得到窦性心率RRI序列。
参见图2,图2是本发明提供的一种心率变异性信号的非接触式提取系统的一种实施例的模块示意图,如图2所示,该心率变异性信号的非接触式提取系统主要包括:
信号收发模块201用于获取生命体接收到雷达信号后反射回来的回波信号,具体为:利用脉冲体制的超宽带雷达,通过发射天线或其他能实现信号发射的信号发送设备向生命体的胸腔发射电磁波,再通过信号接收设备接收经生命体反射回来的雷达回波信号,所述生命体包括人体、动物或其他具有心跳功能的生命体。
回波信号处理模块202用于提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号。
本实施例中,对通过信号接收设备接收到的生命体的反射回来的回波信号,先去除回波信号中的基带的直流分量,再使用差分滤波器消除回波信号中的静态回波,在本实施例中,除了使用差分滤波器消除静态回波信号外,还可以使用其他能实现相同功能的滤波器,当回波信号中的静态回波被消除后,就可以提取回波信号中生命体的胸腔和心脏起伏的动态信号;
对提取到的动态信号进行心跳呼吸信号的分离,其分离过程分为步骤S1到步骤S5,具体为:
步骤S1:先提取动态信号中的波形数据,确定波形数据中包含的所有的极大值和极小值,再将动态信号中所有极大值对应的点和所有极小值对应的点,通过预设的三次样插值函数拟合出该动态信号的上包络线/>和下包络线/>,其中,动态信号中的极大值对应动态信号的上包络线/>,动态信号中的极小值对应动态信号的下包络线/>,根据公式/>
计算出该动态信号的上下包络均值,并将动态信号/>减去动态信号的上下包络均值/>,生成第一动态信号/>
S2、若第一动态信号不满足固有模态函数的预设条件,则将第一动态信号作为步骤S1中的动态信号/>,并返回步骤S1;其中,固有模态函数的预设条件为:1、极值点数与过零点数相等或至多差一个;2、在任意一点,局部极大值和局部极小值的包络线均值为0,即信号关于时间轴局部对称;
S3、若第一动态信号满足固有模态函数的预设条件,则将第一动态信号记为第i个固有模态函数/>;其中,i为正整数,i的初始值为1,i的取值范围为1到N;
S4、将原始动态信号减去步骤S3中的固有模态函数,生成第一余项,并将第一余项更新为步骤S1中的所述动态信号/>,返回步骤S1到步骤S3,执行相同的操作,并在步骤S3中将新生成的所述第一动态信号/>记为第i+1个固有模态函数/>;再执行步骤S4,直至所述第一余项的信号分量单调或只有一个极值,无法再生成新的固有模态函数,记为第二余项/>再执行步骤S5;
S5、所述动态信号表示为N个固有模态函数/>和第二余项/>的和,即
根据上述步骤S1到步骤S5,完成对动态信号进行分离后,再依据心率变异性的正常生理范围40-200ms,及其对应的心率30-150bmp,求出心率的频率为0.5-2.5Hz,将此频率范围内的固有模态函数进行求和,即可分离心跳信号。
心跳信号处理模块203用于通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形。
本实施例中,先使用预设的带有传递函数进行求导,该频率响公式为:
将心跳信号的数据点进行平方计算,且对上述所求导数的输出进行非线性放大,增强高频率部分的信号;再使用宽带为信号采样频率的六分之一的滑动窗口对心跳信号的数据的均值进行平滑处理,获得心跳信号的波形特征信息,继而得到心跳信号对应的心跳波形;其中,信号采样频率为100Hz。
数据提取模块204用于设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列。
本实施例中,检测所述心跳波形极大值点并存储为所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为波峰检测门限值;当心跳波形值回落到所述波峰检测门限值时,检测下一个周期的心跳波形极大值点并存储并覆盖所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为当前的波峰检测门限值;
根据所述心跳信号的波形特征信息确定所述心跳波形的上升沿和下降沿,将所述预设的滑动窗口的宽度减去所述心跳波形上升沿的后半段到下降沿前半段所需的时延,得到单个心跳周期的基准位置,并根据所述波峰检测门限值确定所述心跳波形极大值点,从所述基准位置起第一个所述心跳波形极大值点为所述心跳波形的波峰,基于以上,就可以提取出心跳信号对应的RRI序列。
若提取的RRI序列为非正常序列,还要对非正常的RRI序列作进一步的处理,提取正常的RRI序列,具体为:
步骤(1)通过滑动窗口遍历RRI序列,确定所述RRI序列的最小值;若所述RRI序列的最小值小于等于40时,则将所述RRI序列记为误判的虚假R波,记为,并对所述误判的虚假R波/>代入第一预设公式
中进行迭代计算,其中,位于滑动窗口/>的中间位置,/>为窗口内RRI平均值;同时计算均值/>与/>和相邻值的差,若/>,虚假R波将融入的心跳中;若/>,虚假R波将融入/>的心跳中。
重复上述步骤(1),直至所述RRI序列的最小值大于40;
步骤(2)通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最大值;若所述RRI序列的最大值大于等于200时,将所述RRI序列记为漏判的虚假R波,并对所述漏判的虚假R波,记为,代入第二预设公式
中进行迭代计算,若,以/>的值将/>分成新的RRI;若,以/>将/>分成新的RRI,重复上述步骤(2)直至所述RRI序列的最大值小于200。
经上述步骤(1)和步骤(2),可以得到窦性心率RRI序列。
综上,本发明一种心率变异性信号的非接触式提取方法及系统,通过获取生命体接收到雷达信号后反射回来的回波信号,提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号;再通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形;设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列,该发明降低了非接触式信号提取的难度和提取成本,同时保护了被提取方的隐私性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (4)

1.一种心率变异性信号的非接触式提取方法,其特征在于,包括:
获取生命体接收到雷达信号后反射回来的回波信号;
提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号;
通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形;
设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列;
当所述RRI序列为非正常RRI序列;
通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最小值;若所述RRI序列的最小值小于等于40时,则将所述RRI序列记为误判的虚假R波,并对所述误判的虚假R波代入第一预设公式中进行迭代计算,直至所述RRI序列的最小值大于40;
通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最大值;若所述RRI序列的最大值大于等于200时,将所述RRI序列记为漏判的虚假R波,并对所述漏判的虚假R波代入第二预设公式中进行迭代计算,直至所述RRI序列的最大值小于200;
其中,所述对所述动态信号进行信号分离,具体为:
S1、提取所述动态信号中的波形数据,确定所述波形数据中所有的极大值和极小值,再通过预设算法得出所述动态信号中的波形数据的上下包络均值,并将所述动态信号减去所述动态信号中的波形数据的上下包络均值,生成第一动态信号;
S2、若所述第一动态信号不满足固有模态函数的预设条件,则将所述第一动态信号作为步骤S1中的动态信号,返回步骤S1;
S3、若第一动态信号满足固有模态函数的预设条件,则将第一动态信号记为第i个固有模态函数;其中,i为正整数,i的初始值为1,i的取值范围为1到N;
S4、将原始动态信号减去步骤S3中的固有模态函数,生成第一余项,并将第一余项更新为步骤S1中的所述动态信号,返回步骤S1到步骤S3,并在步骤S3中将新生成的所述第一动态信号记为第i+1个固有模态函数;再执行步骤S4,直至所述第一余项的信号分量单调或只有一个极值,无法再生成新的固有模态函数,记为第二余项,再执行步骤S5;
S5、所述动态信号表示为N个固有模态函数和第二余项的和;
所述设置所述心跳波形的波峰检测门限值,具体为:
检测所述心跳波形极大值点并存储为所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为波峰检测门限值;
当心跳波形值回落到所述波峰检测门限值时,检测下一个周期的心跳波形极大值点并存储并覆盖所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为当前的波峰检测门限值。
2.如权利要求1所述的一种心率变异性信号的非接触式提取方法,其特征在于,根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,具体为:
根据所述心跳信号的波形特征信息确定所述心跳波形的上升沿和下降沿,将所述预设的滑动窗口的宽度减去所述心跳波形上升沿的后半段到下降沿前半段所需的时延,得到单个心跳周期的基准位置,并根据所述波峰检测门限值确定所述心跳波形极大值点,从所述基准位置起第一个所述心跳波形极大值点为所述心跳波形的波峰。
3.一种心率变异性信号的非接触式提取系统,其特征在于,包括:
信号收发模块用于获取生命体接收到雷达信号后反射回来的回波信号;
回波信号处理模块用于提取所述回波信号中的动态信号,并对所述动态信号进行信号分离,获取所述动态信号对应的心跳信号;
心跳信号处理模块用于通过预设的滑动窗口对所述心跳信号进行平滑处理,获得具有波形特征信息的所述心跳信号,并生成相对应的心跳波形;
数据提取模块用于设置所述心跳波形的波峰检测门限值,并根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,继而根据所述心跳波形的波峰,提取所述心跳信号对应的RRI序列;当所述RRI序列为非正常RRI序列;通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最小值;若所述RRI序列的最小值小于等于40时,则将所述RRI序列记为误判的虚假R波,并对所述误判的虚假R波代入第一预设公式中进行迭代计算,直至所述RRI序列的最小值大于40;通过滑动窗口遍历所述RRI序列,确定所述RRI序列的最大值;若所述RRI序列的最大值大于等于200时,将所述RRI序列记为漏判的虚假R波/>,并对所述漏判的虚假R波代入第二预设公式中进行迭代计算,直至所述RRI序列的最大值小于200;
其中,所述回波信号处理模块对所述动态信号进行信号分离,具体为:
S1、提取所述动态信号中的波形数据,确定所述波形数据中所有的极大值和极小值,再通过预设算法得出所述动态信号中的波形数据的上下包络均值,并将所述动态信号减去所述动态信号中的波形数据的上下包络均值,生成第一动态信号;
S2、若所述第一动态信号不满足固有模态函数的预设条件,则将所述第一动态信号作为步骤S1中的动态信号,返回步骤S1;
S3、若第一动态信号满足固有模态函数的预设条件,则将第一动态信号记为第i个固有模态函数;其中,i为正整数,i的初始值为1,i的取值范围为1到N;
S4、将原始动态信号减去步骤S3中的固有模态函数,生成第一余项,并将第一余项更新为步骤S1中的所述动态信号,返回步骤S1到步骤S3,并在步骤S3中将新生成的所述第一动态信号记为第i+1个固有模态函数;再执行步骤S4,直至所述第一余项的信号分量单调或只有一个极值,无法再生成新的固有模态函数,记为第二余项,再执行步骤S5;
S5、所述动态信号表示为N个固有模态函数和第二余项的和;
所述数据提取模块设置所述心跳波形的波峰检测门限值,具体为:
检测所述心跳波形极大值点并存储为所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为波峰检测门限值;
当心跳波形值回落到所述波峰检测门限值时,检测下一个周期的心跳波形极大值点并存储并覆盖所述心跳波形极大值数据,将存储的所述心跳波形极大值数据的一半设置为当前的波峰检测门限值。
4.如权利要求3所述的一种心率变异性信号的非接触式提取系统,其特征在于,所述数据提取模块根据所述心跳信号的波形特征信息,结合所述波峰检测门限值,获取所述心跳波形的波峰,具体为:
根据所述心跳信号的波形特征信息确定所述心跳波形的上升沿和下降沿,将所述预设的滑动窗口的宽度减去所述心跳波形上升沿的后半段到下降沿前半段所需的时延,得到单个心跳周期的基准位置,并根据所述波峰检测门限值确定所述心跳波形极大值点,从所述基准位置起第一个所述心跳波形极大值点为所述心跳波形的波峰。
CN202110456475.1A 2021-04-26 2021-04-26 一种心率变异性信号的非接触式提取方法及系统 Active CN113171107B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110456475.1A CN113171107B (zh) 2021-04-26 2021-04-26 一种心率变异性信号的非接触式提取方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110456475.1A CN113171107B (zh) 2021-04-26 2021-04-26 一种心率变异性信号的非接触式提取方法及系统

Publications (2)

Publication Number Publication Date
CN113171107A CN113171107A (zh) 2021-07-27
CN113171107B true CN113171107B (zh) 2024-03-19

Family

ID=76926516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110456475.1A Active CN113171107B (zh) 2021-04-26 2021-04-26 一种心率变异性信号的非接触式提取方法及系统

Country Status (1)

Country Link
CN (1) CN113171107B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336502A (ja) * 1995-06-09 1996-12-24 Isuzu Motors Ltd 心拍間隔検出方法及び装置
JP2010142456A (ja) * 2008-12-19 2010-07-01 Panasonic Corp 心拍検知装置
CN102793538A (zh) * 2011-05-25 2012-11-28 旺三丰兴业股份有限公司 心率变异性装置及云端健康管理系统
CN104173064A (zh) * 2014-09-04 2014-12-03 西双版纳生物医学研究院 基于心率变异分析的测谎方法及测谎装置
CN106175723A (zh) * 2016-06-27 2016-12-07 中国人民解放军第三军医大学第附属医院 一种基于fmcw宽带雷达的多生命监护系统
CN110327029A (zh) * 2019-07-03 2019-10-15 上海交通大学 一种基于微波感知的心率与心率变异性监测方法
CN110507293A (zh) * 2019-07-26 2019-11-29 中国电子科技集团公司第三十八研究所 一种超宽带穿墙雷达人体呼吸及心跳检测方法及系统
CN112617748A (zh) * 2020-11-02 2021-04-09 佛山科学技术学院 基于调频连续波雷达的体征数据处理方法及系统
CN112656393A (zh) * 2020-12-08 2021-04-16 山东中科先进技术研究院有限公司 一种心率变异性的检测方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051702B2 (en) * 2014-10-08 2021-07-06 University Of Florida Research Foundation, Inc. Method and apparatus for non-contact fast vital sign acquisition based on radar signal
US20190046120A1 (en) * 2017-08-11 2019-02-14 Wellen Sham In vehicle non-contact heartbeat and breath sensing system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336502A (ja) * 1995-06-09 1996-12-24 Isuzu Motors Ltd 心拍間隔検出方法及び装置
JP2010142456A (ja) * 2008-12-19 2010-07-01 Panasonic Corp 心拍検知装置
CN102793538A (zh) * 2011-05-25 2012-11-28 旺三丰兴业股份有限公司 心率变异性装置及云端健康管理系统
CN104173064A (zh) * 2014-09-04 2014-12-03 西双版纳生物医学研究院 基于心率变异分析的测谎方法及测谎装置
CN106175723A (zh) * 2016-06-27 2016-12-07 中国人民解放军第三军医大学第附属医院 一种基于fmcw宽带雷达的多生命监护系统
CN110327029A (zh) * 2019-07-03 2019-10-15 上海交通大学 一种基于微波感知的心率与心率变异性监测方法
CN110507293A (zh) * 2019-07-26 2019-11-29 中国电子科技集团公司第三十八研究所 一种超宽带穿墙雷达人体呼吸及心跳检测方法及系统
CN112617748A (zh) * 2020-11-02 2021-04-09 佛山科学技术学院 基于调频连续波雷达的体征数据处理方法及系统
CN112656393A (zh) * 2020-12-08 2021-04-16 山东中科先进技术研究院有限公司 一种心率变异性的检测方法及系统

Also Published As

Publication number Publication date
CN113171107A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
Sathyapriya et al. Analysis and detection R-peak detection using Modified Pan-Tompkins algorithm
Sayadi et al. A model-based Bayesian framework for ECG beat segmentation
Vadrevu et al. A robust pulse onset and peak detection method for automated PPG signal analysis system
CN106974631B (zh) 一种基于脉搏波波形和心电信号的血压测量方法及装置
CN107041743B (zh) 一种心电信号实时r波检测方法
US4721114A (en) Method of detecting P-waves in ECG recordings
CN108354597A (zh) 一种基于最优波提取的快速血压计算方法
AU2019313480B2 (en) Systems and methods for maternal uterine activity detection
Chin et al. Bayesian real-time QRS complex detector for healthcare system
CN110507317B (zh) 一种心电信号r波的自适应ca-cfar定位方法
CN110840428B (zh) 基于一维U-Net网络的无创血压估计方法
CN111839488A (zh) 基于脉搏波的无创连续血压测量装置和方法
CN108294736A (zh) 连续血压测量系统及测量方法
CN113171107B (zh) 一种心率变异性信号的非接触式提取方法及系统
CN111166325B (zh) 基于ipcmm算法的心电信号qrs复合波检测方法及系统
US11432756B2 (en) Multi-channel real-time cardiovascular performance evaluation system and method cardiovascular performance evaluation system and method
Salah et al. Denoising of the impedance cardiographie signal (ICG) for a best detection of the characteristic points
US20170258351A1 (en) Heartbeat detection method and heartbeat detection device
Dave et al. R peak detection for wireless ECG using DWT and entropy of coefficients
WO2018023698A1 (zh) 一种胎儿心电分离方法及装置
TWM530126U (zh) 基於擬合曲線之心跳訊號的檢測裝置
CN111568470A (zh) 一种基于心电同步的超声多普勒心功能包络峰识别方法
TWM574469U (zh) Qrs波即時檢測裝置
CN113892929B (zh) 非接触式心跳监测方法、监测系统、电子设备及存储介质
Ning et al. Research on QRS wave detection algorithm of ECG system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant