CN113160071B - Satellite image automatic geometric correction method, system, media and terminal equipment - Google Patents
Satellite image automatic geometric correction method, system, media and terminal equipment Download PDFInfo
- Publication number
- CN113160071B CN113160071B CN202110266590.2A CN202110266590A CN113160071B CN 113160071 B CN113160071 B CN 113160071B CN 202110266590 A CN202110266590 A CN 202110266590A CN 113160071 B CN113160071 B CN 113160071B
- Authority
- CN
- China
- Prior art keywords
- image
- target satellite
- images
- modis
- correction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012937 correction Methods 0.000 title claims abstract description 165
- 238000000034 method Methods 0.000 title claims abstract description 72
- 238000012216 screening Methods 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 18
- 238000004590 computer program Methods 0.000 claims description 17
- 230000009466 transformation Effects 0.000 claims description 16
- 239000000284 extract Substances 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 5
- 238000003702 image correction Methods 0.000 abstract description 6
- 238000011156 evaluation Methods 0.000 abstract description 3
- 230000007547 defect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 238000013500 data storage Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10032—Satellite or aerial image; Remote sensing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20112—Image segmentation details
- G06T2207/20132—Image cropping
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域Technical field
本发明涉及遥感影像处理技术领域,尤其涉及一种卫星影像自动化几何纠正方法、系统、存储介质及终端设备。The invention relates to the technical field of remote sensing image processing, and in particular to an automatic geometric correction method, system, storage medium and terminal equipment for satellite images.
背景技术Background technique
现有针对同源传感器的图像配准主要采用基于特征的方法进行,但在海量数据配准面前,自动化择优筛选同源传感器配准参考影像及同名点选择困难。特别是极地影像,由于冰雪反射率高,冰盖表面纹理稀少,尺度不变特征变换算法在冰盖表面提取的特征点比较少,从而给极地影像的几何纠正带来困难。Existing image registration for homologous sensors is mainly carried out using feature-based methods. However, in the face of massive data registration, it is difficult to automatically select the reference images and points of the same name for homologous sensor registration. Especially for polar images, due to the high reflectivity of ice and snow and the sparse texture on the ice sheet surface, the scale-invariant feature transformation algorithm extracts fewer feature points on the ice sheet surface, which makes geometric correction of polar images difficult.
发明内容Contents of the invention
本发明实施例所要解决的技术问题在于,提供一种卫星影像自动化几何纠正方法、系统、存储介质及终端设备,能够实现自动化择优筛选同源传感器配准参考影像,且通过影像增强法突出极地影像的细节特征来增加同名点的选择,并根据影像校正精度筛选出最优的几何校正方案,以克服我国极地小卫星几何定位精度不高的缺陷。The technical problem to be solved by the embodiments of the present invention is to provide an automatic geometric correction method, system, storage medium and terminal equipment for satellite images, which can realize automatic selection and screening of homologous sensor registration reference images, and highlight polar images through image enhancement method Detailed features are used to increase the selection of points with the same name, and the optimal geometric correction scheme is selected based on the image correction accuracy to overcome the shortcomings of low geometric positioning accuracy of my country's polar small satellites.
为了解决上述技术问题,本发明实施例提供了一种卫星影像自动化几何纠正方法,应用于极地小卫星,所述方法包括:In order to solve the above technical problems, embodiments of the present invention provide an automatic geometric correction method for satellite images, which is applied to polar small satellites. The method includes:
从影像获取时间远近、空间覆盖程度以及同名点对数量三个方面择优筛选用于目标卫星影像自动化几何纠正的参考影像,以获得用于目标卫星影像几何校正的最优参考影像;The reference images used for automatic geometric correction of the target satellite image are selected and screened from three aspects: the distance of image acquisition time, the degree of spatial coverage and the number of point pairs with the same name, in order to obtain the optimal reference image for the geometric correction of the target satellite image;
采用预设方案提取目标卫星影像与MODIS影像的同名点,以得到各方案用于几何校正的地理坐标文件;其中,所述预设方案包括通过整景影像提取同名点、影像分四部分和九部分进行影像增强处理后提取同名点;A preset scheme is used to extract the same-named points of the target satellite image and the MODIS image to obtain the geographical coordinate files for geometric correction of each scheme; wherein, the preset scheme includes extracting the same-named points through the whole scene image, and the image is divided into four parts and nine parts. Partially perform image enhancement processing to extract points of the same name;
对目标卫星影像采用预设方案校正后的影像进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星影像进行校正。The correction accuracy of the target satellite image corrected using the preset scheme is evaluated to select the optimal correction scheme, and the target satellite image is corrected according to the optimal correction scheme.
进一步地,影像获取时间远近、空间覆盖程度以及同名点对数量三个方面择优筛选用于所述目标卫星影像自动化几何纠正的MODIS影像,以获得用于所述目标卫星影像几何校正的最优参考影像,具体为:Furthermore, the MODIS images used for automatic geometric correction of the target satellite image were selected and screened from three aspects: the distance of image acquisition time, the degree of spatial coverage and the number of point pairs with the same name, so as to obtain the optimal reference for the geometric correction of the target satellite image. Image, specifically:
批量地获取目标卫星影像当天少云的MODIS影像,创建目标卫星影像与MODIS影像的第一数据索引表;Batch obtain the MODIS images of the target satellite images with few clouds on that day, and create the first data index table of the target satellite images and MODIS images;
对目标卫星影像及MODIS影像进行预处理,采用一致的南极投影和250m分辨率,获得与目标卫星影像地理范围一致的MODIS影像;Preprocess the target satellite image and MODIS image, use consistent Antarctic projection and 250m resolution, and obtain MODIS image consistent with the geographical range of the target satellite image;
对所述MODIS影像进行初步筛选,筛选其有效数据范围覆盖了目标影像80%以上的影像,并创建目标卫星影像与MODIS影像的第二数据索引表;Conduct preliminary screening of the MODIS images, select images whose effective data range covers more than 80% of the target images, and create a second data index table of the target satellite images and MODIS images;
对所述MODIS影像进行二次筛选,通过特征匹配法根据所述第二数据索引表提取目标卫星与MODIS影像对的同名点,根据所述同名点对的数量排序择优选取对应的MODIS影像,若仍有多景MODIS数据具有等量的同名点对,则取接近目标卫星影像拍摄时间的MODIS影像作为最终配准参考影像,并得出用于几何纠正的第三数据索引表。The MODIS images are screened twice, and the points with the same names of the target satellite and MODIS image pairs are extracted according to the second data index table through the feature matching method, and the corresponding MODIS images are selected based on the number of point pairs with the same names. If If there are still multiple scene MODIS data with the same number of point pairs with the same name, the MODIS image close to the shooting time of the target satellite image is used as the final registration reference image, and a third data index table for geometric correction is obtained.
进一步地,采用预设方案提取目标卫星影像与MODIS影像的同名点,以得到各方案用于几何校正的地理坐标文件,具体为:Furthermore, a preset scheme is used to extract the same-name points of the target satellite image and the MODIS image to obtain the geographical coordinate files for geometric correction of each scheme, specifically as follows:
方案一:将目标卫星整景影像及对应的MODIS整景影像通过尺度不变特征变换算法提取同名点对后,按照同名点对的欧式距离进行排序,剔除欧式距离最大的10%的点,输出其余同名点对的真实地理坐标文件作为用于校正所述目标卫星影像的第一纠正地理坐标文件;Option 1: After extracting point pairs with the same name through the scale-invariant feature transformation algorithm of the target satellite whole scene image and the corresponding MODIS whole scene image, sort the point pairs with the same name according to their Euclidean distance, eliminate the 10% points with the largest Euclidean distance, and output The real geographical coordinate files of the remaining point pairs with the same name are used as the first corrected geographical coordinate file for correcting the target satellite image;
方案二:将目标影像规则分为四部分,并将各部分向外延40个像素裁剪对应的MODIS影像,将各影像对分别进行分段线性拉伸增强处理,再通过尺度不变特征变换算法提取同名点对,剔除欧式距离最大的30%的点,输出其余同名点的真实地理坐标文件,将此处的坐标文件与第一纠正地理坐标文件合并后剔除重复点对作为用于校正所述目标卫星影像的第二纠正地理坐标文件;Option 2: Divide the target image into four parts, and extend each part by 40 pixels to crop the corresponding MODIS image. Each image pair is subjected to piecewise linear stretching and enhancement processing, and then extracted through a scale-invariant feature transformation algorithm. For point pairs with the same name, eliminate 30% of the points with the largest Euclidean distance, output the real geographic coordinate files of the remaining points with the same name, merge the coordinate file here with the first corrected geographic coordinate file, and eliminate duplicate point pairs as the target for correction A second corrected geographic coordinate file of the satellite image;
方案三:将目标影像规则分为九部分,方法同方案二,获得剔除欧式距离最大的30%的点后其余同名点的真实地理坐标文件,将此处的坐标文件与第一纠正地理坐标文件和第二纠正地理坐标文件合并后剔除重复点对作为用于校正所述目标卫星影像的第三纠正地理坐标文件。Option 3: Divide the target image rules into nine parts. The method is the same as Option 2. Obtain the real geographical coordinate file of the remaining points with the same name after excluding 30% of the points with the largest Euclidean distance. Combine the coordinate file here with the first corrected geographical coordinate file. After merging with the second corrected geographical coordinate file and eliminating duplicate point pairs, it becomes the third corrected geographical coordinate file for correcting the target satellite image.
进一步地,对目标卫星影像采用不同方法校正后的影像进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星影像进行校正,具体为:Further, the correction accuracy of the target satellite image corrected by different methods is evaluated to select the optimal correction scheme, and the target satellite image is corrected according to the optimal correction scheme, specifically as follows:
将三种方案得到的三种纠正地理坐标文件利用二次多项式方法分别用于目标影像的几何校正,得到不同方案校正后的目标卫星影像;The three corrected geographical coordinate files obtained by the three schemes are used for geometric correction of the target image using the quadratic polynomial method, and the target satellite image corrected by different schemes is obtained;
利用尺度不变特征变换算法将校正后的三种目标卫星影像再次与对应MODIS影像提取同名点后,计算点对之间的欧式距离,评估不同方案几何校正后的校正精度,并筛选出最优校正方案;Using the scale-invariant feature transformation algorithm, the corrected three target satellite images are again extracted from the corresponding MODIS images. After extracting the same points, the Euclidean distance between the point pairs is calculated, the correction accuracy after geometric correction of different schemes is evaluated, and the optimal one is selected. Calibration plan;
利用最优的校正方案进行目标卫星影像的几何校正。Use the optimal correction scheme to perform geometric correction of target satellite images.
为了解决上述技术问题,本发明实施例还提供了一种卫星影像自动化几何纠正系统,包括:In order to solve the above technical problems, embodiments of the present invention also provide an automated geometric correction system for satellite images, including:
筛选模块,用于从影像获取时间远近、空间覆盖程度以及同名点对数量三个方面择优筛选用于目标卫星影像自动化几何纠正的参考影像,以获得用于目标卫星影像几何校正的最优参考影像;The screening module is used to select the reference images for automatic geometric correction of the target satellite image from three aspects: the distance of image acquisition time, the degree of spatial coverage, and the number of point pairs with the same name, so as to obtain the optimal reference image for the geometric correction of the target satellite image. ;
提取模块,用于采用预设方案提取目标卫星影像与MODIS影像的同名点,以得到各方案用于几何校正的地理坐标文件;其中,所述预设方案包括通过整景影像提取同名点、影像分四部分和九部分进行影像增强处理后提取同名点;The extraction module is used to extract points of the same name from the target satellite image and the MODIS image using a preset scheme to obtain the geographical coordinate files for geometric correction of each scheme; wherein the preset scheme includes extracting points of the same name and images from the whole scene image. The same points are extracted after image enhancement processing in four parts and nine parts;
校正模块,用于对目标卫星影像采用预设方案校正后的影像进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星影像进行校正。The correction module is used to evaluate the correction accuracy of the target satellite image corrected using a preset scheme, to select the optimal correction scheme, and to correct the target satellite image according to the optimal correction scheme.
进一步地,所述筛选模块,具体用于,Further, the screening module is specifically used to:
批量地获取目标卫星影像当天少云的MODIS影像,创建目标卫星影像与MODIS影像的第一数据索引表;Batch obtain the MODIS images of the target satellite images with few clouds on that day, and create the first data index table of the target satellite images and MODIS images;
对目标卫星影像及MODIS影像进行预处理,采用一致的南极投影和250m分辨率,获得与目标卫星影像地理范围一致的MODIS影像;Preprocess the target satellite image and MODIS image, use consistent Antarctic projection and 250m resolution, and obtain MODIS image consistent with the geographical range of the target satellite image;
对所述MODIS影像进行初步筛选,筛选其有效数据范围覆盖了目标影像80%以上的影像,并创建目标卫星影像与MODIS影像的第二数据索引表;Conduct preliminary screening of the MODIS images, select images whose effective data range covers more than 80% of the target images, and create a second data index table of the target satellite images and MODIS images;
对所述MODIS影像进行二次筛选,通过特征匹配法根据所述第二数据索引表提取目标卫星与MODIS影像对的同名点,根据所述同名点对的数量排序择优选取对应的MODIS影像,若仍有多景MODIS数据具有等量的同名点对,则取接近目标卫星影像拍摄时间的MODIS影像作为最终配准参考影像,并得出用于几何纠正的第三数据索引表。The MODIS images are screened twice, and the points with the same names of the target satellite and MODIS image pairs are extracted according to the second data index table through the feature matching method, and the corresponding MODIS images are selected based on the number of point pairs with the same names. If If there are still multiple scene MODIS data with the same number of point pairs with the same name, the MODIS image close to the shooting time of the target satellite image is used as the final registration reference image, and a third data index table for geometric correction is obtained.
进一步地,所述提取模块,具体用于,Further, the extraction module is specifically used to:
方案一:将目标卫星整景影像及对应的MODIS整景影像通过尺度不变特征变换算法提取同名点对后,按照同名点对的欧式距离进行排序,剔除欧式距离最大的10%的点,输出其余同名点对的真实地理坐标文件作为用于校正所述目标卫星影像的第一纠正地理坐标文件;Option 1: After extracting point pairs with the same name through the scale-invariant feature transformation algorithm of the target satellite whole scene image and the corresponding MODIS whole scene image, sort the point pairs with the same name according to their Euclidean distance, eliminate the 10% points with the largest Euclidean distance, and output The real geographical coordinate files of the remaining point pairs with the same name are used as the first corrected geographical coordinate file for correcting the target satellite image;
方案二:将目标影像规则分为四部分,并将各部分向外延40个像素裁剪对应的MODIS影像,将各影像对分别进行分段线性拉伸增强处理,再通过尺度不变特征变换算法提取同名点对,剔除欧式距离最大的30%的点,输出其余同名点的真实地理坐标文件,将此处的坐标文件与第一纠正地理坐标文件合并后剔除重复点对作为用于校正所述目标卫星影像的第二纠正地理坐标文件;Option 2: Divide the target image into four parts, and extend each part by 40 pixels to crop the corresponding MODIS image. Each image pair is subjected to piecewise linear stretching and enhancement processing, and then extracted through a scale-invariant feature transformation algorithm. For point pairs with the same name, eliminate 30% of the points with the largest Euclidean distance, output the real geographic coordinate files of the remaining points with the same name, merge the coordinate file here with the first corrected geographic coordinate file, and eliminate duplicate point pairs as the target for correction A second corrected geographic coordinate file of the satellite image;
方案三:将目标影像规则分为九部分,方法同方案二,获得剔除欧式距离最大的30%的点后其余同名点的真实地理坐标文件,将此处的坐标文件与第一纠正地理坐标文件和第二纠正地理坐标文件合并后剔除重复点对作为用于校正所述目标卫星影像的第三纠正地理坐标文件。Option 3: Divide the target image rules into nine parts. The method is the same as Option 2. Obtain the real geographical coordinate file of the remaining points with the same name after excluding 30% of the points with the largest Euclidean distance. Combine the coordinate file here with the first corrected geographical coordinate file. After merging with the second corrected geographical coordinate file and eliminating duplicate point pairs, it becomes the third corrected geographical coordinate file for correcting the target satellite image.
进一步地,所述校正模块,具体用于,Further, the correction module is specifically used to:
将三种方案得到的三种纠正地理坐标文件利用二次多项式方法分别用于目标影像的几何校正,得到不同方案校正后的目标卫星影像;The three corrected geographical coordinate files obtained by the three schemes are used for geometric correction of the target image using the quadratic polynomial method, and the target satellite image corrected by different schemes is obtained;
利用尺度不变特征变换算法将校正后的三种目标卫星影像再次与对应MODIS影像提取同名点后,计算点对之间的欧式距离,评估不同方案几何校正后的校正精度,并筛选出最优校正方案;Using the scale-invariant feature transformation algorithm, the corrected three target satellite images are again extracted from the corresponding MODIS images. After extracting the same points, the Euclidean distance between the point pairs is calculated, the correction accuracy after geometric correction of different schemes is evaluated, and the optimal one is selected. Calibration plan;
利用最优的校正方案进行目标卫星影像的几何校正。Use the optimal correction scheme to perform geometric correction of target satellite images.
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序;其中,所述计算机程序在运行时控制所述计算机可读存储介质所在的设备执行上述卫星影像自动化几何纠正方法。Embodiments of the present invention also provide a computer-readable storage medium. The computer-readable storage medium includes a stored computer program; wherein, when running, the computer program controls the device where the computer-readable storage medium is located to execute the above. Automatic geometric correction method for satellite images.
本发明实施例还提供了一种终端设备,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器在执行所述计算机程序时实现上述卫星影像自动化几何纠正方法。An embodiment of the present invention also provides a terminal device, which includes a processor, a memory, and a computer program stored in the memory and configured to be executed by the processor. The processor implements when executing the computer program The above-mentioned automated geometric correction method for satellite images.
与现有技术相比,本发明实施例提供了一种卫星影像自动化几何纠正方法,首先,从影像获取时间远近、空间覆盖程度以及同名点对数量三个方面择优筛选用于目标卫星影像自动化几何纠正的参考MODIS影像,以获得用于目标卫星影像几何校正的最优参考影像;然后,采用不同方法提取目标卫星影像与MODIS影像的同名点,包括通过整景影像提取同名、影像分四部分和九部分进行影像增强处理后提取同名点,以得到各方案用于几何校正的地理坐标文件;最后对目标卫星影像采用不同方法校正后的影像进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星影像进行校正。相比现有技术,本发明能够实现自动化择优筛选同源传感器配准参考影像,且通过影像增强法突出极地影像的细节特征来增加同名点的选择,并根据影像校正精度筛选出最优的几何校正方案,以克服现有极地小卫星几何定位精度不高的缺陷。Compared with the existing technology, embodiments of the present invention provide an automatic geometric correction method for satellite images. First, the automatic geometric correction of the target satellite image is selected based on three aspects: the distance of image acquisition time, the degree of spatial coverage, and the number of point pairs with the same name. The corrected reference MODIS image is used to obtain the optimal reference image for geometric correction of the target satellite image; then, different methods are used to extract the same-named points between the target satellite image and the MODIS image, including extracting the same-named points through the whole scene image, dividing the image into four parts and After nine parts of image enhancement processing, the same points are extracted to obtain the geographical coordinate files for geometric correction of each plan; finally, the correction accuracy of the target satellite image corrected by different methods is evaluated to screen out the optimal correction plan, and Correct the target satellite image according to the optimal correction scheme. Compared with the existing technology, the present invention can realize automatic selection and screening of homologous sensor registration reference images, and use image enhancement method to highlight the detailed features of polar images to increase the selection of homonymous points, and select the optimal geometry based on the image correction accuracy. Correction scheme to overcome the shortcomings of low geometric positioning accuracy of existing polar small satellites.
附图说明Description of the drawings
图1为本发明提供的一种卫星影像自动化几何纠正方法的流程图;Figure 1 is a flow chart of an automated geometric correction method for satellite images provided by the present invention;
图2为本发明提供的一种卫星影像自动化几何纠正方法的数据流图;Figure 2 is a data flow diagram of an automated geometric correction method for satellite images provided by the present invention;
图3为本发明提供的一种卫星影像自动化几何纠正方法中不同影像增强的效果图;Figure 3 is a diagram showing the effects of different image enhancements in an automated geometric correction method for satellite images provided by the present invention;
图4为本发明提供的一种卫星影像自动化几何纠正方法的效果图;Figure 4 is a rendering of an automated geometric correction method for satellite images provided by the present invention;
图5为本发明提供的一种卫星影像自动化几何纠正方法的结构框图;Figure 5 is a structural block diagram of an automated geometric correction method for satellite images provided by the present invention;
图6是本发明提供的一种终端设备的的结构框图。Figure 6 is a structural block diagram of a terminal device provided by the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本技术领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
需要说明的是,文中的步骤编号,仅为了方便具体实施例的解释,不作为限定步骤执行先后顺序的作用。本实施例提供的方法可以由相关的服务器执行,且下文均以服务器作为执行主体为例进行说明。It should be noted that the step numbers in the text are only for convenience of explanation of specific embodiments and are not used to limit the execution order of the steps. The method provided in this embodiment can be executed by a relevant server, and the following description takes the server as the execution subject as an example.
如图1至图4示,本发明实施例提供的一种卫星影像自动化几何纠正方法,应用于极地小卫星,所述方法包括步骤S11至步骤S14:As shown in Figures 1 to 4, an embodiment of the present invention provides an automated geometric correction method for satellite images, which is applied to polar small satellites. The method includes steps S11 to S14:
步骤S11,从影像获取时间远近、空间覆盖程度以及同名点对数量三个方面择优筛选用于目标卫星影像自动化几何纠正的参考影像,以获得用于目标卫星影像几何校正的最优参考影像。Step S11: Select the reference image for automatic geometric correction of the target satellite image from the three aspects of image acquisition time, spatial coverage, and number of point pairs with the same name, to obtain the optimal reference image for geometric correction of the target satellite image.
具体的,批量地获取目标卫星影像当天云量较少的MODIS影像,创建目标卫星影像与MODIS影像的第一数据索引表;对所述目标卫星影像及MODIS影像进行预处理,采用一致的投影(南极投影)和分辨率(250m),通过影像裁剪获得与目标卫星影像地理范围一致的MODIS影像;对所述MODIS影像进行初步筛选,筛选其有效数据范围覆盖了目标卫星影像一定目标值以上的影像,并创建目标卫星影像与MODIS影像的第二数据索引表;对所述MODIS影像进行二次筛选,通过特征匹配法根据所述第二数据索引表提取各目标卫星与MODIS影像对的同名点,根据所述同名点对的数量排序择优选取对应的MODIS影像,若仍有多景MODIS数据具有等量的同名点对,则取接近目标卫星拍摄时间的MODIS影像作为最终配准参考影像,并得出用于几何纠正的第三数据索引表。Specifically, MODIS images with less cloud cover on the target satellite image that day are obtained in batches, and a first data index table of the target satellite image and MODIS image is created; the target satellite image and MODIS image are preprocessed and a consistent projection is used ( Antarctic projection) and resolution (250m), obtain a MODIS image consistent with the geographical range of the target satellite image through image cropping; conduct a preliminary screening of the MODIS image, and select images whose effective data range covers the target satellite image above a certain target value , and create a second data index table of the target satellite image and the MODIS image; perform a secondary screening of the MODIS image, and extract the same-name points of each target satellite and MODIS image pair according to the second data index table through the feature matching method, Sort and select the corresponding MODIS image according to the number of point pairs with the same name. If there are still multiple scene MODIS data with the same number of point pairs with the same name, select the MODIS image close to the target satellite shooting time as the final registration reference image, and obtain A third data index table for geometric correction is generated.
进一步地,以我国极地小卫星“京师一号”(研制代码:BNU-1)卫星为例,批量的下载BNU-1卫星对影像应的当天的MODIS影像(美国MODIS反射率数据),建立二者的第一数据索引表。BNU-1数据定义南极投影(设置分辨率为250m)(同MODIS数据);MODIS影像提取辐亮度单一波段恢复地理坐标输出GeoTIFF、定义南极投影(设置分辨率为250m)、MODIS影像裁剪(250m分辨率的BNU-1影像外延40个像素(即10km)裁剪对应的MODIS影像)。当裁剪后的MODIS有效数据范围/对应BNU-1数据范围≥0.8时,创建所述BNU-1卫星影像与MODIS影像的第二数据索引表。根据第二数据索引表利用尺度不变特征变换(SIFT)匹配方法提取BNU-1卫星影像和对应的MODIS影像的同名点对。根据同名点对的数量排序择优选取对应的MODIS影像,若仍有多景MODIS数据具有等量的同名点对,则取接近BNU-1拍摄时间的MODIS数据作为最终配准参考影像,得出最终用于配准的第三数据索引表。Furthermore, taking my country's small polar satellite "Jingshi-1" (development code: BNU-1) as an example, batch download the MODIS images (US MODIS reflectance data) corresponding to the images of the BNU-1 satellite for the day, and establish a second The first data index table of the user. BNU-1 data defines the Antarctic projection (set the resolution to 250m) (same as MODIS data); MODIS image extracts radiance in a single band and restores geographical coordinates to output GeoTIFF, defines the Antarctic projection (set the resolution to 250m), MODIS image cropping (250m resolution The corresponding MODIS image is cropped with an extension of 40 pixels (i.e. 10km) of the high-rate BNU-1 image). When the cropped MODIS valid data range/corresponding BNU-1 data range ≥ 0.8, create a second data index table of the BNU-1 satellite image and MODIS image. According to the second data index table, the scale-invariant feature transform (SIFT) matching method is used to extract the same-name point pairs of the BNU-1 satellite image and the corresponding MODIS image. Sort and select the corresponding MODIS image according to the number of point pairs with the same name. If there are still multiple scene MODIS data with the same number of point pairs with the same name, the MODIS data close to the BNU-1 shooting time will be used as the final registration reference image to obtain the final Third data index table used for registration.
步骤S12,采用预设方案提取目标卫星影像与MODIS影像的同名点,以得到各方案用于几何校正的地理坐标文件;其中,所述预设方案包括通过整景影像提取同名点、影像分四部分和九部分进行影像增强处理后提取同名点。Step S12: Use a preset scheme to extract the same points of the target satellite image and the MODIS image to obtain the geographical coordinate files for geometric correction of each scheme; wherein, the preset scheme includes extracting the same points through the whole scene image, dividing the image into four Parts and nine parts are subjected to image enhancement processing to extract identical points.
其中,方案一:通过整点影像法提取所述同名点对的同名点坐标,以得到纠正地理坐标文件,具体为:将目标卫星整景影像和对应裁剪后的MODIS整景影像通过SIFT算法提取同名点对后,按照同名点对的欧式距离进行排序,剔除欧式距离最大的10%的点,输出其余同名点对的真实地理坐标文件作为用于校正所述目标卫星影像自动化几何纠正的第一纠正地理坐标文件。Among them, scheme one: extract the same-name point coordinates of the same-name point pair through the whole-point image method to obtain a corrected geographical coordinate file, specifically: extract the target satellite whole-scenery image and the corresponding cropped MODIS whole-scenery image through the SIFT algorithm After pairs of points with the same name are sorted according to their Euclidean distance, 10% of the points with the largest Euclidean distance are eliminated, and the real geographical coordinate files of the remaining point pairs with the same name are output as the first method for automatic geometric correction of the target satellite image. Correct geographic coordinates file.
具体的,将BNU-1整景影像和对应裁剪后的MODIS整景影像(依据第三数据索引表)利用SIFT算法提取同名点对,按照同名点对的欧式距离进行排序,剔除欧式距离最大的10%的点,输出其余同名点对的真实地理坐标文件作为用于校正BNU-1卫星影像的第一纠正地理坐标文件。Specifically, the BNU-1 whole scene image and the corresponding cropped MODIS whole scene image (according to the third data index table) use the SIFT algorithm to extract point pairs with the same name, sort them according to the Euclidean distance of the point pairs with the same name, and eliminate the ones with the largest Euclidean distance. 10% of the points, output the real geographical coordinate files of the remaining point pairs with the same name as the first corrected geographical coordinate file used to correct the BNU-1 satellite image.
其中,方案二:将目标卫星影像规则分为四部分(2*2=4),并将各部分向外延40个像素裁剪对应的MODIS影像,将各影像对分别进行分段线性拉伸增强处理,再通过SIFT算法提取同名点对,剔除欧式距离最大的30%的点,输出其余同名点的真实地理坐标文件,将此处的坐标文件与第一纠正地理坐标文件合并后剔除重复点对作为用于校正所述BNU-1卫星影像的第二纠正地理坐标文件。Among them, Plan 2: Divide the target satellite image into four parts (2*2=4), and extend each part by 40 pixels to crop the corresponding MODIS image, and perform piecewise linear stretching and enhancement processing on each image pair. , and then use the SIFT algorithm to extract point pairs with the same name, eliminate 30% of the points with the largest Euclidean distance, output the real geographical coordinate files of the remaining points with the same name, merge the coordinate file here with the first corrected geographical coordinate file, and eliminate duplicate point pairs as A second corrected geographic coordinate file used to correct the BNU-1 satellite image.
具体的,请参阅图3,将BNU-1影像规则裁剪为4部分(2*2=4),将这四部分别外延40个像素裁剪对应的MODIS数据。分别将四组影像对做影像分段线性拉伸增强处理后利用SIFT算法提同名点对。图3中不同拉伸方法提取的同名点对的对比为:(a)无拉伸;(b)线性拉伸;(c)分段线性拉伸;(d)高斯拉伸;(e)直方图均衡化拉伸;(f)均方根拉伸(此处对比无拉伸、线性、分段线性、高斯、直方图均衡化、均方根六种拉伸方式的结果,发现分段线性拉伸的方式找出的同名点更多),剔除欧式距离最大的30%的点,输出其余同名点的真实地理坐标文件。将此处的坐标文件与第一纠正地理坐标文件合并后剔除重复点对作为用于校正所述BNU-1卫星影像的第二纠正地理坐标文件。可以理解的,通过图像增强后获取同名点能够突出极区冰雪的特征,从而找到更多的同名点。Specifically, please refer to Figure 3. The BNU-1 image is regularly cropped into 4 parts (2*2=4), and each of these four parts is extended by 40 pixels to crop the corresponding MODIS data. The four sets of image pairs were subjected to image segmentation linear stretching and enhancement processing, and then the SIFT algorithm was used to propose name point pairs. The comparison of point pairs with the same name extracted by different stretching methods in Figure 3 is: (a) no stretching; (b) linear stretching; (c) piecewise linear stretching; (d) Gaussian stretching; (e) rectangular Graph equalization stretching; (f) Root mean square stretching (Here we compare the results of six stretching methods: no stretching, linear, piecewise linear, Gaussian, histogram equalization, and root mean square. It is found that piecewise linearity is (more points with the same name can be found by stretching), eliminate 30% of the points with the largest Euclidean distance, and output the real geographical coordinate files of the remaining points with the same name. The coordinate file here is merged with the first corrected geographical coordinate file and the duplicate point pairs are eliminated as the second corrected geographical coordinate file for correcting the BNU-1 satellite image. It is understandable that obtaining points with the same name through image enhancement can highlight the characteristics of ice and snow in the polar regions, thereby finding more points with the same name.
其中,方案三:将目标卫星影像与MODIS影像规则分为九部分(3*3=9后提取同名点对,剔除欧式距离最大的30%的点,输出其余同名点的真实地理坐标文件(方法同方案二)。将此处的坐标文件与第一纠正地理坐标文件和第二纠正地理坐标文件合并后剔除重复点对作为用于校正所述目标卫星影像的第三纠正地理坐标文件。Among them, Plan 3: Divide the target satellite image and MODIS image rules into nine parts (3*3=9), extract point pairs with the same name, eliminate 30% of the points with the largest Euclidean distance, and output the real geographical coordinate files of the remaining points with the same name (Method Same as Scheme 2). Merge the coordinate file here with the first corrected geographical coordinate file and the second corrected geographical coordinate file and eliminate duplicate point pairs as the third corrected geographical coordinate file for correcting the target satellite image.
具体的,将BNU-1卫星影像与MODIS影像均匀分为9部分进行分段线性增强后提取同名点对,剔除30%后输出坐标文件(方法同方案二)。第一纠正地理坐标文件和第二纠正地理坐标文件合并后剔除重复点对作为用于校正BNU-1卫星影像的第三纠正地理坐标文件。Specifically, the BNU-1 satellite image and MODIS image are evenly divided into 9 parts for piecewise linear enhancement, and then the same-name point pairs are extracted, and the coordinate file is output after eliminating 30% (the method is the same as the second method). The first corrected geographical coordinate file and the second corrected geographical coordinate file are merged and duplicate point pairs are eliminated to become the third corrected geographical coordinate file for correcting BNU-1 satellite images.
步骤S13,对目标卫星影像采用不同方案校正后的影像进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星影像进行校正。Step S13: Evaluate the correction accuracy of the target satellite image corrected using different schemes to select the optimal correction scheme, and correct the target satellite image according to the optimal correction scheme.
具体的,将三种方案得到的三种纠正地理坐标文件利用二次多项式方法分别用于目标卫星影像的几何校正,得到不同方案校正后的目标卫星影像;利用SIFT算法将校正后的BNU-1卫星影像(三种)再次与对应MODIS影像提取同名点后,计算点对之间的欧式距离,评估不同方案几何校正后的校正精度,并筛选出最优校正方案;利用最优的校正方案进行BNU-1卫星影像的几何校正。Specifically, the three corrected geographical coordinate files obtained by the three schemes were used for geometric correction of the target satellite image using the quadratic polynomial method to obtain the target satellite image corrected by different schemes; the SIFT algorithm was used to convert the corrected BNU-1 After the satellite images (three types) are again extracted from the corresponding MODIS images, the Euclidean distance between the point pairs is calculated, the correction accuracy after geometric correction of different schemes is evaluated, and the optimal correction scheme is selected; the optimal correction scheme is used for Geometric correction of BNU-1 satellite images.
进一步地,将三种方案得到的三种纠正地理坐标文件利用二次多项式方法分别用于BNU-1卫星影像的几何校正,得到不同方案校正后的影像;利用SIFT算法将校正后的BNU-1卫星影像(三种)再次与对应MODIS影像提取同名点后,计算点对之间的欧式距离,评估不同方案几何校正后的校正精度(表1),并筛选出最优校正方案。Furthermore, the three corrected geographical coordinate files obtained by the three schemes were used for geometric correction of BNU-1 satellite images using the quadratic polynomial method to obtain corrected images of different schemes; the corrected BNU-1 satellite images were obtained using the SIFT algorithm. After extracting points with the same name from the satellite images (three types) and the corresponding MODIS images, the Euclidean distance between the point pairs was calculated, the correction accuracy after geometric correction of different schemes was evaluated (Table 1), and the optimal correction scheme was selected.
表1三种方案用于BNU-1卫星影像自动化几何纠正的同名点数量及校正精度评估Table 1 Number of points with the same name and correction accuracy evaluation of three schemes for automatic geometric correction of BNU-1 satellite images
(以BNU-1卫星2019年12月18日09:04:51拍摄的影像为例)(Take the image captured by the BNU-1 satellite at 09:04:51 on December 18, 2019 as an example)
将适用于极地小卫星影像的自动几何纠正技术应用于BNU-1卫星影像进行几何纠正,纠正前后的影像分别在下层叠加对应的MODIS数据,对比校正前后的效果(以BNU-1卫星2019年12月18日09:04:51拍摄的影像为例),结果如图4所示。The automatic geometric correction technology suitable for polar small satellite images is applied to the BNU-1 satellite image for geometric correction. The images before and after correction are superimposed with the corresponding MODIS data in the lower layer, and the effects before and after correction are compared (based on the BNU-1 satellite in December 2019). The image taken at 09:04:51 on March 18th is taken as an example), and the results are shown in Figure 4.
图4中,图4a为BNU-1 0级影像,图4b为使用适用于国产极地小卫星影像的自动几何纠正技术纠正后的影像。图4c、e、g分别为图4a中细节的放大,分别为海冰交界、冰盖以及有云部分。图4d、f、h为使用本发明技术纠正后影像对应位置的放大图。从结果来看,适用于国产极地小卫星影像的自动几何纠正技术在以下几个方面具有明显优势,首先该技术能够自动化择优筛选同源传感器的配准参考影像(能从每日几十景数据中选择最优一景),避免因为卫星数据量大,又要兼备影像数据范围、拍摄时间、数据质量等方面带来的人工干预。其次,该技术将影像进行了分部分增强处理,突出了极地影像的细节特征,使得SIFT算子在极地影像上能够更多更均匀的提取同名点对。第三,该技术能够依据不同影像择优选取纠正方案来达到最优的校正精度。第四,通过该技术纠正后的影像几何精度显著提高(由于6221.77m提高到243.48m),能够自动化产出一系列高精度配准的数据产品,为提高和促进极地小卫星数据的应用提供有效的支持和保障。In Figure 4, Figure 4a is the BNU-1 level 0 image, and Figure 4b is the image corrected using the automatic geometric correction technology suitable for domestic polar small satellite images. Figures 4c, e, and g are enlargements of the details in Figure 4a, which are the sea-ice junction, ice sheet, and cloudy parts respectively. Figures 4d, f, and h are enlarged views of the corresponding positions of the image after correction using the technology of the present invention. Judging from the results, the automatic geometric correction technology suitable for domestic polar small satellite images has obvious advantages in the following aspects. First of all, this technology can automatically select and select the registration reference images of homologous sensors (it can collect data from dozens of scenes every day). Select the optimal scene) to avoid manual intervention due to the large amount of satellite data and the need to consider image data range, shooting time, data quality, etc. Secondly, this technology enhances the image in parts, highlighting the detailed features of polar images, allowing the SIFT operator to extract more and more uniform point pairs with the same name on polar images. Third, this technology can select correction solutions based on different images to achieve optimal correction accuracy. Fourth, the geometric accuracy of the image corrected by this technology is significantly improved (due to the increase from 6221.77m to 243.48m), and a series of high-precision registration data products can be automatically produced, providing an effective way to improve and promote the application of polar small satellite data. support and guarantee.
本发明实施例所提供的一种卫星影像自动化几何纠正方法,本发明实施例提供了一种卫星影像自动化几何纠正方法,首先,从影像获取时间远近、空间覆盖程度以及同名点对数量三个方面择优筛选用于目标卫星影像自动化几何纠正的参考MODIS影像,以获得用于目标卫星影像几何校正的最优参考影像;然后,采用不同方法提取目标卫星影像与MODIS影像的同名点,包括通过整景影像提取同名、影像分四部分和九部分进行影像增强处理后提取同名点,以得到各方案用于几何校正的地理坐标文件;最后对目标卫星影像采用不同方法校正后的影像进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星影像进行校正。相比现有技术,本发明能够实现自动化择优筛选同源传感器配准参考影像,且通过影像增强法突出极地影像的细节特征来增加同名点的选择,并根据影像校正精度筛选出最优的几何校正方案,以克服我国极地小卫星几何定位精度不高的缺陷,满足了实际应用需求。An embodiment of the present invention provides an automatic geometric correction method for satellite images. An embodiment of the present invention provides an automatic geometric correction method for satellite images. First, from three aspects: the time distance of image acquisition, the degree of spatial coverage, and the number of point pairs with the same name. Select and screen the reference MODIS images used for automatic geometric correction of the target satellite image to obtain the optimal reference image for geometric correction of the target satellite image; then, use different methods to extract the same points between the target satellite image and the MODIS image, including through the entire scene The same name is extracted from the image, and the image is divided into four parts and nine parts for image enhancement processing and then the same name points are extracted to obtain the geographical coordinate files for geometric correction of each scheme; finally, the correction accuracy of the target satellite image corrected by different methods is evaluated. To screen out the optimal correction scheme, and correct the target satellite image according to the optimal correction scheme. Compared with the existing technology, the present invention can realize automatic selection and screening of homologous sensor registration reference images, and use image enhancement method to highlight the detailed features of polar images to increase the selection of homonymous points, and select the optimal geometry based on the image correction accuracy. The correction scheme is used to overcome the shortcomings of low geometric positioning accuracy of my country's polar small satellites and meet the needs of practical applications.
如图5所示,是本发明提供的一种卫星影像自动化几何纠正系统的结构框图,所述系统包括:As shown in Figure 5, it is a structural block diagram of an automatic geometric correction system for satellite images provided by the present invention. The system includes:
筛选模块21,用于从影像获取时间远近、空间覆盖程度以及同名点对数量三个方面择优筛选用于目标卫星影像自动化几何纠正的参考影像,以获得用于目标卫星影像几何校正的最优参考影像。The screening module 21 is used to select the reference images for automatic geometric correction of the target satellite image from three aspects: the distance of image acquisition time, the degree of spatial coverage, and the number of point pairs with the same name, so as to obtain the optimal reference for the geometric correction of the target satellite image. image.
进一步地,所述筛选模块21,具体用于,Further, the screening module 21 is specifically used to:
批量地获取目标卫星影像当天少云的MODIS影像,创建目标卫星影像与MODIS影像的第一数据索引表;Batch obtain the MODIS images of the target satellite images with few clouds on that day, and create the first data index table of the target satellite images and MODIS images;
对目标卫星影像及MODIS影像进行预处理,采用一致的南极投影和250m分辨率,获得与目标卫星影像地理范围一致的MODIS影像;Preprocess the target satellite image and MODIS image, use consistent Antarctic projection and 250m resolution, and obtain MODIS image consistent with the geographical range of the target satellite image;
对所述MODIS影像进行初步筛选,筛选其有效数据范围覆盖了目标影像80%以上的影像,并创建目标卫星影像与MODIS影像的第二数据索引表;Conduct preliminary screening of the MODIS images, select images whose effective data range covers more than 80% of the target images, and create a second data index table of the target satellite images and MODIS images;
对所述MODIS影像进行二次筛选,通过特征匹配法根据所述第二数据索引表提取目标卫星与MODIS影像对的同名点,根据所述同名点对的数量排序择优选取对应的MODIS影像,若仍有多景MODIS数据具有等量的同名点对,则取接近目标卫星影像拍摄时间的MODIS影像作为最终配准参考影像,并得出用于几何纠正的第三数据索引表。The MODIS images are screened twice, and the points with the same names of the target satellite and MODIS image pairs are extracted according to the second data index table through the feature matching method, and the corresponding MODIS images are selected based on the number of point pairs with the same names. If If there are still multiple scene MODIS data with the same number of point pairs with the same name, the MODIS image close to the shooting time of the target satellite image is used as the final registration reference image, and a third data index table for geometric correction is obtained.
提取模块22,用于采用预设方案提取目标卫星影像与MODIS影像的同名点,以得到各方案用于几何校正的地理坐标文件;其中,所述预设方案包括通过整景影像提取同名点、影像分四部分和九部分进行影像增强处理后提取同名点。The extraction module 22 is used to extract the same points of the target satellite image and the MODIS image using a preset scheme to obtain the geographical coordinate files for geometric correction of each scheme; wherein the preset scheme includes extracting the same points through the whole scene image, The image is divided into four parts and nine parts, and then the same points are extracted after image enhancement processing.
进一步地,所述提取模块22,具体用于,Further, the extraction module 22 is specifically used to:
方案一:将目标卫星整景影像及对应的MODIS整景影像通过尺度不变特征变换算法提取同名点对后,按照同名点对的欧式距离进行排序,剔除欧式距离最大的10%的点,输出其余同名点对的真实地理坐标文件作为用于校正所述目标卫星影像的第一纠正地理坐标文件;Option 1: After extracting point pairs with the same name through the scale-invariant feature transformation algorithm of the target satellite whole scene image and the corresponding MODIS whole scene image, sort the point pairs with the same name according to their Euclidean distance, eliminate the 10% points with the largest Euclidean distance, and output The real geographical coordinate files of the remaining point pairs with the same name are used as the first corrected geographical coordinate file for correcting the target satellite image;
方案二:将目标影像规则分为四部分,并将各部分向外延40个像素裁剪对应的MODIS影像,将各影像对分别进行分段线性拉伸增强处理,再通过尺度不变特征变换算法提取同名点对,剔除欧式距离最大的30%的点,输出其余同名点的真实地理坐标文件,将此处的坐标文件与第一纠正地理坐标文件合并后剔除重复点对作为用于校正所述目标卫星影像的第二纠正地理坐标文件;Option 2: Divide the target image into four parts, and extend each part by 40 pixels to crop the corresponding MODIS image. Each image pair is subjected to piecewise linear stretching and enhancement processing, and then extracted through a scale-invariant feature transformation algorithm. For point pairs with the same name, eliminate 30% of the points with the largest Euclidean distance, output the real geographic coordinate files of the remaining points with the same name, merge the coordinate file here with the first corrected geographic coordinate file, and eliminate duplicate point pairs as the target for correction A second corrected geographic coordinate file of the satellite image;
方案三:将目标影像规则分为九部分,方法同方案二,获得剔除欧式距离最大的30%的点后其余同名点的真实地理坐标文件,将此处的坐标文件与第一纠正地理坐标文件和第二纠正地理坐标文件合并后剔除重复点对作为用于校正所述目标卫星影像的第三纠正地理坐标文件。Option 3: Divide the target image rules into nine parts. The method is the same as Option 2. Obtain the real geographical coordinate file of the remaining points with the same name after excluding 30% of the points with the largest Euclidean distance. Combine the coordinate file here with the first corrected geographical coordinate file. After merging with the second corrected geographical coordinate file and eliminating duplicate point pairs, it becomes the third corrected geographical coordinate file for correcting the target satellite image.
校正模块23,用于对目标卫星影像采用预设方案校正后的影像进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星影像进行校正。The correction module 23 is used to evaluate the correction accuracy of the target satellite image corrected using a preset scheme, to select the optimal correction scheme, and to correct the target satellite image according to the optimal correction scheme.
进一步地,所述校正模块23,具体用于,Further, the correction module 23 is specifically used to:
将三种方案得到的三种纠正地理坐标文件利用二次多项式方法分别用于目标影像的几何校正,得到不同方案校正后的目标卫星影像;The three corrected geographical coordinate files obtained by the three schemes are used for geometric correction of the target image using the quadratic polynomial method, and the target satellite image corrected by different schemes is obtained;
利用尺度不变特征变换算法将校正后的三种目标卫星影像再次与对应MODIS影像提取同名点后,计算点对之间的欧式距离,评估不同方案几何校正后的校正精度,并筛选出最优校正方案;Using the scale-invariant feature transformation algorithm, the corrected three target satellite images are again extracted from the corresponding MODIS images. After extracting the same points, the Euclidean distance between the point pairs is calculated, the correction accuracy after geometric correction of different schemes is evaluated, and the optimal one is selected. Calibration plan;
利用最优的校正方案进行目标卫星影像的几何校正。Use the optimal correction scheme to perform geometric correction of target satellite images.
本发明实施例所提供的一种卫星影像自动化几何纠正系统,首先批量地获取目标卫星运行当天的MODIS数据,并对所述MODIS数据进行数据预处理,以得到预处理MODIS数据;对所述预处理MODIS数据依次进行初步筛选与二次筛选,以提取所述目标卫星与MODIS数据的同名点对;通过整点影像及影像分部分增强法提取所述同名点对的同名点坐标,以得到纠正地理坐标文件;对所述纠正地理坐标文件进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星的卫星影像进行校正。相比现有技术,本发明能够减少极地小卫星定位精度不高,实现自动化择优筛选异源传感器配准参考影像,增加基于特征的同名点的选择,满足了实际应用需求。An automated geometric correction system for satellite images provided by an embodiment of the present invention first obtains MODIS data in batches on the day the target satellite is operating, and performs data preprocessing on the MODIS data to obtain preprocessed MODIS data; Process the MODIS data and perform preliminary screening and secondary screening in order to extract the same-name point pairs of the target satellite and MODIS data; extract the same-name point coordinates of the same-name point pairs through the whole-point image and image part enhancement method to obtain corrections Geographical coordinate file; perform correction accuracy evaluation on the corrected geographical coordinate file to screen out the optimal correction plan, and correct the satellite image of the target satellite according to the optimal correction plan. Compared with the existing technology, the present invention can reduce the low positioning accuracy of polar small satellites, realize automatic selection and selection of heterogeneous sensor registration reference images, increase the selection of feature-based points with the same name, and meet the needs of practical applications.
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序;其中,所述计算机程序在运行时控制所述计算机可读存储介质所在的设备执行上述的卫星影像纠正方法。Embodiments of the present invention also provide a computer-readable storage medium. The computer-readable storage medium includes a stored computer program; wherein, when running, the computer program controls the device where the computer-readable storage medium is located to execute the above. Satellite image correction method.
本发明实施例还提供了一种终端设备,参见图6所示,是本发明提供的一种终端设备的一个优选实施例的结构框图,所述终端设备包括处理器10、存储器20以及存储在所述存储器20中且被配置为由所述处理器10执行的计算机程序,所述处理器10在执行所述计算机程序时实现上述的卫星影像纠正方法。An embodiment of the present invention also provides a terminal device. Refer to Figure 6, which is a structural block diagram of a preferred embodiment of a terminal device provided by the present invention. The terminal device includes a processor 10, a memory 20 and a storage medium. The memory 20 is configured as a computer program executed by the processor 10 , and the processor 10 implements the above-mentioned satellite image correction method when executing the computer program.
优选地,所述计算机程序可以被分割成一个或多个模块/单元(如计算机程序1、计算机程序2、······),所述一个或者多个模块/单元被存储在所述存储器20中,并由所述处理器10执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序在所述终端设备中的执行过程。Preferably, the computer program can be divided into one or more modules/units (such as computer program 1, computer program 2,...), and the one or more modules/units are stored in the in the memory 20 and executed by the processor 10 to complete the present invention. The one or more modules/units may be a series of computer program instruction segments capable of completing specific functions. The instruction segments are used to describe the execution process of the computer program in the terminal device.
所述处理器10可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,通用处理器可以是微处理器,或者所述处理器10也可以是任何常规的处理器,所述处理器10是所述终端设备的控制中心,利用各种接口和线路连接所述终端设备的各个部分。The processor 10 may be a central processing unit (CPU), or other general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc., the general-purpose processor can be a microprocessor, or the processor 10 can also It is any conventional processor. The processor 10 is the control center of the terminal device and uses various interfaces and lines to connect various parts of the terminal device.
所述存储器20主要包括程序存储区和数据存储区,其中,程序存储区可存储操作系统、至少一个功能所需的应用程序等,数据存储区可存储相关数据等。此外,所述存储器20可以是高速随机存取存储器,还可以是非易失性存储器,例如插接式硬盘,智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡和闪存卡(Flash Card)等,或所述存储器20也可以是其他易失性固态存储器件。The memory 20 mainly includes a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required for a function, etc., and the data storage area can store relevant data, etc. In addition, the memory 20 can be a high-speed random access memory, or a non-volatile memory, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card and a flash memory. Card (Flash Card), etc., or the memory 20 may also be other volatile solid-state storage devices.
需要说明的是,上述终端设备可包括,但不仅限于,处理器、存储器,本领域技术人员可以理解,图6结构框图仅仅是终端设备的示例,并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件。It should be noted that the above-mentioned terminal equipment may include, but is not limited to, a processor and a memory. Those skilled in the art can understand that the structural block diagram in Figure 6 is only an example of a terminal equipment and does not constitute a limitation on the terminal equipment. It may include more than The illustrations show more or fewer components, or combinations of certain components, or different components.
综上,本发明实施例所提供的一种卫星影像自动化几何纠正方法、系统、存储介质及终端设备,首先批量地获取目标卫星运行当天的MODIS数据,并对所述MODIS数据进行数据预处理,以得到预处理MODIS数据;对所述预处理MODIS数据依次进行初步筛选与二次筛选,以提取所述目标卫星与MODIS数据的同名点对;通过整点影像及影像分部分增强法提取所述同名点对的同名点坐标,以得到纠正地理坐标文件;对所述纠正地理坐标文件进行校正精度评估,以筛选出最优校正方案,并根据所述最优校正方案对所述目标卫星的卫星影像进行校正。相比现有技术,本发明能够减少极地小卫星定位精度不高,实现自动化择优筛选异源传感器配准参考影像,增加基于特征的同名点的选择,满足了实际应用需求。To sum up, the method, system, storage medium and terminal equipment for automatic geometric correction of satellite images provided by the embodiments of the present invention first obtain the MODIS data of the target satellite on the day of operation in batches, and perform data preprocessing on the MODIS data. To obtain pre-processed MODIS data; perform preliminary screening and secondary screening on the pre-processed MODIS data in order to extract the same-name point pairs of the target satellite and MODIS data; extract the said coordinates of the same-named point pairs to obtain a corrected geographical coordinate file; perform a correction accuracy assessment on the corrected geographical coordinate file to screen out the optimal correction plan, and correct the satellite of the target satellite according to the optimal correction plan The image is corrected. Compared with the existing technology, the present invention can reduce the low positioning accuracy of polar small satellites, realize automatic selection and selection of heterogeneous sensor registration reference images, increase the selection of feature-based points with the same name, and meet the needs of practical applications.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above are only preferred embodiments of the present invention. It should be noted that those of ordinary skill in the art can also make several improvements and modifications without departing from the technical principles of the present invention. These improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110266590.2A CN113160071B (en) | 2021-03-11 | 2021-03-11 | Satellite image automatic geometric correction method, system, media and terminal equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110266590.2A CN113160071B (en) | 2021-03-11 | 2021-03-11 | Satellite image automatic geometric correction method, system, media and terminal equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113160071A CN113160071A (en) | 2021-07-23 |
CN113160071B true CN113160071B (en) | 2023-11-07 |
Family
ID=76886800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110266590.2A Active CN113160071B (en) | 2021-03-11 | 2021-03-11 | Satellite image automatic geometric correction method, system, media and terminal equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113160071B (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102663028A (en) * | 2012-03-23 | 2012-09-12 | 北京师范大学 | Method suitable for fast spatially-indexing global digital elevation model and remote sensing image data |
CN103034988A (en) * | 2012-12-18 | 2013-04-10 | 武汉大学 | Space-time quantitative remote sensing fusion method of arbitrary number of sensors |
CN105046251A (en) * | 2015-08-04 | 2015-11-11 | 中国资源卫星应用中心 | Automatic ortho-rectification method based on remote-sensing image of environmental No.1 satellite |
CN107657597A (en) * | 2017-10-19 | 2018-02-02 | 中国科学院遥感与数字地球研究所 | Cross-platform moon base earth observation image automatic geometric correction method |
CN109903352A (en) * | 2018-12-24 | 2019-06-18 | 中国科学院遥感与数字地球研究所 | A method for making large-area seamless orthophotos of satellite remote sensing images |
WO2019157348A1 (en) * | 2018-02-09 | 2019-08-15 | The Board Of Trustees Of The University Of Illinois | A system and method to fuse multiple sources of optical data to generate a high-resolution, frequent and cloud-/gap-free surface reflectance product |
CN111354054A (en) * | 2020-03-13 | 2020-06-30 | 中山大学 | An adaptive mapping method for polar visible light remote sensing |
CN111598772A (en) * | 2020-04-03 | 2020-08-28 | 国家卫星气象中心(国家空间天气监测预警中心) | Polar orbit meteorological satellite image display system and display method |
CN112381864A (en) * | 2020-12-08 | 2021-02-19 | 兰州交通大学 | Multi-source multi-scale high-resolution remote sensing image automatic registration technology based on antipodal geometry |
CN112419350A (en) * | 2020-11-20 | 2021-02-26 | 武汉大学 | Automatic geometric registration method and system of remote sensing image based on ground object boundary information |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10802135B2 (en) * | 2016-12-21 | 2020-10-13 | The Boeing Company | Method and apparatus for raw sensor image enhancement through georegistration |
WO2019062166A1 (en) * | 2017-09-30 | 2019-04-04 | 中国科学院遥感与数字地球研究所 | Method for automatic geometric correction of cross-platform moon-based earth observation imaging |
-
2021
- 2021-03-11 CN CN202110266590.2A patent/CN113160071B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102663028A (en) * | 2012-03-23 | 2012-09-12 | 北京师范大学 | Method suitable for fast spatially-indexing global digital elevation model and remote sensing image data |
CN103034988A (en) * | 2012-12-18 | 2013-04-10 | 武汉大学 | Space-time quantitative remote sensing fusion method of arbitrary number of sensors |
CN105046251A (en) * | 2015-08-04 | 2015-11-11 | 中国资源卫星应用中心 | Automatic ortho-rectification method based on remote-sensing image of environmental No.1 satellite |
CN107657597A (en) * | 2017-10-19 | 2018-02-02 | 中国科学院遥感与数字地球研究所 | Cross-platform moon base earth observation image automatic geometric correction method |
WO2019157348A1 (en) * | 2018-02-09 | 2019-08-15 | The Board Of Trustees Of The University Of Illinois | A system and method to fuse multiple sources of optical data to generate a high-resolution, frequent and cloud-/gap-free surface reflectance product |
CN109903352A (en) * | 2018-12-24 | 2019-06-18 | 中国科学院遥感与数字地球研究所 | A method for making large-area seamless orthophotos of satellite remote sensing images |
CN111354054A (en) * | 2020-03-13 | 2020-06-30 | 中山大学 | An adaptive mapping method for polar visible light remote sensing |
CN111598772A (en) * | 2020-04-03 | 2020-08-28 | 国家卫星气象中心(国家空间天气监测预警中心) | Polar orbit meteorological satellite image display system and display method |
CN112419350A (en) * | 2020-11-20 | 2021-02-26 | 武汉大学 | Automatic geometric registration method and system of remote sensing image based on ground object boundary information |
CN112381864A (en) * | 2020-12-08 | 2021-02-19 | 兰州交通大学 | Multi-source multi-scale high-resolution remote sensing image automatic registration technology based on antipodal geometry |
Non-Patent Citations (3)
Title |
---|
"京师一号"极地小卫星宽幅影像辐射校正方法研究;张卓宇 等;《北京师范大学学报(自然科学版)》;第59卷(第01期);104-112 * |
Accuracy evaluation on geolocation of the Chinese first polar microsatellite (Ice pathfinder) imagery;Ying Zhang 等;《remote sensing》;第13卷(第4278期);1-20 * |
Automated radiation and geometric correction processing method of polar-observing cubesat BNU-1 images;Y. Zhang 等;《AGU Fall Meeting 2020 abstracts》;A088-0004 * |
Also Published As
Publication number | Publication date |
---|---|
CN113160071A (en) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109543489B (en) | Positioning method and device based on two-dimensional code and storage medium | |
KR20130019430A (en) | Daisy descriptor generation from precomputed scale - space | |
CN110727747A (en) | Paper map rapid vectorization method and system based on longitude and latitude recognition | |
CN112287904B (en) | Airport target identification method and device based on satellite images | |
CN115631419B (en) | Rice planting area and spatial distribution extraction method and device based on change detection | |
CN113486975A (en) | Ground object classification method, device, equipment and storage medium for remote sensing image | |
CN109754423B (en) | A kind of extraction method and equipment of leaf disease spot coverage area | |
CN106887016A (en) | A kind of automatic Relative matching method of the satellite sequence images of GF 4 | |
CN109190452B (en) | Crop row identification method and device | |
CN114519681A (en) | Automatic calibration method and device, computer readable storage medium and terminal | |
CN107862319A (en) | A kind of heterologous high score optical image matching error elimination method based on neighborhood ballot | |
CN116109535A (en) | Image fusion method, device and computer readable storage medium | |
CN114119644B (en) | Template matching method based on edge features | |
CN113160071B (en) | Satellite image automatic geometric correction method, system, media and terminal equipment | |
CN118691654B (en) | Registration and fusion method and device for optical satellite panchromatic image and multispectral image | |
CN111062341B (en) | Video image area classification method, device, equipment and storage medium | |
CN113516059B (en) | Solid waste identification method and device, electronic device and storage medium | |
CN111915645B (en) | Image matching method and device, computer equipment and computer readable storage medium | |
CN113469899B (en) | Optical remote sensing satellite relative radiation correction method based on radiation energy reconstruction | |
CN116863349A (en) | Remote sensing image change area determining method and device based on triangular network dense matching | |
CN116309422A (en) | Fisheye image processing method, device, electronic equipment and storage medium | |
JPH08161474A (en) | Method for correcting registration between images by different kinds of sensors | |
CN113409375A (en) | Image processing method, image processing apparatus, and non-volatile storage medium | |
CN111860608B (en) | Invoice image registration method, invoice image registration equipment and computer storage medium | |
CN117292133B (en) | Super-pixel segmentation method and device for natural image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |