CN113162632B - 智能qc-ldpc译码方法、译码器及低轨卫星通信系统 - Google Patents

智能qc-ldpc译码方法、译码器及低轨卫星通信系统 Download PDF

Info

Publication number
CN113162632B
CN113162632B CN202110477474.5A CN202110477474A CN113162632B CN 113162632 B CN113162632 B CN 113162632B CN 202110477474 A CN202110477474 A CN 202110477474A CN 113162632 B CN113162632 B CN 113162632B
Authority
CN
China
Prior art keywords
memory neural
neural network
lstm memory
representing
lstm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110477474.5A
Other languages
English (en)
Other versions
CN113162632A (zh
Inventor
谷林海
高勇
宋昊
王艳峰
刘鸿鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Star Network Application Co Ltd
Original Assignee
Dongfanghong Satellite Mobile Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongfanghong Satellite Mobile Communication Co Ltd filed Critical Dongfanghong Satellite Mobile Communication Co Ltd
Priority to CN202110477474.5A priority Critical patent/CN113162632B/zh
Publication of CN113162632A publication Critical patent/CN113162632A/zh
Application granted granted Critical
Publication of CN113162632B publication Critical patent/CN113162632B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明公开了一种智能QC-LDPC译码方法、译码器及低轨卫星通信系统。译码方法包括:S1,对经过QC-LDPC编码处理的接收信号进行解调处理获得似然比信息;S2,对似然比信息进行串并转化得到N个似然比子信息,将N个似然比子信息并行输入N个级联的LSTM记忆神经网络,将N个LSTM记忆神经网络的输出数据并行输入全连接网络获得译码数据;S3,对译码数据进行校验,若校验通过输出译码数据,若校验不通过舍弃译码数据。采用人工智能技术进行QC-LDPC译码,LSTM记忆神经网络具有此时刻输入信息与前面时刻输入信息有关联,能够实现译码算法的自组织学习,找到输入变量之间复杂的相互作用,提高译码的性能。

Description

智能QC-LDPC译码方法、译码器及低轨卫星通信系统
技术领域
本发明涉及通信技术领域,特别是涉及一种智能QC-LDPC译码方法、译码器及低轨卫星通信系统。
背景技术
在未来空天地海一体化移动通信中,低轨卫星起着越来越重要的作用。与地面通信系统相比,低轨卫星的覆盖广,更适合在沙漠、深林、海洋等无人区进行全球通信;与高轨卫星通信系统相比,低轨卫星具有路径衰耗小、传输时延短、研制周期短、发射成本低等优点。因此在未来的卫星通信系统中,低轨卫星通信系统会占有越来越重要的地位。
虽然低轨卫星通信系统有着诸多优点,但信号的衰弱不可避免地会影响信息传输的可靠性,导致误码率增高,使得通信系统性能降低。以及卫星信道环境容易受外界环境因素影响。针对这一问题,最通用的方法就是增大信噪比。但是,低轨卫星载荷资源紧张,因此常常无法通过卫星设备本身为信号提供较大的信噪比。为了解决这一难题,卫星通信系统通常会引入信道编码技术,为通信链路提供额外的编码增益。
信道编码是对提高通信系统高可靠性有着重要作用。LDPC(Low Density ParityCheck Code)作为一种新兴的信道编码,非常适合用于低轨卫星通信系统中。LDPC码与Turbo码、级联码相比,虽然性能差距不大,但是LDPC码复杂度更低,并且易于实现,以及码率高。从信道容量来看,LDPC码是具有逼近 Shannon极限的性能,而且具有较好的灵活性和较低的差错平台特性,抗干扰能力强。其中,QC-LDPC(Quasi-Cyslic Low-DensityParity-Check Codes)即准循环QC-LDPC码的稀疏特性更适合卫星通信。
然而,当QC-LDPC码的校验矩阵结构构造完毕,译码算法的选择又将影响到是否能够使码字本身的纠错潜力得到最大发挥。QC-LDPC软判决译码算法译码性能较好,但是译码迭代过程对计算资源的需求更大。研究人员先后又提出了一系列译码算法,如归一化最小和算法、偏置最小和算法等算法,这些算法在校验节点更新过程只需存储计算的最小值和符号,但是也牺牲了部分译码性能。因此,如何在降低软判决译码算法的复杂度和优良的译码性能之间平衡折中,是QC-LDPC译码研究必须解决的问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种智能QC-LDPC译码方法、译码器及低轨卫星通信系统。
为了实现本发明的上述目的,根据本发明的第一个方面,本发明提供了一种智能QC-LDPC译码方法,包括:步骤S1,对经过QC-LDPC编码处理的接收信号进行解调处理获得似然比信息;步骤S2,对所述似然比信息进行串并转化得到N个似然比子信息,将N个似然比子信息并行输入N个级联的LSTM记忆神经网络,将N个LSTM记忆神经网络的输出数据并行输入全连接网络的N个神经元处理获得译码数据;所述N为似然比信息码长;步骤S3,对所述译码数据进行校验,若校验通过输出所述译码数据,若校验不通过舍弃所述译码数据。
上述技术方案:本方法采用人工智能技术进行QC-LDPC译码,能够实现译码算法的自组织学习,不断提高译码的性能;LSTM记忆神经网络具有此时刻输入信息与前面时刻输入信息有关联,从而增强了译码的性能;神经网络是非线性的,它可以找到输入变量之间复杂的相互作用,能够挖掘出信道诸多特性,从而增强QC-LDPC译码性能。
在本发明一种优选实施方式中,N个LSTM记忆神经网络中全部或部分为单层LSTM记忆神经网络;和/或N个LSTM记忆神经网络和全连接网络采用流水线方式处理数据。
上述技术方案:单层LSTM记忆神经网络能够简化神经网络结构,减少计算复杂度和运算量,在保证译码性能同时尽可能简化译码复杂度;采用流水线处理方式,大量的相似或独立运算都可以同时进行,提高译码处理的实时性。
在本发明一种优选实施方式中,N个LSTM记忆神经网络和全连接网络采用流水线方式处理数据的过程包括:步骤S21,设k表示处理周期索引,k为正整数,令k=1时,第一个LSTM记忆神经网络对输入的似然比子信息进行数据处理,令k=k+1,进入步骤S22;步骤S22,若k大于等于N,将N个LSTM记忆神经网络的输出数据并行输入全连接网络,进入步骤S24;若k小于N,进入步骤S23;步骤S23,第k个LSTM记忆神经网络结合输入的似然比子信息和第k-1个LSTM 记忆神经网络的输出信息进行数据处理获得处理结果,返回步骤S22;步骤S24,在第k+1个处理周期,N个LSTM记忆神经网络的处理结果并行输入全连接网络,全连接网络输出译码数据。
上述技术方案:实现经过N+1个处理周期完成数据译码,N个LSTM记忆神经网络采用流水线式工作,后一层处理会结合上一层处理结果,增强译码性能,全连接网路在同一处理周期并行处理N个LSTM记忆神经网络输出数据,能够提高译码实时性,使得本发明的译码方法方便在FPGA等并行执行器件上实施,具备极强的工程实施性。
在本发明一种优选实施方式中,设n同时表示LSTM记忆神经网络序号和神经元序号,n为正整数,n∈[1,N],第n个LSTM记忆神经网络处理数据的过程包括:步骤一,利用sigmoid激活函数获取第n个LSTM记忆神经网络遗忘上一层隐藏状态的概率fn,所述fn=σ(Wf·[hn-1,xn]+bf),其中,sigmoid激活函数
Figure BDA0003046117780000041
0<σ(x)<1,α表示为激活函数常数,Wf表示第一线性关系系数, bf表示第一线性关系偏置,hn-1表示第n个LSTM记忆神经网络的上一单层LSTM 记忆神经网络输入信号的隐藏状态,xn表示输入第n个LSTM记忆神经网络的似然比子信息;利用sigmoid激活函数获取第n个LSTM记忆神经网络的第一更新信息in,所述in=σ(Wn·[hn-1,xn]+bn),其中,Wn表示第二线性关系系数,bn表示第二线性关系偏置;利用tanh激活函数获得第n个LSTM记忆神经网络的第二更新信息
Figure BDA0003046117780000042
所述
Figure BDA0003046117780000043
其中,tanh激活函数
Figure BDA0003046117780000044
WC表示第三线性关系系数,bC表示第三线性关系偏置;步骤二,基于fn、第一更新信息in和第二更新信息
Figure BDA0003046117780000045
获得第n个LSTM记忆神经网络的细胞状态cn,所述
Figure BDA0003046117780000046
其中,所述cn-1表示第n个LSTM记忆神经网络的上一层LSTM 记忆神经网络的细胞状态;步骤三,利用sigmoid激活函数获得第n个LSTM记忆神经网络的第一部分输出信息on,所述on=σ(Wo·[hn-1,xn]+bo),其中,Wo表示第四线性关系系数,bo表示第四线性关系偏置;利用tanh激活函数获得获得第 n个LSTM记忆神经网络的第二部分输出信息hn,所述hn=on*tanh(cn)。
上述技术方案:具体实现了N个LSTM记忆神经网络流水线式工作,并且后一层处理会结合上一层处理结果,增强译码性能。
在本发明一种优选实施方式中,全连接网络包括神经元层和输出层,所述输出层利用sigmoid激活函数得到输出值为:
Figure BDA0003046117780000051
其中,zn表示第n个神经元的输出数据,wn表示第n个神经元的权重,θ表示神经单元的内部阈值。
上述技术方案:通过sigmoid激活函数使得神经元的输出为0或1,形成译码数据信号。
在本发明一种优选实施方式中,在所述步骤S3中,当所述译码数据校验通过时,当所述译码数据校验通过时,还包括将所述译码数据反馈至N个LSTM记忆神经网络和N个神经元进行训练自学习的步骤。
上述技术方案:反馈译码数据到智能网络层进行训练实现自学习,从而提升译码性能。
在本发明一种优选实施方式中,反馈所述译码数据至N个LSTM记忆神经网络和N个神经元进行训练自学习的过程包括:N个神经元训练自学习过程具体包括:步骤A,反向计算获取全连接网络的输出误差项δ,所述
Figure BDA0003046117780000052
其中,E(w) 表示全连接网络的误差函数,
Figure BDA0003046117780000053
Figure BDA0003046117780000054
表示与y对应的发送信息,net表示神经元加权项,
Figure BDA0003046117780000055
步骤B,更新全连接网络中每个神经元权重,对于第n个神经元的权重wn更新为:wn←wn-1-ηδzn,其中,η表示学习率,wn-1表示第n个神经元的上一层神经元的权重或者上一处理周期时第n个神经元的权重;N个LSTM记忆神经网络训练自学习过程具体包括:步骤C,计算每个LSTM记忆神经网络的误差项反向传递结果,第n个LSTM记忆神经网络误差项反向传递函数为:
Figure BDA0003046117780000061
其中,j表示被第n个LSTM记忆神经网络的反向传递误差项的LSTM记忆神经网络序号,j为正整数, j∈[1,n-1],δo,j表示第j个L STM记忆神经网络信息保留到第j+1个LSTM记忆神经网络的误差项,
Figure BDA0003046117780000062
δj表示第j个LSTM记忆神经网络的反向传递误差项,符号
Figure BDA0003046117780000063
代表矩阵对应位置相乘,oj表示第j个LSTM记忆神经网络的第一部分输出信息,cj表示第j个LSTM记忆神经网络的细胞状态,Woh表示第一权重梯度;δf,j表示第j个LSTM记忆神经网络对当前输出的影响误差项;
Figure BDA0003046117780000064
cj-1表示第j-1个LSTM记忆神经网络的细胞状态,fj表示第j个LSTM记忆神经网络遗忘上一层隐藏状态的概率,Wfh表示第二权重梯度;δi,j表示输入第j个LSTM记忆神经网络信息的误差项;
Figure BDA0003046117780000065
ij表示第j个LSTM记忆神经网络的第一更新信息,
Figure BDA0003046117780000066
表示第j个LSTM记忆神经网络的第二更新信息,Wih表示第三权重梯度;
Figure BDA0003046117780000067
表示第j个LSTM记忆神经网络当前记忆误差项;
Figure BDA0003046117780000068
Wch表示第四权重梯度;步骤D,基于LSTM 记忆神经网络误差项反向传递函数采用梯度下降法更新第一权重梯度Woh、第二权重梯度Wfh、第三权重梯度Wih和第四权重梯度Wch
Figure BDA0003046117780000069
Figure BDA00030461177800000610
δo,n表示第n-1个LSTM记忆神经网络信息保留到第n 个LSTM单元的误差项,δn表示第n个LSTM记忆神经网络的反向传递误差项,on表示第n个LSTM记忆神经网络的第一部分输出信息,cn表示第n个LSTM记忆神经网络的细胞状态,hn-1表示第n-1个LSTM记忆神经网络的第二部分输出信息;
Figure BDA0003046117780000071
Figure BDA0003046117780000072
δf,n表示第n个LSTM记忆神经网络对当前输出的影响误差项,cn-1表示第n-1个LSTM记忆神经网络的细胞状态,fn表示第n个LSTM记忆神经网络遗忘上一层隐藏状态的概率;
Figure BDA0003046117780000073
Figure BDA0003046117780000074
δi,n表示输入第n个LSTM记忆神经网络信息的误差项,in表示第n个LSTM记忆神经网络的第一更新信息,
Figure BDA0003046117780000075
表示第n个LSTM记忆神经网络的第二更新信息;
Figure BDA0003046117780000076
Figure BDA0003046117780000077
Figure BDA0003046117780000078
表示第n个LSTM记忆神经网络当前记忆误差项。
上述技术方案:具体公开了N个LSTM记忆神经网络层和N个神经元通过译码数据进行训练自学习提升译码性能的实施方式。
在本发明一种优选实施方式中,在所述步骤S1中在对接收信号进行解调处理前,还包括信号采集步骤,所述信号采集步骤包括对接收端接收的模拟信号进行ADC采样处理得到采样信号;和/或还包括信号感知步骤,所述信号感知步骤为对采样信号进行能量-滤波检测处理识别出有用信号,所述能量-滤波检测处理包括:设定能量门限σ',所述
Figure BDA0003046117780000079
其中,所述H表示ADC器件的位数;对每个时刻的采样信号进行如下检测处理:步骤S11,通过如下公式获取 t时刻采样信号的幅度R(t):
Figure BDA00030461177800000710
其中,r(t)表示t时刻的采样信号,max(*)表示取最大值,min(*)表示取最小值,|*|表示取绝对值,imag(*)表示取信号的虚部,real(*)表示取信号的实部;步骤S12,对R(t)进行环路滤波得到t时刻的采样信号环路滤波后的幅度R'(t):所述 R'(t)=ξ·R(t)+ζ·R(t-1),其中,ξ表示第一环路滤波系数,ζ表示第二环路滤波系数,R(t-1)表示t-1时刻的采样信号幅度;步骤S13,若|R'(t)|≥σ ' ,认为t时刻采样信号为有用信号,若|R'(t)|<σ ' ,认为t时刻采样信号为无用信号;和/或还包括滤波步骤,所述滤波步骤包括:按照如下公式对有用信号进行滤波处理得到:
Figure BDA0003046117780000081
其中,hl表示滤波器系数,L表示滤波器阶数,s′(t)表示t 时刻的有用信号经滤波器滤波后输出的信号,s(t-l)表示t-l时刻的有用信号;和/或还包括归一化步骤,所述归一化步骤为按照如下公式对滤波器输出的信号进行归一化处理获得归一化信号:
Figure BDA0003046117780000082
其中,v表示归一化处理后的信号组成的向量,s′表示滤波器输出信号组成的向量,abs(*)表示取绝对值, max(abs(s′))表示取向量s′所有元素绝对值中的最大值;和/或所述解调处理是利用pi/4-BPSK软解调算法对归一化信号进行解调获得似然比信息。
上述技术方案:信号采集步骤实现了模拟接收信号数字化处理。信号感知步骤同步实现有用信号识别和杂波滤除。滤波步骤能够进一步滤除杂波信号。归一化步骤便于后续译码处理。
为了实现本发明的上述目的,根据本发明的第二个方面,本发明提供了一种译码器,包括似然比信息获取模块、智能网络层和校验层;所述似然比信息获取模块对经过QC-LDPC编码处理的接收信号进行解调处理获得似然比信息;所述智能网络层包括串并转换单元、LSTM记忆神经网络层和全连接层;所述串并转换单元将输入的似然比信息串并转化为N个似然比子信息;所述LSTM记忆神经网络层包括N个级联的LSTM记忆神经网络,N个似然比子信息并行输入N 个LSTM记忆神经网络;所述全连接层包括N个神经元,N个LSTM记忆神经网络的输出数据并行输入全连接网络的N个神经元处理获得译码数据;NN为似然比信息码长;所述校验层对所述译码数据进行校验,若校验通过输出所述译码数据,同时反馈译码数据至智能网络层进行训练自学习,若校验不通过舍弃所述译码数据。
上述技术方案:该译码器采用人工智能技术进行QC-LDPC译码,能够实现译码算法的自组织学习,不断提高译码的性能;反馈译码数据到智能网络层进行训练实现自学习,有利于进一步提升译码性能。LSTM记忆神经网络具有此时刻输入信息与前面时刻输入信息有关联,从而增强了译码的性能;神经网络是非线性的,它可以找到输入变量之间复杂的相互作用,能够挖掘出信道诸多特性,从而增强QC-LDPC译码性能。
为了实现本发明的上述目的,根据本发明的第三个方面,本发明提供了一种低轨卫星通信系统,包括发射端和接收端,所述发射端对待发射数据进行 QC-LDPC编码处理和调制处理,所述接收端按照本发明所述的智能QC-LDPC译码方法对接收数据进行处理获得译码数据。
上述技术方案:该卫星通信系统在发射端采用QC-LDPC编码,抗干扰能力强,在接收端采用人工智能技术进行QC-LDPC译码,能够实现译码算法的自组织学习,反馈译码数据到智能网络层进行训练实现自学习,不断提高译码的性能,能够挖掘出信道诸多特性,从而增强QC-LDPC译码性能。
附图说明
图1是本发明一具体实施方式中智能LDPC译码方法的流程示意图;
图2是本发明一具体实施方式中译码器结构示意图;
图3是本发明一具体实施方式中LSTM记忆神经网络的译码过程示意图;
图4是本发明一具体实施方式中智能网络层网络结构示意图;
图5是本发明一具体实施方式中本申请的译码方法与现有译码方法性能比较示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本发明公开了一种智能QC-LDPC译码方法,在一种优选实施方式中,如图1 所示,该译码方法包括:
步骤S1,对经过QC-LDPC编码处理的接收信号进行解调处理获得似然比信息;
步骤S2,对似然比信息进行串并转化得到N个似然比子信息,将N个似然比子信息并行输入N个级联的LSTM记忆神经网络,将N个LSTM记忆神经网络的输出数据并行输入全连接网络的N个神经元处理获得译码数据;N为似然比信息码长;
步骤S3,对译码数据进行校验,若校验通过输出译码数据,若校验不通过舍弃译码数据。
在本实施方式中,优选的,N个LSTM记忆神经网络中全部或部分为单层LSTM 记忆神经网络,进一步优选的,N个LSTM记忆神经网络均为单层LSTM记忆神经网络,以便减小计算复杂度。
在本实施方式中,N个LSTM记忆神经网络相互级联,具体的,第一个LSTM 记忆神经网络与第二个LSTM记忆神经网络联接,第二个LSTM记忆神经网络与第三个LSTM记忆神经网络联接,……,第N-1个LSTM记忆神经网络与第N个 LSTM记忆神经网络联接。全连接层包括神经元层和输出层,神经元层包括N个神经元,第一个LSTM记忆神经网络与第一个神经元连接,第二个LSTM记忆神经网络与第二个神经元连接,……,第N个LSTM记忆神经网络与第N个神经元连接,N个神经元与输出层连接。
在本实施方式中,在步骤S3中,校验译码数据的校验方法优选但不限于为 CRC校验方法,校验结果可用Flag标识,通过判断Flag值来判断是否验证通过,若Flag为0,则校验通过,认为译码正确,输出译码数据,优选的,同时反馈数据到智能网络层进行训练实现自学习;若Flag为1,则校验不通过,认为译码错误,丢弃数据。
在本实施方式中,记忆神经网络为长短期记忆网络(LSTM,Long Short-TermMemory)是一种时间循环神经网络。
在一种优选实施方式中,在步骤S1中在对接收信号进行解调处理前,如图 2所示,还包括信号采集步骤,信号采集步骤包括对接收端接收的模拟信号进行 ADC采样处理得到采样信号。优选的,选用高速ADC器件进行采样。
在一种优选实施方式中,如图2所示,还包括信号感知步骤,信号感知步骤为对采样信号进行能量-滤波检测处理识别出有用信号,能量-滤波检测处理包括:设定能量门限σ',
Figure BDA0003046117780000121
其中,H表示ADC器件的位数;对每个时刻的采样信号进行如下检测处理:
步骤S11,通过如下公式获取t时刻采样信号的幅度R(t):
Figure BDA0003046117780000122
其中,r(t)表示t 时刻的采样信号,优选的,t时刻大于采样周期,一个时刻对应了多个采样数据。 max(*)表示取最大值,min(*)表示取最小值,|*|表示取绝对值,imag(*)表示取信号的虚部,real(*)表示取信号的实部;
步骤S12,对R(t)进行环路滤波得到t时刻的采样信号环路滤波后的幅度 R'(t):
R'(t)=ξ·R(t)+ζ·R(t-1),其中,ξ表示第一环路滤波系数,优选取值区间为大于0小于1,优选为0.9,ζ表示第二环路滤波系数,ζ的取值区间为大于0小于0.5,优选为0.1;R(t-1)表示t-1时刻的采样信号幅度;
步骤S13,若|R'(t)|≥σ ' ,认为t时刻采样信号为有用信号,若|R'(t)|<σ ' ,认为t时刻采样信号为无用信号,继续检测下一时刻的信号能量。
在一种优选实施方式中,如图2所示,还包括滤波步骤,滤波步骤包括:按照如下公式对有用信号进行滤波处理得到:
Figure BDA0003046117780000131
其中,hl表示滤波器系数,L表示滤波器阶数,s′(t)表示t时刻的有用信号经滤波器滤波后输出的信号,s(t-l)表示t-l时刻的有用信号。
在一种优选实施方式中,如图2所示,还包括归一化步骤,归一化步骤为按照如下公式对滤波器输出的信号进行归一化处理获得归一化信号:
Figure BDA0003046117780000132
其中,v表示归一化处理后的信号组成的向量;s′表示滤波器输出信号组成的向量;abs(*)表示取绝对值;max(abs(s′))表示取向量s′所有元素绝对值中的最大值,即先对向量s′中的每个元素取绝对值,再选择数值最大的绝对值。
在一种优选实施方式中,对接收信号进行的解调处理优选但不限于为软解调,优选的,对归一化处理后的信号采用pi/4-BPSK软解调算法解调,再通过公式x=real(v'),得到似然比信息x,v'表示归一化处理后的信号。pi/4-BPSK软解调算法为在传统BPSK解调算法上旋转pi/4。
在一种优选实施方式中,N个LSTM记忆神经网络和全连接网络采用流水线方式处理数据。
在本实施方式中,优选的,N个LSTM记忆神经网络和全连接网络采用流水线方式处理数据的过程包括:
步骤S21,设k表示处理周期索引,k为正整数,令k=1时,第一个LSTM 记忆神经网络对输入的似然比子信息进行数据处理,令k=k+1,进入步骤S22;
步骤S22,若k大于等于N,将N个LSTM记忆神经网络的输出数据并行输入全连接网络,进入步骤S24;若k小于N,进入步骤S23;
步骤S23,第k个LSTM记忆神经网络结合输入的似然比子信息和第k-1个 LSTM记忆神经网络的输出信息进行数据处理获得处理结果,返回步骤S22;
步骤S24,在第k+1个处理周期,N个LSTM记忆神经网络的处理结果并行输入全连接网络,全连接网络输出译码数据。
在本实施方式中,优选的,如图3所示,设n同时表示LSTM记忆神经网络序号和神经元序号,n为正整数,n∈[1,N],当n等于1时,令hn-1=0,cn-1=0。
第n个LSTM记忆神经网络处理数据的过程包括:
步骤一,利用sigmoid激活函数获取第n个LSTM记忆神经网络遗忘上一层隐藏状态的概率fn,fn=σ(Wf·[hn-1,xn]+bf),其中,sigmoid激活函数
Figure BDA0003046117780000141
0<σ(x)<1,α表示激活函数常数,α优选但不限于为1Wf表示第一线性关系系数,bf表示第一线性关系偏置,hn-1表示第n个LSTM记忆神经网络的上一单层LSTM记忆神经网络输入信号的隐藏状态,xn表示输入第n个LSTM 记忆神经网络的似然比子信息;
利用sigmoid激活函数获取第n个LSTM记忆神经网络的第一更新信息in, in=σ(Wn·[hn-1,xn]+bn),其中,Wn表示第二线性关系系数,bn表示第二线性关系偏置;
利用tanh激活函数获得第n个LSTM记忆神经网络的第二更新信息
Figure BDA0003046117780000146
Figure BDA0003046117780000142
其中,tanh激活函数
Figure BDA0003046117780000143
WC表示第三线性关系系数,bC表示第三线性关系偏置;
步骤二,基于fn、第一更新信息in和第二更新信息
Figure BDA0003046117780000144
获得第n个LSTM记忆神经网络的细胞状态cn
Figure BDA0003046117780000145
其中,cn-1表示第n个LSTM记忆神经网络的上一层LSTM记忆神经网络的细胞状态;
步骤三,利用sigmoid激活函数获得第n个LSTM记忆神经网络的第一部分输出信息on,on=σ(Wo·[hn-1,xn]+bo),其中,Wo表示第四线性关系系数,bo表示第四线性关系偏置;
利用tanh激活函数获得获得第n个LSTM记忆神经网络的第二部分输出信息hn,hn=on*tanh(cn)。
在本实施方式中,LSTM记忆神经网络处理数据的过程为“丢弃-更新-记忆-输出”的过程。
在一种优选实施方式中,全连接网络包括神经元层和输出层,输出层利用sigmoid激活函数得到输出值为:
Figure BDA0003046117780000151
其中,zn表示第n个神经元的输出数据,0<zn<1,wn表示第n个神经元的权重,θ表示神经单元的内部阈值,θ为常数。
在一种优选实施方式中,在步骤S3中,当译码数据校验通过时,还包括将译码数据反馈至N个LSTM记忆神经网络和N个神经元进行训练自学习的步骤。
在本实施方式中,优选的,反馈译码数据至N个LSTM记忆神经网络和N个神经元进行训练自学习的过程包括:
N个神经元训练自学习过程具体包括:
步骤A,反向计算获取全连接网络的输出误差项δ,
Figure BDA0003046117780000152
其中,E(w)表示全连接网络的误差函数,
Figure BDA0003046117780000153
Figure BDA0003046117780000154
表示与y对应的发送信息,net表示神经元加权项,
Figure BDA0003046117780000155
步骤B,更新全连接网络中每个神经元权重,对于第n个神经元的权重wn更新为:
wn←wn-1-ηδzn,其中,η表示学习率,η优选但不限于0.01,wn-1表示第hn=on*tanh(cn)上一层神经元的权重或者上一处理周期时第n个神经元的权重;
N个LSTM记忆神经网络训练自学习过程具体包括:
步骤C,计算每个LSTM记忆神经网络的误差项反向传递结果,第n个LSTM 记忆神经网络误差项反向传递函数为:
Figure BDA0003046117780000161
其中,j表示被第n个LSTM记忆神经网络的反向传递误差项的LSTM记忆神经网络序号,j为正整数,j∈[1,n-1],δo,j表示第j个L STM记忆神经网络信息保留到第j+1个LSTM记忆神经网络的误差项,
Figure BDA0003046117780000162
δj表示第j个LSTM记忆神经网络的反向传递误差项,符号
Figure BDA0003046117780000163
代表矩阵对应位置相乘,oj表示第j个LSTM记忆神经网络的第一部分输出信息,cj表示第j个LSTM记忆神经网络的细胞状态,Woh表示第一权重梯度;
δf,j表示第j个LSTM记忆神经网络对当前输出的影响误差项;
Figure BDA0003046117780000164
cj-1表示第j-1个LSTM记忆神经网络的细胞状态,fj表示第j个LSTM记忆神经网络遗忘上一层隐藏状态的概率,Wfh表示第二权重梯度;
δi,j表示输入第j个LSTM记忆神经网络信息的误差项;
Figure BDA0003046117780000165
ij表示第j个LSTM记忆神经网络的第一更新信息,
Figure BDA0003046117780000166
表示第j个LSTM记忆神经网络的第二更新信息,Wih表示第三权重梯度;
Figure BDA0003046117780000167
表示第j个LSTM记忆神经网络当前记忆误差项;
Figure BDA0003046117780000168
Wch表示第四权重梯度;
步骤D,基于LSTM记忆神经网络误差项反向传递函数采用梯度下降法更新第一权重梯度Woh、第二权重梯度Wfh、第三权重梯度Wih和第四权重梯度Wch
Figure BDA0003046117780000171
Figure BDA0003046117780000172
δo,n表示第n-1个LSTM记忆神经网络信息保留到第n个LSTM单元的误差项,δn表示第n个LSTM记忆神经网络的反向传递误差项,on表示第n个LSTM记忆神经网络的第一部分输出信息,cn表示第n个LSTM记忆神经网络的细胞状态,hn-1表示第n-1个LSTM记忆神经网络的第二部分输出信息;
Figure BDA0003046117780000173
Figure BDA0003046117780000174
δf,n表示第n个LSTM 记忆神经网络对当前输出的影响误差项,cn-1表示第n-1个LSTM记忆神经网络的细胞状态,fn表示第n个LSTM记忆神经网络遗忘上一层隐藏状态的概率;
Figure BDA0003046117780000175
Figure BDA0003046117780000176
δi,n表示输入第n个LSTM 记忆神经网络信息的误差项,in表示第n个LSTM记忆神经网络的第一更新信息,
Figure BDA0003046117780000177
表示第n个LSTM记忆神经网络的第二更新信息;
Figure BDA0003046117780000178
Figure BDA0003046117780000179
Figure BDA00030461177800001710
表示第n个LSTM记忆神经网络当前记忆误差项。
将本发明提供的智能QC-LDPC译码算法与现有的BP译码算法、对数域BP 译码算法和最小和译码算法进行译码性能比对测试,从图5中可以看出,当误码率为10-4时,本发明提供的智能QC-LDPC译码算法的EbN0相较于BP译码算法、对数域BP译码算法和最小和译码算法分别提升了2dB、0.5dB和0.2dB,可知本发明提供的智能QC-LDPC译码算法能够更好的实现对QC-LDPC译码,如果数据足够多,本发明提供的智能QC-LDPC译码算法性能将更明显。本发明还公开了一种译码器,在一种优选实施方式中,如图2所示,包括似然比信息获取模块、智能网络层和校验层;似然比信息获取模块对经过QC-LDPC编码处理的接收信号进行解调处理获得似然比信息;智能网络层包括串并转换单元、LSTM记忆神经网络层和全连接层;LSTM记忆神经网络层和全连接层的结构如图4所示。串并转换单元将输入的似然比信息串并转化为N个似然比子信息;LSTM记忆神经网络层包括N个级联的LSTM记忆神经网络,N个似然比子信息并行输入N个LSTM 记忆神经网络;全连接层包括N个神经元,N个LSTM记忆神经网络的输出数据并行输入全连接网络的N个神经元处理获得译码数据;N为似然比信息码长;校验层对译码数据进行校验,若校验通过输出译码数据,同时反馈译码数据至智能网络层进行训练自学习,若校验不通过舍弃译码数据。
在本实施方式中,优选的,似然比信息获取模块包括执行上述信号采集步骤的信号采集单元,执行上述信号感知步骤的信号感知单元,还包括进行信号预处理的滤波器、归一化处理单元和软解调单元。滤波器执行上述滤波步骤,归一化处理单元执行上述归一化处理步骤。
在本实施方式中,优选的,校验层包括CRC校验单元和校验结果判断单元。
本发明还公开了一种低轨卫星通信系统,在一种优选实施方式中,系统包括发射端和接收端,发射端对待发射数据进行QC-LDPC编码处理和调制处理,接收端按照上述智能QC-LDPC译码方法对接收数据进行处理获得译码数据。
在本实施方式中,发射端优选但不限于为卫星载荷或地面站。接收端优选但不限于为卫星载荷或地面站。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (9)

1.一种智能QC-LDPC译码方法,其特征在于,包括:
步骤S1,对经过QC-LDPC编码处理的接收信号进行解调处理获得似然比信息;
步骤S2,对所述似然比信息进行串并转化得到N个似然比子信息,将N个似然比子信息并行输入N个级联的LSTM记忆神经网络,将N个LSTM记忆神经网络的输出数据并行输入全连接网络的N个神经元处理获得译码数据;所述N为似然比信息码长;
步骤S3,对所述译码数据进行校验,若校验通过输出所述译码数据,若校验不通过舍弃所述译码数据;
在所述步骤S1中在对接收信号进行解调处理前,
还包括信号采集步骤,所述信号采集步骤包括对接收端接收的模拟信号进行ADC采样处理得到采样信号;
和/或还包括信号感知步骤,所述信号感知步骤为对采样信号进行能量-滤波检测处理识别出有用信号,所述能量-滤波检测处理包括:
设定能量门限σ',所述
Figure FDA0003716930030000011
其中,所述H表示ADC器件的位数;对每个时刻的采样信号进行如下检测处理:
步骤S11,通过如下公式获取t时刻采样信号的幅度R(t):
Figure FDA0003716930030000012
其中,r(t)表示t时刻的采样信号,max(*)表示取最大值,min(*)表示取最小值,|*|表示取绝对值,imag(*)表示取信号的虚部,real(*)表示取信号的实部;
步骤S12,对R(t)进行环路滤波得到t时刻的采样信号环路滤波后的幅度R'(t):
所述R'(t)=ξ·R(t)+ζ·R(t-1),其中,ξ表示第一环路滤波系数,ζ表示第二环路滤波系数,R(t-1)表示t-1时刻的采样信号幅度;
步骤S13,若|R'(t)|≥σ ' ,认为t时刻采样信号为有用信号,若|R'(t)|<σ ' ,认为t时刻采样信号为无用信号;
和/或还包括滤波步骤,所述滤波步骤包括:按照如下公式对有用信号进行滤波处理得到:
Figure FDA0003716930030000021
其中,hl表示滤波器系数,L表示滤波器阶数,s′(t)表示t时刻的有用信号经滤波器滤波后输出的信号,s(t-l)表示t-l时刻的有用信号;
和/或还包括归一化步骤,所述归一化步骤为按照如下公式对滤波器输出的信号进行归一化处理获得归一化信号:
Figure FDA0003716930030000022
其中,v表示归一化处理后的信号组成的向量,s′表示滤波器输出信号组成的向量,abs(*)表示取绝对值,max(abs(s′))表示取向量s′所有元素绝对值中的最大值;
和/或所述解调处理是利用pi/4-BPSK软解调算法对归一化信号进行解调获得似然比信息。
2.如权利要求1所述的智能QC-LDPC译码方法,其特征在于,N个LSTM记忆神经网络中全部或部分为单层LSTM记忆神经网络;
和/或N个LSTM记忆神经网络和全连接网络采用流水线方式处理数据。
3.如权利要求2所述的智能QC-LDPC译码方法,其特征在于,N个LSTM记忆神经网络和全连接网络采用流水线方式处理数据的过程包括:
步骤S21,设k表示处理周期索引,k为正整数,令k=1时,第一个LSTM记忆神经网络对输入的似然比子信息进行数据处理,令k=k+1,进入步骤S22;
步骤S22,若k大于等于N,将N个LSTM记忆神经网络的输出数据并行输入全连接网络,进入步骤S24;若k小于N,进入步骤S23;
步骤S23,第k个LSTM记忆神经网络结合输入的似然比子信息和第k-1个LSTM记忆神经网络的输出信息进行数据处理获得处理结果,返回步骤S22;
步骤S24,在第k+1个处理周期,N个LSTM记忆神经网络的处理结果并行输入全连接网络,全连接网络输出译码数据。
4.如权利要求3所述的智能QC-LDPC译码方法,其特征在于,设n同时表示LSTM记忆神经网络序号和神经元序号,n为正整数,n∈[1,N],
第n个LSTM记忆神经网络处理数据的过程包括:
步骤一,利用sigmoid激活函数获取第n个LSTM记忆神经网络遗忘上一层隐藏状态的概率fn,所述fn=σ(Wf·[hn-1,xn]+bf),其中,sigmoid激活函数
Figure FDA0003716930030000031
α为激活函数常数;Wf表示第一线性关系系数,bf表示第一线性关系偏置,hn-1表示第n个LSTM记忆神经网络的上一单层LSTM记忆神经网络输入信号的隐藏状态,xn表示输入第n个LSTM记忆神经网络的似然比子信息;
利用sigmoid激活函数获取第n个LSTM记忆神经网络的第一更新信息in,所述in=σ(Wn·[hn-1,xn]+bn),其中,Wn表示第二线性关系系数,bn表示第二线性关系偏置;
利用tanh激活函数获得第n个LSTM记忆神经网络的第二更新信息
Figure FDA0003716930030000045
所述
Figure FDA0003716930030000041
其中,tanh激活函数
Figure FDA0003716930030000042
WC表示第三线性关系系数,bC表示第三线性关系偏置;
步骤二,基于fn、第一更新信息in和第二更新信息
Figure FDA0003716930030000046
获得第n个LSTM记忆神经网络的细胞状态cn,所述
Figure FDA0003716930030000043
其中,所述cn-1表示第n个LSTM记忆神经网络的上一层LSTM记忆神经网络的细胞状态;
步骤三,利用sigmoid激活函数获得第n个LSTM记忆神经网络的第一部分输出信息on,所述on=σ(Wo·[hn-1,xn]+bo),其中,Wo表示第四线性关系系数,bo表示第四线性关系偏置;
利用tanh激活函数获得第n个LSTM记忆神经网络的第二部分输出信息hn,所述hn=on*tanh(cn)。
5.如权利要求4所述的智能QC-LDPC译码方法,其特征在于,全连接网络包括神经元层和输出层,所述输出层利用sigmoid激活函数得到输出值为:
Figure FDA0003716930030000044
其中,zn表示第n个神经元的输出数据,wn表示第n个神经元的权重,θ表示神经单元的内部阈值。
6.如权利要求5所述的智能QC-LDPC译码方法,其特征在于,在所述步骤S3中,当所述译码数据校验通过时,还包括将所述译码数据反馈至N个LSTM记忆神经网络和N个神经元进行训练自学习的步骤。
7.如权利要求6所述的智能QC-LDPC译码方法,其特征在于,反馈所述译码数据至N个LSTM记忆神经网络和N个神经元进行训练自学习的过程包括:
N个神经元训练自学习过程具体包括:
步骤A,反向计算获取全连接网络的输出误差项δ,所述
Figure FDA0003716930030000051
其中,E(w)表示全连接网络的误差函数,
Figure FDA0003716930030000052
Figure FDA0003716930030000053
表示与y对应的发送信息,net表示神经元加权项,
Figure FDA0003716930030000054
步骤B,更新全连接网络中每个神经元权重,对于第n个神经元的权重wn更新为:
wn←wn-1-ηδzn,其中,η表示学习率,wn-1表示第n个神经元的上一层神经元的权重或者上一处理周期时第n个神经元的权重;
N个LSTM记忆神经网络训练自学习过程具体包括:
步骤C,计算每个LSTM记忆神经网络的误差项反向传递结果,第n个LSTM记忆神经网络误差项反向传递函数为:
Figure FDA0003716930030000055
其中,j表示被第n个LSTM记忆神经网络的反向传递误差项的LSTM记忆神经网络序号,j为正整数,j∈[1,n-1],δo,j表示第j个L STM记忆神经网络信息保留到第j+1个LSTM记忆神经网络的误差项,
Figure FDA0003716930030000056
δj表示第j个LSTM记忆神经网络的反向传递误差项,符号
Figure FDA0003716930030000057
代表矩阵对应位置相乘,oj表示第j个LSTM记忆神经网络的第一部分输出信息,cj表示第j个LSTM记忆神经网络的细胞状态,Woh表示第一权重梯度;
δf,j表示第j个LSTM记忆神经网络对当前输出的影响误差项;
Figure FDA0003716930030000058
cj-1表示第j-1个LSTM记忆神经网络的细胞状态,fj表示第j个LSTM记忆神经网络遗忘上一层隐藏状态的概率,Wfh表示第二权重梯度;
δi,j表示输入第j个LSTM记忆神经网络信息的误差项;
Figure FDA0003716930030000061
ij表示第j个LSTM记忆神经网络的第一更新信息,
Figure FDA0003716930030000062
表示第j个LSTM记忆神经网络的第二更新信息,Wih表示第三权重梯度;
Figure FDA0003716930030000063
表示第j个LSTM记忆神经网络当前记忆误差项;
Figure FDA0003716930030000064
Wch表示第四权重梯度;
步骤D,基于LSTM记忆神经网络误差项反向传递函数采用梯度下降法更新第一权重梯度Woh、第二权重梯度Wfh、第三权重梯度Wih和第四权重梯度Wch
Figure FDA0003716930030000065
δo,n表示第n-1个LSTM记忆神经网络信息保留到第n个LSTM单元的误差项,δn表示第n个LSTM记忆神经网络的反向传递误差项,on表示第n个LSTM记忆神经网络的第一部分输出信息,cn表示第n个LSTM记忆神经网络的细胞状态,hn-1表示第n-1个LSTM记忆神经网络的第二部分输出信息;
Figure FDA0003716930030000066
δf,n表示第n个LSTM记忆神经网络对当前输出的影响误差项,cn-1表示第n-1个LSTM记忆神经网络的细胞状态,fn表示第n个LSTM记忆神经网络遗忘上一层隐藏状态的概率;
Figure FDA0003716930030000067
δi,n表示输入第n个LSTM记忆神经网络信息的误差项,in表示第n个LSTM记忆神经网络的第一更新信息,
Figure FDA0003716930030000068
表示第n个LSTM记忆神经网络的第二更新信息;
Figure FDA0003716930030000069
Figure FDA00037169300300000610
表示第n个LSTM记忆神经网络当前记忆误差项。
8.一种译码器,其特征在于,包括似然比信息获取模块、智能网络层和校验层;
所述似然比信息获取模块对经过QC-LDPC编码处理的接收信号进行解调处理获得似然比信息;
所述智能网络层包括串并转换单元、LSTM记忆神经网络层和全连接层;
所述串并转换单元将输入的似然比信息串并转化为N个似然比子信息;
所述LSTM记忆神经网络层包括N个级联的LSTM记忆神经网络,N个似然比子信息并行输入N个LSTM记忆神经网络;
所述全连接层包括N个神经元,N个LSTM记忆神经网络的输出数据并行输入全连接网络的N个神经元处理获得译码数据;N为似然比信息码长;
所述校验层对所述译码数据进行校验,若校验通过输出所述译码数据,同时反馈译码数据至智能网络层进行训练自学习,若校验不通过舍弃所述译码数据;
所述译码器按照权利要求1-7之一所述的智能QC-LDPC译码方法对接收数据进行处理获得译码数据。
9.一种低轨卫星通信系统,其特征在于,包括发射端和接收端,所述发射端对待发射数据进行QC-LDPC编码处理和调制处理,所述接收端按照权利要求1-7之一所述的智能QC-LDPC译码方法对接收数据进行处理获得译码数据。
CN202110477474.5A 2021-04-29 2021-04-29 智能qc-ldpc译码方法、译码器及低轨卫星通信系统 Active CN113162632B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110477474.5A CN113162632B (zh) 2021-04-29 2021-04-29 智能qc-ldpc译码方法、译码器及低轨卫星通信系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110477474.5A CN113162632B (zh) 2021-04-29 2021-04-29 智能qc-ldpc译码方法、译码器及低轨卫星通信系统

Publications (2)

Publication Number Publication Date
CN113162632A CN113162632A (zh) 2021-07-23
CN113162632B true CN113162632B (zh) 2022-08-09

Family

ID=76872680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110477474.5A Active CN113162632B (zh) 2021-04-29 2021-04-29 智能qc-ldpc译码方法、译码器及低轨卫星通信系统

Country Status (1)

Country Link
CN (1) CN113162632B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389909A (zh) * 2018-04-16 2019-10-29 三星电子株式会社 使用深度神经网络优化固态驱动器的性能的系统和方法
CN112713966A (zh) * 2020-12-30 2021-04-27 大连大学 基于似然估计修正信噪比的编码调制切换方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10866584B2 (en) * 2016-05-09 2020-12-15 Strong Force Iot Portfolio 2016, Llc Methods and systems for data processing in an industrial internet of things data collection environment with large data sets
US20190258936A1 (en) * 2018-02-16 2019-08-22 Google Llc Systems and Methods for Improved Generalization, Reproducibility, and Stabilization of Neural Networks via Error Control Code Constraints
US11438014B2 (en) * 2019-05-31 2022-09-06 Washington State University Deep neural network a posteriori probability detectors and media noise predictors for one- and two-dimensional magnetic recording
US20200389187A1 (en) * 2019-06-07 2020-12-10 Storart Technology Co., Ltd. Method of training artificial intelligence to execute decoding program of low density parity check code
CN112332863B (zh) * 2020-10-27 2023-09-05 东方红卫星移动通信有限公司 低轨卫星低信噪比场景下的极化码译码算法、接收端和系统
CN112511172B (zh) * 2020-11-11 2023-03-24 山东云海国创云计算装备产业创新中心有限公司 一种译码方法、装置、设备及存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389909A (zh) * 2018-04-16 2019-10-29 三星电子株式会社 使用深度神经网络优化固态驱动器的性能的系统和方法
CN112713966A (zh) * 2020-12-30 2021-04-27 大连大学 基于似然估计修正信噪比的编码调制切换方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Unified Deep Learning Based Polar-LDPC Decoder for 5G Communication Systems;Yaohan Wang等;《2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)》;20181203;1-6 *
基于学习的极化码译码算法研究与应用;宋旭冉;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》;20210215(第2期);I136-220 *

Also Published As

Publication number Publication date
CN113162632A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
Wang et al. Deep learning for wireless physical layer: Opportunities and challenges
Doan et al. Neural successive cancellation decoding of polar codes
CN101981846B (zh) 接收设备、接收方法和通信系统
Xu et al. Polar decoding on sparse graphs with deep learning
CN1989697A (zh) 空间复用信号检测方法以及空间与时间迭代解码器
CN112600618B (zh) 一种基于注意力机制的可见光信号均衡系统及方法
CN100505713C (zh) 一种低复杂度的多入多出迭代检测方法
CN109361404A (zh) 一种基于半监督深度学习网络的ldpc译码系统及译码方法
CN106941394B (zh) 极化码编码的scma的联合检测译码方法及装置
Zhu et al. Learning to denoise and decode: A novel residual neural network decoder for polar codes
He et al. TurboNet: A model-driven DNN decoder based on max-log-MAP algorithm for turbo code
CN112332863B (zh) 低轨卫星低信噪比场景下的极化码译码算法、接收端和系统
CN114244375A (zh) 基于神经网络的ldpc归一化最小和译码方法及装置
Narasimhan et al. Factor graph based joint detection/decoding for LDPC coded large-MIMO systems
CN113381799B (zh) 基于卷积神经网络的低轨星地链路端到端稀疏码多址接入方法
US20090310725A1 (en) Space Domain Filter Detecting Method In A Multi-Antenna Wireless Communication System
CN110995277B (zh) 一种多层神经网络辅助的罚对偶分解信道译码方法
CN113162632B (zh) 智能qc-ldpc译码方法、译码器及低轨卫星通信系统
CN107094026B (zh) Nb-ldpc编码的图合并检测译码方法
Cao et al. Learning to denoise and decode: A novel residual neural network decoder for polar codes
CN113114269A (zh) 一种置信传播-信息修正译码方法
Cuc et al. Performances Comparison between Low Density Parity Check Codes and Polar Codes
Chen et al. Boosting belief propagation for LDPC codes with deep convolutional neural network predictors
CN115276668A (zh) 一种基于crc的ldpc码混合译码方法
Pham et al. Performance of deep learning ldpc coded communications in large scale mimo channels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 401120 39-1, Building 1, No. 64, Middle Huangshan Avenue, Yubei District, Chongqing

Patentee after: China Star Network Application Co.,Ltd.

Address before: 618 Liangjiang Avenue, Longxing Town, Yubei District, Chongqing

Patentee before: Dongfanghong Satellite Mobile Communication Co.,Ltd.

CP03 Change of name, title or address