CN113161863A - 基于时域锁模光电振荡器的微波脉冲产生装置及方法 - Google Patents

基于时域锁模光电振荡器的微波脉冲产生装置及方法 Download PDF

Info

Publication number
CN113161863A
CN113161863A CN202110264797.6A CN202110264797A CN113161863A CN 113161863 A CN113161863 A CN 113161863A CN 202110264797 A CN202110264797 A CN 202110264797A CN 113161863 A CN113161863 A CN 113161863A
Authority
CN
China
Prior art keywords
signal
electric
modulator
output end
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110264797.6A
Other languages
English (en)
Other versions
CN113161863B (zh
Inventor
曾珍
章令杰
张旨遥
张尚剑
李和平
刘永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110264797.6A priority Critical patent/CN113161863B/zh
Publication of CN113161863A publication Critical patent/CN113161863A/zh
Application granted granted Critical
Publication of CN113161863B publication Critical patent/CN113161863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10053Phase control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1109Active mode locking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明公开了基于时域锁模光电振荡器的微波脉冲产生装置及方法,涉及光电技术领域,包括直流激光器、可调光衰减器、电光强度调制器、直流电源、单模光纤、光电探测器、电放大器、电滤波器、电功分器、电调制器与函数发生器,本发明在光电振荡环路内引入由外部电信号驱动的电调制器,构建时域主动锁模光电振荡器,实现腔内纵模之间的相位锁定,从而实现多模振荡,产生具有低相位噪声的高载频微波脉冲信号,通过设置外部电信号的频率,可改变输出微波脉冲信号的重复频率。

Description

基于时域锁模光电振荡器的微波脉冲产生装置及方法
技术领域
本发明涉及光电技术领域,具体为基于时域锁模光电振荡器的微波脉冲产生装置及方法。
背景技术
光电振荡器因其产生的微波信号具有低相位噪声、频率可调谐等优点,在雷达、通信、测试等众多领域中有着潜在的应用价值。传统光电振荡器的输出信号由腔内噪声起振,模式之间存在不确定的相位关系以及增益竞争,无法实现稳定的多模振荡,因此难以产生宽带微波信号,只能产生单频微波信号。随着雷达、通信技术的快速发展,对于宽带微波信号的需求日益增加,因此,结合光电振荡器高频、低相噪等优势,实现基于光电振荡器的宽带微波信号产生是光电振荡器发展的重要趋势。
2011年,Etgar C.Levy等人首次提出并实现了被动锁模光电振荡器(EtgarC.Levy et al. Single-cycle radio-frequency pulse generation by anoptoelectronic oscillator,Optics Express,2011, 19(18):17599-17608)。该方案通过光电振荡环路中的饱和射频放大器实现微波信号的可饱和吸收,从而实现被动锁模,产生了重复频率1.054MHz、谱宽440MHz、中心载波频率650MHz 的射频脉冲序列。被动锁模光电振荡器存在的主要问题是,射频脉冲信号的重复频率由光电振荡器的环腔长度决定,在增加环腔长度从而降低相位噪声的情况下,很难实现具有较高重复频率的射频脉冲信号产生,并且该结构难以实现重频可调谐的射频脉冲信号产生。
发明内容
本发明的目的在于克服现有技术的不足,提供基于时域锁模光电振荡器的微波脉冲产生装置及方法,通过谐波锁模,可以产生重频可调谐的微波脉冲信号,并且可以在环腔长度较大时实现具有低相位噪声和较高重频的微波脉冲信号。
本发明的目的是通过以下技术方案来实现的:
基于时域锁模光电振荡器的微波脉冲产生装置,时域锁模光电振荡器包括直流激光器、可调光衰减器、电光强度调制器、直流电源、单模光纤、光电探测器、电放大器、电滤波器、电功分器、电调制器与函数发生器,
所述直流激光器的输出端连接所述可调光衰减器的输入端,所述可调光衰减器的输出端连接所述电光强度调制器的光学输入端,所述电光强度调制的电信号输入端连接所述电调制器的输出端,所述电光强度调制的偏置电压输入端连接所述直流电源的输出端,所述电光强度调制器的光学输出端连接单模光纤的输入端,所述单模光纤的输出端连接光电探测器的光学输入端,所述光电探测器的电信号输出端连接所述电放大器的输入端,所述电放大器的输出端连接所述电滤波器的输入端,所述电滤波器的输出端连接所述电功分器的输入端。所述电功分器的一个输出端连接电调制器的输入端,所述电调制器的输出端连接所述电光强度调制器的电信号输入端,所述电调制器的调制信号输入端连接所述函数发生器的信号输出端;所述电功分器的另一个输出端为时域锁模光电振荡器的微波脉冲信号输出端。
基于时域锁模光电振荡器的微波脉冲产生方法,包括以下步骤:
步骤1:直流激光器输出的光信号经过可调光衰减器,由可调光衰减器对进入光电振荡环路的光信号功率进行控制,从而对光电振荡器环路中的增益进行控制;
步骤2:经过可调光衰减器控制的直流光传输经过电光强度调制器,通过调节直流电源改变加载在电光强度调制器上的偏置电压,使电光强度调制器工作在线性偏置点;
步骤3:经过电光强度调制器所调制的光信号,通过一段单模光纤传输后,在光电探测器中进行光电转换,之后再依次经过电放大器和电滤波器,分别实现对微波信号f0的功率补偿以及频段选择;
步骤4:微波信号f0经过电滤波器处理后,输入至电功分器,电功分器的一个端口为时域锁模光电振荡器的微波脉冲信号输出端,另一个端口连接至电调制器的输入端,电调制器的调制信号输入端口连接函数发生器的信号输出端口;微波信号f0在电调制器中被具有频率为Ω的电信号所调制,电调制器的输出端连接至电光强度调制器微波信号输出端,构成闭合的光电振荡回路。
优选的,电调制器输出的信号表示为
Figure RE-GDA0003106466360000021
其中V0是载频信号的幅度,f0
Figure RE-GDA0003106466360000022
分别是载频信号的频率和相位,m为电调制器的调制系数,由上述公式可知,微波信号f0经过调制后,在频率为f0+Ω和f0-Ω处产生两个具有固定相位关系的调制边带,当调制信号的频率Ω与光电振荡器的自由光谱范围
Figure RE-GDA0003106466360000023
L为环长,满足:
Ω=N×ΔfFSR (N为整数)
每一个模式新产生的调制边带会注入到相邻的环腔模式当中,并获得振荡环路内足够的增益,这些模式将作为新的载波信号,通过调制后继续产生新的调制边带,使得振荡信号的频谱发生展宽,相邻模式之间相位实现锁定,当环腔内具有足够的增益,增益谱带宽范围内的所有模式被同时激发起振,光电振荡器就实现稳定的多模振荡,这些模式在时域内相干叠加后形成微波脉冲序列。
优选的,微波脉冲信号的重复频率有两种调谐方式:一种是直接改变环腔长度,进而改变微波脉冲信号的重复频率;一种是改变外部电信号的频率Ω,当N=1时,实现基频锁模输出,当N≥2时,实现谐波锁模输出。
优选的,所述时域锁模光电振荡器为权利要求1所述的时域锁模光电振荡器。
本发明的有益效果是:
(1)通过采用主动锁模技术,对光电振荡器腔中产生的纵模进行相位锁定,使其实现稳定的多模振荡。由于纵模之间存在确定的相位关系,因此所有振荡模式在时域内相干叠加,形成具有宽带的微波脉冲信号输出,该信号可用于实现任意波形产生、雷达系统以及超宽带通信系统中;
(2)在采用主动锁模技术的光电振荡器方案中,模式之间的相位锁定是通过调节腔内加载在电调制器上的调制信号频率以及振荡器腔长共同决定的,相比于被动锁模光电振荡器的方案,本发明可实现重频灵活调谐的微波脉冲信号产生,并且通过采用谐波锁模技术,该结构可以在环腔长度较大时实现较高重频的微波脉冲信号产生;
(3)由于光电振荡器产生的微波信号具有较低的相位噪声,因此,该结构可实现具有低相噪、高载频的微波脉冲信号产生。
附图说明
图1为本发明一种基于时域锁模光电振荡器的微波脉冲产生装置;
图2为本发明一种基于时域锁模光电振荡器的锁模工作原理示意图;
图3为设置函数发生器输出电信号频率=179.94kHz,测量得到的时域锁模光电振荡器输出信号频谱结果;
图4为关闭函数发生器输出时,光电振荡器在自由运转下的输出信号频谱结果;
图5为设置函数发生器输出电信号频率=179.94kHz,测量得到的时域锁模光电振荡器输出信号时域波形;
图6为设置函数发生器输出电信号频率=359.88kHz,测量得到的谐波锁模光电振荡器输出信号频谱结果;
图7为设置函数发生器输出电信号频率=359.88kHz,测量得到的谐波锁模光电振荡器输出信号时域波形;
图中,1、直流激光器;2、可调光衰减器;3、电光强度调制器;4、直流电源;5、单模光纤;6、光电探测器;7、电放大器;8、电滤波器;9、电功分器;10、电调制器;11、函数发生器。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
结合图2,对本发明中的系统原理做进一步说明如下:
如图1所示,光源输出的直流光信号,由可调光衰减器2对其进行功率控制,进而实现对光电振荡器腔内的增益进行调节。直流光信号经过电光调制器,被光电振荡器反馈的微波信号所调制,调制后的光信号再经过长距离光纤的传输,在光电探测器6中转换为电信号输出。光电探测器6输出的电信号,通过电放大器7对光电转换过程造成的信号功率损失进行补偿,再利用电滤波器8选择具有特定中心频率的起振范围。微波信号经过电调制器10被外部的电信号所调制后,由电光调制器反馈回光学链路,构成闭合的光电振荡环路。
为了建立主动锁模机制,光电探测器6输出的微波信号在电调制器10中被具有频率为Ω的电信号所调制。电调制器10输出的信号可表示为:
Figure RE-GDA0003106466360000041
其中V0是载频信号的幅度,f0
Figure RE-GDA0003106466360000042
分别是载频信号的频率和相位,m为电调制器的调制系数。由式(1)可知,微波信号经过调制后,在频率为f0+Ω和f0-Ω处产生两个具有固定相位关系的调制边带。当调制信号的频率Ω与光电振荡器的自由光谱范围
Figure RE-GDA0003106466360000043
(L为环长) 满足
Ω=N×ΔfFSR (N为整数) (2)
每一个模式新产生的调制边带会注入到相邻的环腔模式当中,并获得振荡环路内足够的增益。这些模式将作为新的载波信号,通过调制后继续产生新的调制边带,使得振荡信号的频谱发生展宽,相邻模式之间相位实现锁定,如图2所示。当环腔内具有足够的增益,增益谱带宽范围内的所有模式被同时激发起振,光电振荡器就可以实现稳定的多模振荡,这些模式在时域内相干叠加后形成微波脉冲序列。通过设置腔内电滤波器8的中心频率,本发明可以实现具有较高载波频率(~GHz)的微波脉冲信号输出。并且,由于光电振荡器结构的使用,本发明可以同时实现低相噪的微波信号产生。
进一步地,由于本发明所产生的微波脉冲信号的重复频率由光电振荡器环路长度与外部所加载的电调制信号频率所决定,因此可以通过直接改变光电振荡器环路长度来实现微波脉冲重复频率的改变,并且,环路采用越长的光纤,能实现具有低重频、低时间抖动的微波脉冲信号产生。
除此之外,我们还能通过改变外部调制信号的频率Ω,并设置Ω=N×ΔfFSR,来实现输出微波脉冲重频的调谐。当N=1时,实现基频锁模输出,当N≥2时,实现谐波锁模输出。由此可见,通过利用谐波锁模技术,相比于被动锁模光电振荡器方案,在具有较长环腔长度的情况下,本发明可以实现具有较高重频的微波脉冲信号输出。
下面结合具体实施例,对本发明的可行性进行说明:
实施例1:
根据图1所示结构,采用主动锁模技术实现了基于时域锁模光电振荡器的微波脉冲产生。实验系统中,直流光源采用中心波长为1560nm、输出功率为17dBm的DFB激光器。可调光衰减器2采用旋钮式,电光强度调制器3的工作带宽为20GHz,单模光纤5的长度为1.1km。光电探测器6的模拟带宽约为15GHz左右,电放大器7的工作频率范围为2GHz-18GHz,增益约为25dB。电滤波器8的中心频率约为4GHz,其3dB带宽为70MHz,电调制器10的工作频率范围为15MHz-18GHz。实验中,采用频谱分析仪对本发明输出微波脉冲信号的频谱特性进行测试,其工作频率范围为20Hz-50GHz;采用高速实时示波器对本发明输出微波脉冲信号的时域特性进行测试,其采样速率为100GSa/s,模拟带宽为33GHz。
实验中,设置电光强度调制器3的直流偏压为3.9V,使其工作在线性偏置点。设置函数发生数输出的信号为正弦信号,其频率为Ω=179.94kHz,与光电振荡器的自由光谱范围ΔfFSR相等。图3给出了当频谱分析仪设置Span=30MHz,RBW=5kHz时,测得本发明产生微波脉冲信号的频谱。作为对比,在相同的测试条件下,我们同样测得自由运转下(不采用锁模技术)光电振荡器输出信号的频谱,如图4所示。从实验结果可以看出,通过引入主动锁模技术,光电振荡器可实现中心载频约为4.01GHz的稳定多模振荡,其频率间隔与电调制器10上加载的电信号频率相同。
设置高速实时示波器的采样速率为25GSa/s,测得本发明输出微波脉冲信号的时域波形如图5所示。由图5可知,本发明所产生的具有相等频率间隔的微波梳齿,在时域中相干叠加,产生具有周期为5.56μs、重复频率为179.94kHz、脉冲宽度约为222ns的微波脉冲序列。产生的微波脉冲信号的脉宽可以通过使用3dB范围更大的电滤波器8来扩大腔内增益谱的宽度,使得产生微波信号的谱宽增加,从而实现微波脉冲宽度的压缩。
实施例2:
当设置Ω=N×ΔfFSR且N≥2时,本发明可实现谐波锁模光电振荡器。同实施例1类似,首先按照图1所示连接系统,实验中所用的器件与实施例1相同。不同的是,函数发生器11 输出正弦信号的频率设置为Ω=359.88kHz,满足Ω=2×ΔfFSR,进而实现谐波锁模光电振荡器。因此,在实施例2中,产生的微波脉冲信号重复频率为谐振腔自由光谱范围的2倍。图 6给出了当频谱分析仪设置Span=30MHz,RBW=5kHz时,测得谐波锁模光电振荡器产生微波脉冲信号的频谱,与图3相比,信号的频率间隔增加。同样设置高速实时示波器的采样速率为25GSa/s,测得谐波锁模状态下光电振荡器输出微波脉冲信号的时域波形如图7所示。由图7可知,谐波锁模状态下的光电振荡器输出了周期为2.78μs的微波脉冲序列。但是,该信号的单个脉冲宽度较宽,这主要是由于信号3dB范围内的梳齿数量较少,如图6所示。通过进一步地调节电调制信号的频率以及腔内的增益,并使用3dB带宽更大的电滤波器8,可以实现对脉冲宽度的压缩。
以上所述仅是本发明的优选实施方式,应当理解所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (5)

1.基于时域锁模光电振荡器的微波脉冲产生装置,其特征在于,时域锁模光电振荡器包括直流激光器(1)、可调光衰减器(2)、电光强度调制器(3)、直流电源(4)、单模光纤(5)、光电探测器(6)、电放大器(7)、电滤波器(8)、电功分器(9)、电调制器(10)与函数发生器(11);
所述直流激光器(1)的输出端连接所述可调光衰减器(2)的输入端,所述可调光衰减器(2)的输出端连接所述电光强度调制器(3)的光学输入端,所述电光强度调制(3)的电信号输入端连接所述电调制器(10)的输出端,所述电光强度调制(3)的偏置电压输入端连接所述直流电源(4)的输出端,所述电光强度调制器(3)的光学输出端连接单模光纤(5)的输入端,所述单模光纤(5)的输出端连接光电探测器(6)的光学输入端,所述光电探测器(6)的电信号输出端连接所述电放大器(7)的输入端,所述电放大器(7)的输出端连接所述电滤波器(8)的输入端,所述电滤波器(8)的输出端连接所述电功分器(9)的输入端,所述电功分器(9)的一个输出端连接电调制器(10)的输入端,所述电调制器(10)的输出端连接所述电光强度调制器(3)的电信号输入端,所述电调制器(10)的调制信号输入端连接所述函数发生器(11)的信号输出端;所述电功分器(9)的另一个输出端为时域锁模光电振荡器的微波脉冲信号输出端。
2.基于时域锁模光电振荡器的微波脉冲产生方法,其特征在于,包括以下步骤:
步骤1:直流激光器(1)输出的光信号经过可调光衰减器(2),由可调光衰减器(2)对进入光电振荡环路的光信号功率进行控制,从而对光电振荡器环路中的增益进行控制;
步骤2:经过可调光衰减器(2)控制的直流光传输经过电光强度调制器(3),通过调节直流电源(4)改变加载在电光强度调制器(3)上的偏置电压,使电光强度调制器(3)工作在线性偏置点;
步骤3:经过电光强度调制器(3)所调制的光信号,通过一段单模光纤(5)传输后,在光电探测器(6)中进行光电转换,之后再依次经过电放大器(7)和电滤波器(8),分别实现对微波信号f0的功率补偿以及频段选择;
步骤4:微波信号f0经过电滤波器(8)处理后,输入至电功分器(9),电功分器(9)的一个端口为时域锁模光电振荡器的微波脉冲信号输出端,另一个端口连接至电调制器(10)的输入端,电调制器(10)的调制信号输入端口连接函数发生器(11)的信号输出端口;微波信号f0在电调制器(10)中被具有频率为Ω的电信号所调制,电调制器(10)的输出端连接至电光强度调制器(3)微波信号输出端,构成闭合的光电振荡回路。
3.根据权利要求2所述的基于时域锁模光电振荡器的微波脉冲产生方法,其特征在于,电调制器(10)输出的信号表示为
Figure RE-FDA0003106466350000021
其中V0是载频信号的幅度,f0
Figure RE-FDA0003106466350000022
分别是载频信号的频率和相位,m为电调制器的调制系数,由上述公式可知,微波信号f0经过调制后,在频率为f0+Ω和f0-Ω处产生两个具有固定相位关系的调制边带,当调制信号的频率Ω与光电振荡器的自由光谱范围
Figure RE-FDA0003106466350000023
L为环长,满足:
Ω=N×ΔfFSR(N为整数)
每一个模式新产生的调制边带会注入到相邻的环腔模式当中,并获得振荡环路内足够的增益,这些模式将作为新的载波信号,通过调制后继续产生新的调制边带,使得振荡信号的频谱发生展宽,相邻模式之间相位实现锁定,当环腔内具有足够的增益,增益谱带宽范围内的所有模式被同时激发起振,光电振荡器就实现稳定的多模振荡,这些模式在时域内相干叠加后形成微波脉冲序列。
4.根据权利要求3所述的基于时域锁模光电振荡器的微波脉冲产生方法,其特征在于,微波脉冲信号的重复频率有两种调谐方式:一种是直接改变环腔长度,进而改变微波脉冲信号的重复频率;一种是改变外部电信号的频率Ω,当N=1时,实现基频锁模输出,当N≥2时,实现谐波锁模输出。
5.根据权利要求2所述的基于时域锁模光电振荡器的微波脉冲产生方法,其特征在于,所述时域锁模光电振荡器为权利要求1所述的时域锁模光电振荡器。
CN202110264797.6A 2021-03-05 2021-03-05 基于时域锁模光电振荡器的微波脉冲产生装置及方法 Active CN113161863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110264797.6A CN113161863B (zh) 2021-03-05 2021-03-05 基于时域锁模光电振荡器的微波脉冲产生装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110264797.6A CN113161863B (zh) 2021-03-05 2021-03-05 基于时域锁模光电振荡器的微波脉冲产生装置及方法

Publications (2)

Publication Number Publication Date
CN113161863A true CN113161863A (zh) 2021-07-23
CN113161863B CN113161863B (zh) 2023-06-27

Family

ID=76886649

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110264797.6A Active CN113161863B (zh) 2021-03-05 2021-03-05 基于时域锁模光电振荡器的微波脉冲产生装置及方法

Country Status (1)

Country Link
CN (1) CN113161863B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285481A (zh) * 2021-12-30 2022-04-05 杭州电子科技大学 一种基于主动锁模光电振荡器的双频段微波脉冲产生装置及方法
CN114498259A (zh) * 2021-12-22 2022-05-13 西安空间无线电技术研究所 一种自再生锁模光电振荡器
CN114696915A (zh) * 2022-02-09 2022-07-01 中国人民解放军空军预警学院 基于双域锁模技术的分集信号产生系统及方法
CN115242299A (zh) * 2022-07-18 2022-10-25 电子科技大学 基于微波光子链路的低频相对强度噪声测试装置及方法
CN115833953A (zh) * 2022-11-29 2023-03-21 重庆大学 一种mz调制器偏置点控制系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697579B1 (en) * 2007-02-09 2010-04-13 University Of Central Florida Research Foundation, Inc. Optical frequency self stabilization in a coupled optoelectronic oscillator
US20150086151A1 (en) * 2012-04-11 2015-03-26 University Of Central Florida Research Foundation, Inc. Stabilization of an injection locked harmonically mode-locked laser via polarization spectroscopy for frequency comb generation
CN106575849A (zh) * 2014-08-06 2017-04-19 国家科学研究所物理和技术科学中心 超短光脉冲的发生方法及发生器
CN106716749A (zh) * 2014-12-15 2017-05-24 Ipg光子公司 无源锁模光纤环形发生器
CN109425866A (zh) * 2017-09-01 2019-03-05 姚晓天 应用光电振荡器(oeo)的光测距雷达(lidar)和光频域反射计(ofdr)系统
CN109659797A (zh) * 2019-03-01 2019-04-19 电子科技大学 用于相噪优化的光电振荡器系统
CN109842444A (zh) * 2019-03-11 2019-06-04 中国科学院半导体研究所 基于光电振荡器的弱信号探测放大系统及方法
CN110518975A (zh) * 2019-08-30 2019-11-29 中国科学院半导体研究所 频谱侦测系统
US20200025855A1 (en) * 2017-08-08 2020-01-23 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Method and apparatus for providing a passive transmitter based synthetic aperture radar
CN111342332A (zh) * 2020-02-24 2020-06-26 杭州电子科技大学 主动锁模光电振荡器
CN112103755A (zh) * 2020-08-18 2020-12-18 电子科技大学 一种基于直调式光注入半导体激光器的光电振荡器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697579B1 (en) * 2007-02-09 2010-04-13 University Of Central Florida Research Foundation, Inc. Optical frequency self stabilization in a coupled optoelectronic oscillator
US20150086151A1 (en) * 2012-04-11 2015-03-26 University Of Central Florida Research Foundation, Inc. Stabilization of an injection locked harmonically mode-locked laser via polarization spectroscopy for frequency comb generation
CN106575849A (zh) * 2014-08-06 2017-04-19 国家科学研究所物理和技术科学中心 超短光脉冲的发生方法及发生器
CN106716749A (zh) * 2014-12-15 2017-05-24 Ipg光子公司 无源锁模光纤环形发生器
US20200025855A1 (en) * 2017-08-08 2020-01-23 U.S. Army Research Laboratory Attn: Rdrl-Loc-I Method and apparatus for providing a passive transmitter based synthetic aperture radar
CN109425866A (zh) * 2017-09-01 2019-03-05 姚晓天 应用光电振荡器(oeo)的光测距雷达(lidar)和光频域反射计(ofdr)系统
CN109659797A (zh) * 2019-03-01 2019-04-19 电子科技大学 用于相噪优化的光电振荡器系统
CN109842444A (zh) * 2019-03-11 2019-06-04 中国科学院半导体研究所 基于光电振荡器的弱信号探测放大系统及方法
CN110518975A (zh) * 2019-08-30 2019-11-29 中国科学院半导体研究所 频谱侦测系统
CN111342332A (zh) * 2020-02-24 2020-06-26 杭州电子科技大学 主动锁模光电振荡器
CN112103755A (zh) * 2020-08-18 2020-12-18 电子科技大学 一种基于直调式光注入半导体激光器的光电振荡器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LINJIE ZHANG: "Frequency-Sweep-Range-Reconfigurable Complementary Linearly Chirped Microwave Waveform Pair Generation by Using a Fourier Domain Mode Locking Optoelectronic Oscillator Based on Stimulated Brillouin Scattering" *
徐伟 等: "耦合式光电振荡器的理论与实验研究" *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498259A (zh) * 2021-12-22 2022-05-13 西安空间无线电技术研究所 一种自再生锁模光电振荡器
CN114498259B (zh) * 2021-12-22 2024-05-03 西安空间无线电技术研究所 一种自再生锁模光电振荡器
CN114285481A (zh) * 2021-12-30 2022-04-05 杭州电子科技大学 一种基于主动锁模光电振荡器的双频段微波脉冲产生装置及方法
CN114285481B (zh) * 2021-12-30 2023-04-28 杭州电子科技大学 一种基于主动锁模光电振荡器的双频段微波脉冲产生装置及方法
CN114696915A (zh) * 2022-02-09 2022-07-01 中国人民解放军空军预警学院 基于双域锁模技术的分集信号产生系统及方法
CN114696915B (zh) * 2022-02-09 2023-09-22 中国人民解放军空军预警学院 基于双域锁模技术的分集信号产生系统及方法
CN115242299A (zh) * 2022-07-18 2022-10-25 电子科技大学 基于微波光子链路的低频相对强度噪声测试装置及方法
CN115833953A (zh) * 2022-11-29 2023-03-21 重庆大学 一种mz调制器偏置点控制系统及方法

Also Published As

Publication number Publication date
CN113161863B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN113161863B (zh) 基于时域锁模光电振荡器的微波脉冲产生装置及方法
US11606064B2 (en) Fourier domain mode-locked optoelectronic oscillator
CN110034758B (zh) 一种基于自振荡光学频率梳的注入锁定毫米波分频器及其分频方法
US8717657B2 (en) Optoelectronic oscillator using a high finesse etalon
CN110707509A (zh) 傅里叶域锁模光电振荡器
CN112103755A (zh) 一种基于直调式光注入半导体激光器的光电振荡器
CN110911946B (zh) 一种梳距可调的低相位噪声微波频率梳发生器
Helkey et al. Millimeter‐wave signal generation using semiconductor diode lasers
Li et al. Tunable Microwave Frequency Comb Generation Based on Actively Mode-Locked OEO
US11929585B2 (en) Mixer-based microwave signal generation device
Ma et al. Stable and tunable optoelectronic oscillator with external stimulated Brillouin beat note injection
Liu et al. 10 GHz ultra-stable short optical pulse generation via phase-modulation enhanced dual-loop optoelectronic oscillator
Peng et al. Low phase noise and highly stable optoelectronic oscillator by using frequency-multiplying phase locked loop
Li et al. Tunable High-Purity Microwave Frequency Combs Generation Based on Active Mode-Locking OEO
CN116300246B (zh) 一种基于光注入锁定的级联式全光振荡器及振荡方法
CN114204382B (zh) 基于光电振荡器的双频微波信号产生方法及装置
CN114498259B (zh) 一种自再生锁模光电振荡器
CN114285481B (zh) 一种基于主动锁模光电振荡器的双频段微波脉冲产生装置及方法
CN220797411U (zh) 一种基于自注入锁定的光频梳源
CN116759874A (zh) 一种基于注入锁定光电振荡器的低相噪任意波形产生系统
RU2797498C1 (ru) Компактный радиофотонный генератор гармонического сигнала гигагерцового и терагерцового диапазона высокой мощности
Zhang et al. Triangular Waveforms Generation Based on an Dual-Loop Optoelectronic Oscillator
Xiong et al. Dual-band tunable microwave pulse signals generation based on a time domain mode locked optoelectronic oscillator
Dong et al. Self-sustained Optical Frequency Combs Generation with a Tunable Line Spacing Based on Coupled Optoelectronic Oscillators
CN117148646A (zh) 一种基于双波长激光载波的单环全光振荡器和振荡方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant