CN113159047B - 一种基于cgan图像扩增的变电设备红外图像温度值识别方法 - Google Patents

一种基于cgan图像扩增的变电设备红外图像温度值识别方法 Download PDF

Info

Publication number
CN113159047B
CN113159047B CN202110412774.5A CN202110412774A CN113159047B CN 113159047 B CN113159047 B CN 113159047B CN 202110412774 A CN202110412774 A CN 202110412774A CN 113159047 B CN113159047 B CN 113159047B
Authority
CN
China
Prior art keywords
temperature
temperature value
image
value
power transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110412774.5A
Other languages
English (en)
Other versions
CN113159047A (zh
Inventor
倪红军
王凯旋
汪兴兴
吕帅帅
朱昱
张加俏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202110412774.5A priority Critical patent/CN113159047B/zh
Publication of CN113159047A publication Critical patent/CN113159047A/zh
Application granted granted Critical
Publication of CN113159047B publication Critical patent/CN113159047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/26Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
    • G06V10/267Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/50Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本发明提供了一种基于CGAN图像扩增的变电设备红外图像温度值识别方法,包括图像扩增和温度值识别两部分,采用全局阈值将设备红外图像进行二值化处理,并结合垂直投影法进行温度值的定位和分割,建立数字“0‑9”和符号“‑”共11种类型的温度值数据库,接着使用CGAN进行图像扩增,最后采用HOG+SVM进行训练和识别,完成温度值识别。本发明的有益效果为:通过统计红外图像的直方图特点确定全局阈值T,提高了二值化的准确性和可靠性,通过CGAN图像扩增克服变电设备红外图像温度值数据集样本小、不平衡的问题,同时能够自动识别图像上的温度值,与传统检测算法相比识别准确率更高,满足了温度值识别的要求,有效降低了电力检修人员的劳动强度,提高了工作效率。

Description

一种基于CGAN图像扩增的变电设备红外图像温度值识别方法
技术领域
本发明涉及变电设备红外图像扩增和识别技术领域,尤其涉及一种基于CGAN图像扩增的变电设备红外图像温度值识别方法。
背景技术
变电设备是电能输送的重要组成部分,变电设备的安全运行关系到电力系统的稳定性。红外诊断技术是判断变电设备是否存在故障的重要方法之一,目前,为了提高运维人员的检测的效率,市场上的红外测温设备均会在红外检测图像右侧生成测温图谱、标记温度最大值和最小值,方便进行温度匹配,分组整理故障图片,并进行统计和记录。在变电设备红外图像采集的过程中,受采集条件的限制,在提取红外图像温度值时存在样本小、不平衡的问题。因此,利用神经网络技术对变电设备红外图像温度值数据集进行扩增、自动化识别、判断故障、统计记录具有重要意义。
CGAN(Conditional Generative Adversarial Network,CGAN)是在GAN的基础上加上约束条件y来约束引导数据的生成过程。CGAN主要由生成和鉴别两个网络模型组成,生成网络模型生成与真实样本相似的生成样本,判别网络模型可以将真实样本和生成样本区分出来,如此交替训练这两个模型,生成模型的能力逐渐提高,能够生成与真实样本非常接近的人工样本。
公开号112115973A的发明专利一种基于卷积神经网络图像识别方法公开了该方法通过在训练模型中加入了Dropout正则化进行了优化,并且对图像进行了扩充。但是该方法采用的旋转、缩放、翻转等传统的图像扩增方法,容易产生过拟合现象,图像生成质量较差,在实际生活中容易因为生成图像质量问题而造成结果不准确,并且在实施例中仅采用10张图像进行测试,测试准确率96%。
如何解决上述技术问题为本发明面临的课题。
发明内容
本发明的目的在于提供一种基于CGAN图像扩增的变电设备红外图像温度值识别方法,通过统计M张红外图像的直方图特点确定全局阈值为T,提高了二值化的准确性和可靠性;其次,通过CGAN图像扩增克服变电设备红外图像温度值库样本小、不平衡的问题,同时能够自动识别图像上的温度值,能够解决样本小、不均衡等问题,有效降低了电力检修人员的劳动强度,提高了工作效率。
本发明是通过如下措施实现的:一种基于CGAN图像扩增的变电设备红外图像温度值识别方法,包括如下步骤:
S1、红外图像二值化处理,对变电设备红外图像进行灰度变换,并将灰度图像按照设定好的全局阈值进行处理转换为二值化图像;
S2、温度值定位,对变电设备红外图像上的矩形框按照垂直像素累加法进行定位,并根据温度值和矩形框的相对位置关系确定温度值的位置;
S3、温度值分割,采用垂直投影法将确定的温度值进行分割,根据温度值的组成特点分割成两位或者三位;
S4、建立变电设备温度值数据库,按照温度值的特点分成数字“0-9”和符号“-”共11种类型;
S5、图像扩增,使用CGAN算法扩增11种类型的图像,输出K张温度值图像,使变电设备温度值数据库完整且数据平衡,K不小于1;
S6、生成温度值分类器,将扩增后的图像导入后结合HOG+SVM进行分类器的训练,完成图像扩增;
S7、温度值识别和输出,利用温度值分类器进行温度值识别和输出,选取X张变电设备红外图像作为测试集;
进一步地,所述全局阈值是统计M张红外图像的直方图特点确定为T,所述红外图像灰度值大于等于全局阈值T为黑色,所述红外图像灰度值小于全局阈值T为白色,如下式所示:
进一步地,所述垂直像素累加法以矩形框的长边为方向、以矩形框的短边为参考,所述垂直像素累加法是对整体图像按列累加连续的像素定位出矩形框四角的坐标(X矩形左上,Y矩形左上)、(X矩形左下,Y矩形左下)、(X矩形右上,Y矩形右上)、(X矩形右下,Y矩形右下),所述温度值包括温度最大值框(X温度最大左上,Y温度最大左上)、(X温度最大左下,Y温度最大左下)、(X温度最大右上,Y温度最大右上)、(X温度最大右下,Y温度最大右下)和温度最小值框(X温度最小左上,Y温度最小左上)、(X温度最小左下,Y温度最小左下)、(X温度最小右上,Y温度最小右上)、(X温度最小右下,Y温度最小右下),所述温度最大值框和温度最小值框与矩形框的相对位置如下式所示:
进一步地,所述垂直投影法从左到右将所述温度最大值框和温度最小值框在垂直方向上按列投影,得到各列像素累加值,如下式所示:
进一步地,所述变电设备温度值数据库来自N张变电设备红外图片,所述变电设备温度值数据库存在数字“0-9”和符号“-”共11种类型,N不小于100。
进一步地,所述CGAN设置生成和判断网络的学习率、梯度衰减系数、平方梯度衰减因子、网络层数、运行迭代次数。
进一步地,所述HOG方法用于抽取温度值特征,所述SVM分类器用于分类;
进一步地,所述温度值识别使用X张红外图像进行测试,X不小于50,所述温度值识别输出为excel文件,所述excel文件包括红外图像的名称、温度最大值、温度最小值和工作状态。
与现有技术相比,本发明的有益效果为:本发明CGAN克服了GAN模型训练过程不稳定、生成样本效果难控制的问题,可以生成给定标签的图像样本;本发明通过统计M张红外图像的直方图特点确定全局阈值为T,提高了二值化的准确性和可靠性;其次,通过CGAN图像扩增克服变电设备红外图像温度值库样本小、不平衡的问题,同时能够自动识别图像上的温度值,能够解决样本小、不均衡等问题,有效降低了电力检修人员的劳动强度,提高了工作效率。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1为本发明实施例1中基于CGAN图像扩增的变电设备红外图像温度值识别方法流程图。
图2为本发明实施例1中变电设备红外图像灰度化处理结果。图3为本发明实施例1中100张变电设备红外图像的统计直方图。
图4为本发明实施例1中变电设备红外图像OTSU二值化处理结果。
图5为本发明实施例1中变电设备红外图像全局阈值二值化处理结果。
图6为本发明实施例1中变电设备红外图像温度值定位结果。
图7为本发明实施例1中变电设备红外图像温度值垂直投影结果。
图8为本发明实施例1中变电设备红外图像温度值分割结果。
图9为本发明实施例1中变电设备红外图像温度值CGAN扩增结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。当然,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
参见图1至图9,本发明提供其技术方案为,本实施例提供了一种基于CGAN图像扩增的变电设备红外图像温度值识别方法,包括如下步骤:
S1:红外图像二值化处理,对变电设备红外图像进行灰度变换,并将灰度图像按照设定好的全局阈值进行处理转换为二值化图像;
S2:温度值定位,对变电设备红外图像上的矩形框按照垂直像素累加法进行定位,并根据温度值和矩形框的相对位置关系确定温度值的位置;
S3:温度值分割,采用垂直投影法将确定的温度值进行分割,根据温度值的组成特点分割成两位或者三位;
S4:建立变电设备温度值数据库,按照温度值的特点分成数字“0-9”和符号“-”共11种类型;
S5:图像扩增,使用CGAN算法扩增11种类型的图像,输出K张温度值图像,使变电设备温度值数据库完整且数据平衡,K不小于1;
S6:生成温度值分类器,将扩增后的图像导入后结合HOG+SVM进行分类器的训练,完成图像扩增;
S7:温度值识别和输出,利用温度值分类器进行温度值识别和输出,选取X张变电设备红外图像作为测试集;
进一步优选地,对于S1红外图像二值化处理。变电设备红外图像通常包括树木和建筑物等复杂背景,这些背景受光照和环境因素的影响很大,而且由于红外成像仪的品牌不同,通常会出现水印和边框。通过直接识别这些图像,很容易发现错误。对此图像按照下时进行灰度化处理,处理后结果如图2所示。
Gray(i,j)=0.229*R(i,j)+0.578*G(i,j)+0.114*B(i,j)
如图3所示,所述全局阈值是统计100张红外图像的直方图特点确定的。通过对灰度图像中的温度值和周围环境的灰度值进行分析,发现在235的灰度值处有一个峰值,因此选取全局阈值T为235进行二值化。大于235的像素组设置为白色,另一个设置为黑色,如下式所示。
将传统OTSU二值化处理方法与此二值化结果对比,结果分别如图4和图5所示。对于一些图像,使用OTSU方法进行二值化的效果更好,如图4(a)所示。然而,对于背景色接近图4(b)中的温度值的红外图像,OTSU方法效果较差。而全局阈值是在统计红外图像直方图后确定的,对于变电设备红外图像二值化处理效果较好,具有简单、快速、分类效率高等优点,结果如图5所示。
进一步优选地,对于S2温度值定位。二值化图像中矩形框被完全保留,并且相对最高和最低温度位置固定,通过像素累积法来定位矩形框。所述垂直像素累加法以矩形框的长边为方向、以矩形框的短边为参考,所述垂直像素累加法是对整体图像按列累加连续的像素定位出矩形框四角的坐标(X矩形左上,Y矩形左上)、(X矩形左下,Y矩形左下)、(X矩形右上,Y矩形右上)、(X矩形右下,Y矩形右下),所述温度值包括温度最大值框(X温度最大左上,Y温度最大左上)、(X温度最大左下,Y温度最大左下)、(X温度最大右上,Y温度最大右上)、(X温度最大右下,Y温度最大右下)和温度最小值框(X温度最小左上,Y温度最小左上)、(X温度最小左下,Y温度最小左下)、(X温度最小右上,Y温度最小右上)、(X温度最小右下,Y温度最小右下),所述温度最大值框和温度最小值框与矩形框的相对位置如下式所示。定位结果如图6(a)所示,温度最大值和最小值定位结果如图6(b)和6(c)所示。
进一步优选地,对于S3温度值分割。采用垂直投影法在垂直方向上投影温度最大值和最小值区域。从左向右扫描,每列像素值累加,垂直投影法如下式所示,结果如图7所示。在图7中,有两个峰值分别对应于字符的边界区域,这表明该区域中有两个字符,两个字符的交界处有突变,选择突变点作为分割点,对温度值进行分段。所述各列像素累加值小于5代表所在列没有温度值,反之则有。所述温度最大值框和温度最小值框可以分割成两位或者三位,结果如图8所示。
进一步优选地,S4建立变电设备温度值数据库。所述变电设备温度值数据库来自150张变电设备红外图片,所述变电设备温度值数据库存在“0-9”的数字和“-”的符号共11种类型,所述变电设备温度值数据库共有876张,所述变电设备温度值数据库中数字“0”有60张、“1”有149张、“2”有179张、“3”有184张、“4”有72张、“5”有49张、“6”有38张、“7”有46张、“8”有36张张、“9”有43张、符号“-”有20张,结果如下表所示。所述变电设备温度值数据库存在样本小、不平衡的特点。
表1扩增前变电设备温度值数据库分布情况
进一步优选地,所述CGAN设置生成和鉴别网络的学习率为0.0002、梯度衰减系数为0.5、平方梯度衰减因子为0.999、网络为4层神经网络、运行200×27代,采用CGAN扩增的结果如图9所示。CGAN在1800次开始达到纳什平衡,之后趋于稳定。所述图像扩增后变电设备温度值数据库共有2200张,所述图像扩增后变电设备温度值数据库“0-9”的数字和“-”的符号各有200张。
进一步优选地,所述HOG用于抽取温度值特征,所述SVM用于分类,所述HOG+SVM分类器有1540个训练集和660个测试集,所述HOG+SVM分类器的训练结果为99.1%。
进一步优选地,所述温度值识别使用400张红外图像进行测试,所述温度值识别准确率为97.5%,所述温度值识别输出为excel文件,所述excel文件包括红外图像的名称、温度最大值、温度最小值和工作状态。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于CGAN图像扩增的变电设备红外图像温度值识别方法,其特征在于,包括如下步骤:
S1:红外图像二值化处理,对变电设备红外图像进行灰度变换,并将灰度图像按照设定好的全局阈值进行处理转换为二值化图像;
S2:温度值定位,对变电设备红外图像上的矩形框按照垂直像素累加法进行定位,并根据温度值和矩形框的相对位置关系确定温度值的位置;
在所述步骤S2温度值定位中,所述垂直像素累加法以矩形框的长边为方向、以矩形框的短边为参考,所述垂直像素累加法是对整体图像按列累加连续的像素定位出矩形框四角的坐标(X矩形左上,Y矩形左上)、(X矩形左下,Y矩形左下)、(X矩形右上,Y矩形右上)、(X矩形右下,Y矩形右下),所述温度值包括温度最大值框(X温度最大左上,Y温度最大左上)、(X温度最大左下,Y温度最大左下)、(X温度最大右上,Y温度最大右上)、(X温度最大右下,Y温度最大右下)和温度最小值框(X温度最小左上,Y温度最小左上)、(X温度最小左下,Y温度最小左下)、(X温度最小右上,Y温度最小右上)、(X温度最小右下,Y温度最小右下),所述温度最大值框和温度最小值框与矩形框的相对位置如下式所示:
S3:温度值分割,采用垂直投影法将确定的温度值进行分割,根据温度值特点分割成两位或者三位;
在所述步骤S3温度值分割中,所述垂直投影法从左到右将所述温度最大值框和温度最小值框在垂直方向上按列投影,得到各列像素累加值,如下式所示:
S4:建立变电设备温度值数据库,按照温度值的特点分成数字“0-9”和符号“-”共十一种类型;
在所述步骤S4建立变电设备温度值数据库中,所述变电设备温度值数据库来自N张变电设备红外图片,所述变电设备温度值数据库存在数字“0-9”和符号“-”共11种类型,N大于等于100;
S5:图像扩增,使用CGAN算法扩增十一种类型的图像,输出K张温度值图像,使变电设备温度值数据库完整且数据平衡,K不小于1;
S6:生成温度值分类器,将扩增后的图像导入后结合HOG+SVM进行分类器的训练,完成图像扩增;
S7:温度值识别和输出,利用温度值分类器进行温度值识别和输出,选取X张变电设备红外图像作为测试集。
2.根据权利要求1所述的基于CGAN图像扩增的变电设备红外图像温度值识别方法,其特征在于,在所述步骤S1图像二值化处理中,所述全局阈值是统计M张红外图像的直方图特点确定为T,所述红外图像灰度值大于等于全局阈值T为黑色,所述红外图像灰度值小于全局阈值T为白色,如下式所示:
3.根据权利要求1所述的基于CGAN图像扩增的变电设备红外图像温度值识别方法,其特征在于,在所述步骤S5图像扩增中,所述CGAN设置生成和判断网络的学习率、梯度衰减系数、平方梯度衰减因子、网络层数、运行迭代次数。
4.根据权利要求1所述的基于CGAN图像扩增的变电设备红外图像温度值识别方法,其特征在于,在所述步骤S6生成温度值分类器中,所述HOG方法用于抽取温度值特征,所述SVM分类器用于分类。
5.根据权利要求1所述的基于CGAN图像扩增的变电设备红外图像温度值识别方法,其特征在于,在所述步骤S7温度值识别和输出中,所述温度值识别使用X张红外图像进行测试,X不小于50,所述温度值识别输出为excel文件,所述excel文件包括红外图像的名称、温度最大值、温度最小值和工作状态。
CN202110412774.5A 2021-04-16 2021-04-16 一种基于cgan图像扩增的变电设备红外图像温度值识别方法 Active CN113159047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110412774.5A CN113159047B (zh) 2021-04-16 2021-04-16 一种基于cgan图像扩增的变电设备红外图像温度值识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110412774.5A CN113159047B (zh) 2021-04-16 2021-04-16 一种基于cgan图像扩增的变电设备红外图像温度值识别方法

Publications (2)

Publication Number Publication Date
CN113159047A CN113159047A (zh) 2021-07-23
CN113159047B true CN113159047B (zh) 2024-02-06

Family

ID=76868504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110412774.5A Active CN113159047B (zh) 2021-04-16 2021-04-16 一种基于cgan图像扩增的变电设备红外图像温度值识别方法

Country Status (1)

Country Link
CN (1) CN113159047B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818320A (zh) * 2017-10-27 2018-03-20 国网四川省电力公司德阳供电公司 基于开源ocr技术变电设备红外图像数值的识别方法
CN109190524A (zh) * 2018-08-17 2019-01-11 南通大学 一种基于生成对抗网络的人体动作识别方法
CN110189351A (zh) * 2019-04-16 2019-08-30 浙江大学城市学院 一种基于生成式对抗网络的划痕图像数据扩增方法
CN112446429A (zh) * 2020-11-27 2021-03-05 广东电网有限责任公司肇庆供电局 一种基于cgan的巡检图像数据小样本扩充方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011275B2 (en) * 2018-02-12 2021-05-18 Ai.Skopy, Inc. System and method for diagnosing gastrointestinal neoplasm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818320A (zh) * 2017-10-27 2018-03-20 国网四川省电力公司德阳供电公司 基于开源ocr技术变电设备红外图像数值的识别方法
CN109190524A (zh) * 2018-08-17 2019-01-11 南通大学 一种基于生成对抗网络的人体动作识别方法
CN110189351A (zh) * 2019-04-16 2019-08-30 浙江大学城市学院 一种基于生成式对抗网络的划痕图像数据扩增方法
CN112446429A (zh) * 2020-11-27 2021-03-05 广东电网有限责任公司肇庆供电局 一种基于cgan的巡检图像数据小样本扩充方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network;Junwen Chen 等;《IEEE Transactions On Instrumentation AND Measurement》;第67卷(第02期);第257-269页 *
一种红外图像的二值化分割算法研究;张龙 等;《红外技术》;第36卷(第08期);第649-651页 *
基于深度学习的输变电设备异常发热点红外图片目标检测方法;刘云鹏 等;《南方电网技术》;第13卷(第02期);第27-33页 *
电力设备红外图像缺陷检测;黄锐勇 等;《中国电力》;第54卷(第02期);第147-155页 *

Also Published As

Publication number Publication date
CN113159047A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN109118479B (zh) 基于胶囊网络的绝缘子缺陷识别定位装置及方法
CN111444939B (zh) 电力领域开放场景下基于弱监督协同学习的小尺度设备部件检测方法
CN108573222B (zh) 基于循环对抗生成网络的行人图像遮挡检测方法
CN106610969A (zh) 基于多模态信息的视频内容审查系统及方法
CN107194418B (zh) 一种基于对抗特征学习的水稻蚜虫检测方法
CN111784633A (zh) 一种面向电力巡检视频的绝缘子缺损自动检测算法
CN106709958A (zh) 一种基于灰度梯度和颜色直方图的图像质量评价方法
CN111242144B (zh) 电网设备异常的检测方法和装置
CN113516124A (zh) 基于计算机视觉技术的电能表用电信息识别算法
CN111539330B (zh) 一种基于双svm多分类器的变电站数显仪表识别方法
CN106951863B (zh) 一种基于随机森林的变电站设备红外图像变化检测方法
CN113255590A (zh) 一种缺陷检测模型训练方法、缺陷检测方法、装置及系统
CN113065484A (zh) 一种基于紫外图谱的绝缘子污秽状态评估方法
CN112733858B (zh) 基于字符区域检测的图像文字快速识别方法及装置
CN115131747A (zh) 基于知识蒸馏的输电通道工程车辆目标检测方法及系统
CN109509188A (zh) 一种基于hog特征的输电线路典型缺陷识别方法
CN116309483A (zh) 基于ddpm的半监督变电设备表征缺陷检测方法及系统
CN111680577A (zh) 人脸检测方法和装置
CN113077438B (zh) 针对多细胞核彩色图像的细胞核区域提取方法及成像方法
CN112634179B (zh) 一种防摄像头抖动的变电设备图像变化检测方法和系统
CN105139373B (zh) 基于独立子空间分析的无参考图像质量客观评价方法
CN110046595A (zh) 一种基于级联式多尺度的密集人脸检测方法
CN112132088B (zh) 一种巡检点位漏巡识别方法
CN113159047B (zh) 一种基于cgan图像扩增的变电设备红外图像温度值识别方法
CN114065798A (zh) 基于机器识别的视觉识别方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant