CN113158356B - A Collaborative Optimization Design Method for Anti-cavitation Rectifier Cone of Cryogenic Liquid Expander - Google Patents
A Collaborative Optimization Design Method for Anti-cavitation Rectifier Cone of Cryogenic Liquid Expander Download PDFInfo
- Publication number
- CN113158356B CN113158356B CN202110130574.0A CN202110130574A CN113158356B CN 113158356 B CN113158356 B CN 113158356B CN 202110130574 A CN202110130574 A CN 202110130574A CN 113158356 B CN113158356 B CN 113158356B
- Authority
- CN
- China
- Prior art keywords
- impeller
- cone
- cavitation
- vortex
- rectifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 64
- 239000007788 liquid Substances 0.000 title claims abstract description 63
- 238000013461 design Methods 0.000 title claims abstract description 45
- 238000010168 coupling process Methods 0.000 claims abstract description 19
- 230000008878 coupling Effects 0.000 claims abstract description 16
- 238000005859 coupling reaction Methods 0.000 claims abstract description 16
- 230000007246 mechanism Effects 0.000 claims abstract description 14
- 230000003044 adaptive effect Effects 0.000 claims abstract description 13
- 238000000605 extraction Methods 0.000 claims abstract description 11
- 230000001629 suppression Effects 0.000 claims abstract description 11
- 238000004458 analytical method Methods 0.000 claims abstract description 10
- 238000010276 construction Methods 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims description 21
- 238000004088 simulation Methods 0.000 claims description 19
- 238000012512 characterization method Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 8
- 238000004422 calculation algorithm Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 230000000704 physical effect Effects 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 230000005514 two-phase flow Effects 0.000 claims description 3
- 238000013401 experimental design Methods 0.000 claims description 2
- 238000010206 sensitivity analysis Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 description 23
- 230000000875 corresponding effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 7
- 230000006872 improvement Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000000411 inducer Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 238000013400 design of experiment Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003050 experimental design method Methods 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/28—Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/06—Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/10—Numerical modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2113/00—Details relating to the application field
- G06F2113/08—Fluids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/08—Thermal analysis or thermal optimisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/14—Force analysis or force optimisation, e.g. static or dynamic forces
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Fluid Mechanics (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Mechanical Engineering (AREA)
- Computational Mathematics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本发明公开了一种低温液体膨胀机抗空化整流锥协同优化设计方法,对低温液体膨胀机叶轮增设整流锥,并对低温液体膨胀机叶轮及整流锥的三维几何形状进行协同优化,以控制叶轮下游旋涡空化流动,具体包括以下步骤:依次进行低温液体膨胀机两相旋涡空化的数值预测、叶轮‑整流锥与旋涡空化干涉机理分析及最佳耦合方式判别、整流锥‑叶轮耦合参数化表达建立、带整流锥的膨胀机叶轮几何敏感参数提取、旋涡空化特征量提取、旋涡空化抑制目标函数构建以及以抑制旋涡空化为目标的叶轮‑整流锥几何协同优化问题建立和其自适应求解,该方法能够对旋涡空化流动的有效控制,提升低温液体膨胀机的抗空蚀性能。
The invention discloses a collaborative optimization design method for an anti-cavitation rectification cone of a low-temperature liquid expander. A rectifier cone is added to the impeller of the low-temperature liquid expander, and the three-dimensional geometry of the impeller and the rectifier cone of the low-temperature liquid expander is collaboratively optimized to control The vortex cavitation flow downstream of the impeller includes the following steps: numerical prediction of the two-phase vortex cavitation of the cryogenic liquid expander, analysis of the impeller-rectifier cone and vortex cavitation interference mechanism and identification of the best coupling method, rectifier cone-impeller coupling Establishment of parametric expression, extraction of geometrically sensitive parameters of expander impeller with rectifier cone, extraction of vortex cavitation feature quantity, construction of objective function for vortex cavitation suppression, and establishment of impeller-cone geometry collaborative optimization problem aiming at suppressing vortex cavitation Its adaptive solution, this method can effectively control the vortex cavitation flow, and improve the anti-cavitation performance of the cryogenic liquid expander.
Description
技术领域technical field
本发明属于低温空分和低温液化等领域,涉及一种低温液体膨胀机抗空化整流锥与叶轮的协同优化设计方法。The invention belongs to the fields of low-temperature air separation and low-temperature liquefaction, and relates to a collaborative optimization design method of an anti-cavitation rectifying cone and an impeller of a low-temperature liquid expander.
背景技术Background technique
低温液体膨胀机是大型空分装置及液化天然气装置的关键节能设备,用以代替节流阀来降低汽化率、提高空分产品提取率及实现压力能量回收。低温液体膨胀机叶轮下游旋涡流动诱导的液体空化,对叶片表面材料造成冲击及腐蚀破坏、会诱导机组振动,严重威胁液体膨胀机及主流程低温装置的稳定运行。因此,对低温液体膨胀机空化流动实现有效控制意义重大。Cryogenic liquid expander is the key energy-saving equipment of large-scale air separation unit and liquefied natural gas unit. It is used to replace the throttle valve to reduce the vaporization rate, improve the extraction rate of air separation products and realize pressure energy recovery. The liquid cavitation induced by the vortex flow downstream of the impeller of the cryogenic liquid expander will cause impact and corrosion damage to the surface material of the blade, and will induce vibration of the unit, which seriously threatens the stable operation of the liquid expander and the main process cryogenic device. Therefore, it is of great significance to effectively control the cavitation flow in cryogenic liquid expanders.
针对常温液力机械,已有部分抗空化设计方法公开。如专利 201110202524.5“一种抗空蚀离心泵叶轮优化设计方法”,专利 201510679202.8“一种高抗空化离心叶轮水力设计方法”,均通过对离心泵叶轮几何形状进行优化设计,提高其抗空化性能;专利201110183162.X “抑制混流式水轮机叶片背面空化的方法”,通过对叶片背面压力最低点进行钻孔,破坏空化的形成,提升水轮机抗空化性能。For normal temperature hydraulic machinery, some anti-cavitation design methods have been published. For example, patent 201110202524.5 "A method for optimizing the impeller design of an anti-cavitation centrifugal pump", and patent 201510679202.8 "a method for hydraulic design of a highly anti-cavitation centrifugal impeller", both of which optimize the geometric shape of the impeller of the centrifugal pump to improve its anti-cavitation Performance; Patent No. 201110183162.X "Method for Inhibiting Cavitation on the Backside of Francis Turbine Blades", by drilling holes at the lowest point of pressure on the backside of blades, destroying the formation of cavitation and improving the anti-cavitation performance of water turbines.
然而,与运行在常温的水泵、水轮机等不同,由于低温流体显著的热力学效益,低温液力机械内部空化发生机理更为复杂,表现为局部压降或少许温升均会诱导空化。就国内外文献看,涉及低温液力机械的抗空化方法较少。如专利201420342677.9“一种高效、抗汽蚀立式多级低温泵”,提出了一种通过螺旋槽的设计,提高低温离心泵的抗气蚀能力的设计方法;201910014308“一种基于低温流体的涡轮泵诱导轮空化流动数值预测方法”,公开了一种基于空化模型的涡轮泵诱导轮空化流动数值预测方法。公开资料中,针对低温液体膨胀机,则仅有专利 201810008748.4“一种低温液体膨胀机内旋涡空化流动的有效控制方法”,以及201810009053“一种两相低温液体膨胀机抗空化的优化设计方法”,分别通过对叶轮进行优化设计以及增设诱导轮部件,提升低温液体膨胀机抗空化性能。However, unlike water pumps and turbines operating at room temperature, due to the significant thermodynamic benefits of cryogenic fluids, the internal cavitation mechanism of cryogenic hydraulic machinery is more complicated, and cavitation is induced by local pressure drop or a small temperature rise. According to domestic and foreign literature, there are few anti-cavitation methods involving low-temperature hydraulic machinery. For example, patent 201420342677.9 "A high-efficiency, anti-cavitation vertical multi-stage cryogenic pump" proposes a design method to improve the cavitation resistance of cryogenic centrifugal pumps through the design of spiral grooves; 201910014308 "A kind of cryogenic fluid-based "Numerical Prediction Method for Cavitation Flow in Turbine Pump Inducer Wheel" discloses a numerical prediction method for cavitation flow in a turbo pump inducer wheel based on a cavitation model. In the public information, for low-temperature liquid expanders, there are only patents 201810008748.4 "An effective control method for vortex cavitation flow in a low-temperature liquid expander", and 201810009053 "An optimized design for anti-cavitation of a two-phase low-temperature liquid expander Method", respectively, by optimizing the design of the impeller and adding inducer components, the anti-cavitation performance of the cryogenic liquid expander is improved.
机理研究发现,起源于高速旋转叶轮尾缘的旋涡流动,随主流扩展至扩压管,其诱导的局部低压及相应流动损失导致的局部温升,是叶轮下游发生空化的主要原因。再者,低温液体从叶轮进入扩压管时遭遇流道突扩,流动的进一步恶化是空化的又一重要原因。因此,在叶轮出口增设整流锥,有助于减少流道突扩带来的损失并抑制空化发生,且结构简单、成本低。然而,由于叶轮及整流锥内流动相互耦合,与下游流动存在复杂干涉作用,在设计中必须同时考虑三维叶轮叶片及整流锥形状的匹配,以及协同形变对旋涡空化流动带来的复杂影响。旋涡空化流动对叶轮叶片尾缘及整流锥几何形状的变化异常敏感,在设计中同时考虑三维叶轮及整流锥形状的协同变化及匹配,需不断调用依赖耗时预测数值计算以预测低温两相流动,极大地增加了设计问题的复杂性,以上原因均使得这种主动抗空化方式难以实现。目前就国内外范围看,并未发现这方面的公开资料。Mechanism studies have found that the vortex flow originating from the trailing edge of the high-speed rotating impeller expands to the diffuser with the main flow, and the local low pressure induced by it and the local temperature rise caused by the corresponding flow loss are the main causes of cavitation downstream of the impeller. Furthermore, when the low-temperature liquid enters the diffuser from the impeller, it encounters a sudden expansion of the flow channel, and the further deterioration of the flow is another important cause of cavitation. Therefore, adding a rectifying cone at the outlet of the impeller can help reduce the loss caused by the sudden expansion of the flow channel and suppress the occurrence of cavitation, and has a simple structure and low cost. However, because the flow in the impeller and rectifying cone is coupled with each other and there is complex interference with the downstream flow, the matching of the shape of the three-dimensional impeller blades and rectifying cone, as well as the complex effects of collaborative deformation on the vortex cavitation flow must be considered in the design. The vortex cavitation flow is extremely sensitive to changes in the geometry of the impeller blade trailing edge and the straightening cone. In the design, the coordinated change and matching of the three-dimensional impeller and the straightening cone shape should be considered. It is necessary to continuously call and rely on time-consuming prediction numerical calculations to predict low temperature two-phase The flow greatly increases the complexity of the design problem, and the above reasons make it difficult to realize this active anti-cavitation method. At present, no public information on this aspect has been found.
发明内容Contents of the invention
本发明目的在于克服上述现有技术的缺点,提供了一种低温液体膨胀机抗空化整流锥协同优化设计方法,该方法能够对旋涡空化流动进行有效控制,提升低温液体膨胀机的抗空蚀性能。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and provide a collaborative optimization design method for the anti-cavitation rectification cone of the low-temperature liquid expander, which can effectively control the vortex cavitation flow, and improve the anti-cavitation of the low-temperature liquid expander. corrosion performance.
为达到上述目的,本发明所述的低温液体膨胀机抗空化整流锥协同优化设计方法,包括对低温液体膨胀机叶轮增设整流锥,并对低温液体膨胀机叶轮及整流锥的三维几何形状进行协同优化,以控制叶轮下游旋涡空化流动,具体包括以下步骤:依次进行低温液体膨胀机两相旋涡空化的数值预测、叶轮-整流锥与旋涡空化干涉机理分析及最佳耦合方式判别、整流锥-叶轮耦合参数化表达建立、带整流锥的膨胀机叶轮几何敏感参数提取、旋涡空化特征量提取、旋涡空化抑制目标函数构建以及以抑制旋涡空化为目标的叶轮-整流锥几何协同优化问题建立和其自适应求解。In order to achieve the above-mentioned purpose, the anti-cavitation rectifying cone collaborative optimization design method of the cryogenic liquid expander of the present invention includes adding a rectifying cone to the impeller of the cryogenic liquid expander, and performing a three-dimensional geometrical analysis on the impeller and the rectifying cone of the cryogenic liquid expander Collaborative optimization to control the vortex cavitation flow downstream of the impeller, specifically includes the following steps: sequentially perform numerical prediction of the two-phase vortex cavitation of the cryogenic liquid expander, analyze the interference mechanism of the impeller-rectifier cone and the vortex cavitation and determine the best coupling mode, Establishment of rectifier cone-impeller coupling parametric expression, extraction of geometrically sensitive parameters of expander impeller with rectifier cone, extraction of vortex cavitation feature quantity, construction of vortex cavitation suppression objective function, and impeller-rectifier cone geometry aimed at suppressing vortex cavitation Co-optimization problem establishment and its adaptive solution.
低温液体膨胀机两相旋涡空化的数值预测具体包括以下步骤:The numerical prediction of two-phase vortex cavitation in a cryogenic liquid expander specifically includes the following steps:
建立包括蜗壳、喷嘴、带整流锥的叶轮及扩压管流道的整机模型,再根据所述整机模型,采用Rayleigh-Plesset空化模型模拟低温液体膨胀机内部空化流动,利用湍流模型及可变壁面函数法描述液体膨胀机整机及叶轮下游的束辫状旋涡流动;同时将热物性表达为温度和压力的函数并结合总能方程进行求解,以考虑低温流体热力学效应,实时更新计算过程中物性随压力和温度的变化。Establish a complete machine model including the volute, nozzle, impeller with rectifying cone and diffuser pipe flow channel, and then use the Rayleigh-Plesset cavitation model to simulate the internal cavitation flow of the low-temperature liquid expander based on the complete machine model, using turbulent flow The model and the variable wall function method describe the braided vortex flow of the liquid expander and the downstream of the impeller; at the same time, the thermophysical properties are expressed as a function of temperature and pressure and combined with the total energy equation to solve it, so as to consider the thermodynamic effect of low temperature fluid, real-time Changes in physical properties with pressure and temperature during the update calculation.
叶轮-整流锥与旋涡空化干涉机理分析及最佳耦合方式判别的具体操作过程为:针对低温液体膨胀机工况参数,进行叶轮-整流锥与旋涡空化干涉机理分析,建立整流锥几何形状与旋涡空化相关性关系,然后以此确定与工况相匹配的最佳整流锥形式以及叶轮-整流锥最佳耦合方式,并构建整流锥与三维叶轮耦合参数化设计方案。The specific operation process of the analysis of the interference mechanism of the impeller-rectifier cone and vortex cavitation and the identification of the optimal coupling mode is: according to the working condition parameters of the cryogenic liquid expander, the interference mechanism of the impeller-rectifier cone and vortex cavitation is analyzed, and the geometric shape of the rectifier cone is established Correlation relationship with vortex cavitation, and then determine the optimal rectifying cone form and impeller-cone rectifying coupling method that match the working conditions, and construct a parametric design scheme for the coupling of rectifying cone and three-dimensional impeller.
带整流锥的膨胀机叶轮几何敏感参数提取的具体过程为:The specific process of extracting geometrically sensitive parameters of the expander impeller with rectifying cone is as follows:
通过改变子午轮廓线几何参数及叶型中弧线控制点坐标参数,模拟获取不同形状的叶轮及整流锥几何,再进行网格划分及两相流场数值求解,然后针对模拟结果进行变量敏感性分析,获取对旋涡-空化流动敏感的若干子午轮廓线几何参数及叶型中弧线控制点参数,其中,子午轮廓线几何参数包括叶轮出口内径R1、叶轮出口外径R2,诱导轮外端面与径向面夹角α1、整流锥锥角β以及无量纲的整流锥头部直径D0/D1,叶型中弧线控制点参数包括三维叶片叶顶及叶根叶型中弧线的控制点坐标参数。By changing the geometric parameters of the meridian contour line and the coordinate parameters of the arc control points of the blade shape, the geometry of impellers and rectifier cones of different shapes can be simulated, and then the grid division and the numerical solution of the two-phase flow field are carried out, and then the variable sensitivity is carried out for the simulation results Analyze and obtain several geometric parameters of the meridian contour and control point parameters of the blade mid - arc that are sensitive to the vortex - cavitation flow. The angle α 1 between the outer end surface and the radial surface, the rectifying cone angle β and the dimensionless diameter of the rectifying cone head D 0 /D 1 , the arc control point parameters of the blade shape include the three-dimensional blade tip and blade root blade shape The control point coordinate parameters of the arc.
低温液体膨胀机内旋涡空化流动的特征化表述包括以下步骤:通过对不同形态旋涡-空化流动进行机理分析,提取叶轮叶片吸力面的平均气体体积分数vfracave作为叶轮出口处空化程度表征量,将叶轮下游扩压管内平均旋涡强度λave作为旋涡流动表征量,其中,叶片吸力面气体体积分数vfrac的分布由两相数值模拟预测,当地漩涡强度λ通过对数值模拟得到的局部速度梯度张量进行特征值分析获得。The characterization of the vortex cavitation flow in the cryogenic liquid expander includes the following steps: Through the mechanism analysis of different forms of vortex-cavitation flow, the average gas volume fraction vfrac ave on the suction surface of the impeller blade is extracted as the characterization of the cavitation degree at the impeller outlet The average vortex intensity λ ave in the diffuser tube downstream of the impeller is used as the characterization of vortex flow, in which, the distribution of the gas volume fraction vfrac on the blade suction surface is predicted by two-phase numerical simulation, and the local vortex intensity λ is obtained by logarithmic simulation. The local velocity gradient The tensor is obtained by eigenvalue analysis.
构建的旋涡-空化抑制多目标优化函数为:The constructed vortex-cavitation suppression multi-objective optimization function is:
其中,为对旋涡-空化流动敏感的叶轮及整流锥几何敏感参数,Refrioriginal和Refri分别为优化前后膨胀机所产制冷量。in, are the geometrically sensitive parameters of the impeller and rectifier cone sensitive to the vortex-cavitation flow, and Refri original and Refri are the cooling capacity produced by the expansion machine before and after optimization, respectively.
以抑制旋涡空化为目标的叶轮-整流锥几何协同优化问题的高效自适应求解过程为:The efficient adaptive solution process of the impeller-cone geometry co-optimization problem aiming at suppressing vortex cavitation is:
1)针对膨胀机叶轮及整流锥几何敏感参数,利用DOE实验设计在膨胀机叶轮及整流锥几何敏感参数变化范围内确定NUM组变量组合,针对各组变量组合中参数对应的三维叶轮及整流锥几何,通过整机数值模拟获得流场信息,并计算旋涡-空化抑制多目标优化函数,得目标函数值 1) For the geometrically sensitive parameters of the expander impeller and the rectifying cone, the DOE experimental design is used to determine the variable combination of the NUM group within the range of the geometrically sensitive parameters of the expander impeller and the rectifying cone. The corresponding three-dimensional impeller and rectifying cone geometry, the flow field information is obtained through the numerical simulation of the whole machine, and the vortex-cavitation suppression multi-objective optimization function is calculated to obtain the objective function value
2)根据参数及其对应的目标函数值拟合各优化目标的初始代理模型;2) According to the parameters and its corresponding objective function value Fit an initial surrogate model for each optimization objective;
3)构建同时考虑模型预测值及预测标准差的多目标采样策略,其中,m为优化目标的个数,通过最大化多目标改进期望矩阵的规范数即搜索最具潜力的候选设计,其中,搜索到的最具潜力的候选设计为:3) Construct while considering the predicted value of the model and predicted standard deviation The multi-objective sampling strategy of , where m is the number of optimization objectives, and the normative number of the expected matrix is improved by maximizing the multi-objective which is Search for the most potential candidate design, where the most potential candidate design found is:
通过搜索到的最具潜力的候选设计对代理模型及全局搜索进行优化,其中,k为从NUM个已评估样本点中,通过非支配排序获得的多目标帕累托前沿非支配点的个数;Optimize the surrogate model and the global search by searching the most potential candidate design, where k is the number of non-dominated points of the multi-objective Pareto front obtained by non-dominated sorting from the NUM evaluated sample points ;
4)利用协同进化优化算法求解并以此构建的自适应采样-协同优化为特征的优化方式,并以此获得有潜力的候选设计,利用该候选设计、对应的两相数值模拟结果及多目标函数值对代理模型动态更新并对下一次迭代全局搜索,直至满足预定终止条件后输出优化后的叶轮及整流锥几何。4) Use co-evolutionary optimization algorithm to solve And the adaptive sampling-co-optimization feature of this construction is used as an optimization method, and a potential candidate design is obtained, and the proxy model is dynamically updated and For the next iteration of the global search, the optimized geometry of the impeller and rectifier cone is output until the predetermined termination condition is met.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明所述的低温液体膨胀机抗空化整流锥协同优化设计方法在具体操作时,通过对低温液体膨胀机叶轮增设整流锥,并对低温液体膨胀机叶轮及整流锥的三维几何形状进行协同优化,以有效抑制叶轮下游的旋涡空化流动,提升低温液体膨胀机的抗空蚀性能,避免机组振动、停机及空分液化装置停产,有效提高低温液体膨胀机的性能及运行可靠性。The anti-cavitation rectification cone collaborative optimization design method of the cryogenic liquid expander described in the present invention, in specific operation, by adding a rectifier cone to the impeller of the cryogenic liquid expander, and synergizing the three-dimensional geometry of the cryogenic liquid expander impeller and the rectifier cone Optimization to effectively suppress the vortex cavitation flow downstream of the impeller, improve the anti-cavitation performance of the cryogenic liquid expander, avoid unit vibration, shutdown and air separation liquefaction plant shutdown, and effectively improve the performance and operational reliability of the cryogenic liquid expander.
附图说明Description of drawings
图1a为液体膨胀机整机模型的示意图;Fig. 1a is the schematic diagram of the complete machine model of liquid expander;
图1b为带整流锥叶轮及下游扩压管的液体膨胀机的示意图;Figure 1b is a schematic diagram of a liquid expander with a rectifying cone impeller and a downstream diffuser;
图2a为无整流锥叶轮的液体膨胀机整机示意图;Figure 2a is a schematic diagram of a liquid expander without a rectifying cone impeller;
图2b为带球形整流锥的液体膨胀机整机的示意图;Figure 2b is a schematic diagram of a complete liquid expander with a spherical rectifying cone;
图2c为带椭球型整流锥的液体膨胀机整机的示意图;Fig. 2c is a schematic diagram of a complete liquid expander with an ellipsoidal rectifying cone;
图2d为带球形头部带锥度整流锥的液体膨胀机整机的示意图;Figure 2d is a schematic diagram of a liquid expander with a spherical head and a tapered rectifying cone;
图3a为子午轮廓线的参数化示意图;Figure 3a is a parametric schematic diagram of the meridian contour;
图3b为三维叶片的示意图;Figure 3b is a schematic diagram of a three-dimensional blade;
图3c为基元叶型的示意图;Figure 3c is a schematic diagram of a primitive leaf shape;
图3d为叶片中弧线的参数化示意图;Figure 3d is a parametric schematic diagram of the arc in the blade;
图4为以旋涡-空化抑制为目标的非线性优化问题自适应求解的示意图。Fig. 4 is a schematic diagram of an adaptive solution to a nonlinear optimization problem aiming at vortex-cavitation suppression.
具体实施方式detailed description
下面结合附图对本发明做进一步详细描述:The present invention is described in further detail below in conjunction with accompanying drawing:
本发明所述的低温液体膨胀机抗空化整流锥协同优化设计方法在操作时,对低温液体膨胀机叶轮增设整流锥,并对低温液体膨胀机叶轮及整流锥的三维几何形状进行协同优化,以控制叶轮下游旋涡空化流动,具体包括以下步骤:依次进行低温液体膨胀机两相旋涡空化的数值预测、叶轮-整流锥与旋涡空化干涉机理分析及最佳耦合方式判别、整流锥-叶轮耦合参数化表达建立、带整流锥的膨胀机叶轮几何敏感参数提取、旋涡空化特征量提取、以抑制旋涡空化为目标的叶轮-整流锥几何协同优化问题的建立和其自适应求解。During the operation of the anti-cavitation rectifying cone cooperative optimization design method of the cryogenic liquid expander, a rectifying cone is added to the impeller of the cryogenic liquid expander, and the three-dimensional geometry of the cryogenic liquid expander impeller and the rectifying cone is collaboratively optimized, In order to control the vortex cavitation flow downstream of the impeller, it specifically includes the following steps: sequentially carry out the numerical prediction of the two-phase vortex cavitation of the cryogenic liquid expander, analyze the interference mechanism of the impeller-rectifier cone and vortex cavitation and determine the best coupling mode, rectifier cone- Establishment of parametric expression of impeller coupling, extraction of geometrically sensitive parameters of expander impeller with rectifier cone, extraction of vortex cavitation feature quantity, establishment of impeller-cone geometry co-optimization problem aiming at suppressing vortex cavitation and its adaptive solution.
参考图1a及推1b,低温液体膨胀机两相旋涡空化的数值预测具体包括以下步骤:Referring to Fig. 1a and Fig. 1b, the numerical prediction of two-phase vortex cavitation in a cryogenic liquid expander specifically includes the following steps:
建立包括蜗壳、喷嘴、带整流锥的叶轮及扩压管流道的整机模型,以反映真实的膨胀机内流动,使用ICEM以及CFX-TURBOGRID对各部件流域进行网格划分,然后通过界面连接,形成整机网格。Establish the whole machine model including volute, nozzle, impeller with rectifying cone and diffuser pipe flow channel to reflect the real flow in the expander, use ICEM and CFX-TURBOGRID to mesh the flow domain of each part, and then pass the interface Connect to form a whole machine grid.
选用Rayleigh-Plesset(PR)空化模型对低温液体膨胀机内部空化流动进行描述。该空化模型将空化视为一个两相三组分系统的体积分数控制方程,各组分具有相同速度的假设的混合相质量、动量以及能量方程,并采用PR方程用于预测气化率以及空泡生成和破灭。The Rayleigh-Plesset (PR) cavitation model is used to describe the cavitation flow inside the cryogenic liquid expander. The cavitation model regards cavitation as a volume fraction governing equation of a two-phase three-component system, each component has the same velocity of the hypothetical mixed-phase mass, momentum and energy equations, and uses the PR equation to predict the gasification rate and vacuole formation and collapse.
结合k-ε模型与可变壁面函数法,描述液体膨胀机整机及叶轮下游的束辫状旋涡流动。喷嘴-叶轮以及叶轮-扩压管之间的动静转子交界面,采用Frozen Rotor模型进行处理,在保留流场参数周向分布特征的基础上减少计算消耗。Combining the k-ε model and the variable wall function method, the braided vortex flow in the whole liquid expander and downstream of the impeller is described. The dynamic and static rotor interface between the nozzle-impeller and the impeller-diffuser is processed by the Frozen Rotor model, which reduces calculation consumption on the basis of retaining the circumferential distribution characteristics of flow field parameters.
将包括密度、焓、熵、粘性系数以及饱和蒸汽压在内的物性参数表达为温度和压力的二元函数并结合总能方程进行求解,以考虑低温流体热力学效应;Express physical parameters including density, enthalpy, entropy, viscosity coefficient and saturated vapor pressure as binary functions of temperature and pressure and solve them in combination with the total energy equation to consider the thermodynamic effects of cryogenic fluids;
采用CEL(CFX Expression Language)语言编制物性接口文件,并导入CFX结合总能方程进行求解,以实现计算过程中物性参数随当地压力和温度的变化实时更新,同时,在数值模拟的迭代求解过程中,对温度场求解的收敛性进行实时监控,以保证温度场的求解精度。Use CEL (CFX Expression Language) language to compile the physical property interface file, and import CFX to solve it combined with the total energy equation, so as to realize the real-time update of physical property parameters with the change of local pressure and temperature during the calculation process. At the same time, in the iterative solution process of numerical simulation , to monitor the convergence of the temperature field solution in real time to ensure the solution accuracy of the temperature field.
参考图2a至图2d,叶轮-整流锥与旋涡空化干涉机理分析及最佳耦合方式判别的具体操作过程为:Referring to Fig. 2a to Fig. 2d, the specific operation process of impeller-rectifier cone and vortex cavitation interference mechanism analysis and optimal coupling mode identification is as follows:
1)针对叶轮出口等径球形整流锥、椭球形整流锥及球形头部带锥度整流锥三种形式,各完成一组初始化设计;1) Complete a set of initial design for each of the three types of impeller outlet equal-diameter spherical rectifying cone, ellipsoidal rectifying cone and spherical head with tapered rectifying cone;
2)针对不同形式整流锥初始设计,进行几何建模、划分网格,利用低温液体膨胀机两相旋涡空化数值预测方法,进行无整流锥及不同形式整流锥耦合下叶轮下游旋涡空化流动特性研究,捕捉叶轮出口周向未平衡速度梯度特征及其与下游突扩区域耦合特性,诊断导致叶轮下游流动显著恶化的关键几何因素;2) For the initial design of different types of rectifying cones, geometric modeling and grid division are carried out, and the numerical prediction method of the two-phase vortex cavitation of the cryogenic liquid expander is used to carry out the vortex cavitation flow downstream of the impeller without rectifying cones and different forms of rectifying cones Characteristic research, capturing the characteristics of the unbalanced velocity gradient in the circumferential direction of the impeller outlet and its coupling characteristics with the downstream sudden expansion area, and diagnosing the key geometric factors that lead to the significant deterioration of the downstream flow of the impeller;
3)不断改变叶片几何形式及参数,开展几何敏感性研究,获得不同形式、不同参数整流锥几何形状与旋涡空化相关性关系,并在此基础上,确定与工况相匹配的最佳整流锥形式以及整流锥与三维叶轮耦合参数化设计方案。3) Constantly change the geometric form and parameters of the blade, carry out geometric sensitivity research, obtain the correlation relationship between the geometry of the rectifier cone and the vortex cavitation in different forms and parameters, and on this basis, determine the best rectifier that matches the working conditions The parametric design scheme of the cone form and the coupling between the rectifying cone and the three-dimensional impeller.
参考图3a及图3b,带整流锥的膨胀机叶轮几何参数化表达及敏感参数提取的具体过程为:Referring to Fig. 3a and Fig. 3b, the specific process of geometric parametric expression and sensitive parameter extraction of expander impeller with rectifying cone is as follows:
三维叶轮几何由子午轮廓线二维型线和三维扭曲叶片共同定义,子午轮廓线二维型线通过两条抛物线曲线1-4和2-3分别定义了轮盘线和轮盖线,以及与之平滑相接的整流锥外廓线,以球形头部带锥度的整流锥为例,其采用了圆弧形头部+切线段定义具有锥度的轴对称轮廓线;三维扭曲叶片由于三维叶片的压力面和吸力面均采用直纹面,可由叶根处(轮盘处)和叶顶处(轮盖处)的二维叶型定义,参考图3c,针对叶根处及叶顶处叶型的中弧线,均使用如图3d所示的贝塞尔曲线对其进行参数化,并在设计过程中对贝塞尔曲线控制点的坐标进行调整,以实现三维叶片的精细优化。根据上述定义,叶轮-整流锥几何可、通过调节子午轮廓线几何参数以及叶型中弧线控制点坐标实现对三维叶轮和整流锥几何形状的协同形变控制。基于上述几何参数化方法编制自有程序,用于在优化过程中,根据不同几何参数控制变量快速生成包括子午轮廓线及三维叶片在内的叶轮三维几何文件,用于数值模拟。The three-dimensional impeller geometry is jointly defined by the two-dimensional contour line of the meridian contour and the three-dimensional twisted blade. The two-dimensional contour line of the meridian contour defines the disk line and the wheel cover line respectively through two parabolic curves 1-4 and 2-3, and the The smooth and connected straightening cone outline, taking the spherical head with a tapered straightening cone as an example, it uses a circular arc-shaped head + tangent segment to define the axisymmetric contour line with a taper; the three-dimensional twisted blade is due to the three-dimensional blade Both the pressure surface and the suction surface adopt ruled surfaces, which can be defined by the two-dimensional blade shape at the blade root (disk) and blade top (wheel cover). The middle arcs of the blades are parameterized using the Bezier curve shown in Figure 3d, and the coordinates of the control points of the Bezier curve are adjusted during the design process to achieve fine optimization of the three-dimensional blade. According to the above definition, the geometry of the impeller-cone rectifier can realize the collaborative deformation control of the geometry of the three-dimensional impeller and the rectifier cone by adjusting the geometric parameters of the meridian contour and the coordinates of the control points of the arc in the blade profile. Based on the above-mentioned geometric parameterization method, the self-owned program is used to quickly generate three-dimensional geometry files of the impeller including meridian contour lines and three-dimensional blades according to different geometric parameter control variables during the optimization process for numerical simulation.
敏感参数提取的具体步骤为:通过改变子午轮廓线几何参数及叶型中弧线控制点坐标参数获得不同形状的叶轮及整流锥几何,并对其进行几何建模、划分网格及流场数值模拟和分析。针对模拟后获得的流场数据进行分析,通过变量敏感性分析,获得对旋涡-空化流动敏感的几何参数,具体包括子午面几何参数、整流锥几何参数及三维叶片叶顶及叶根叶型中弧线若干控制点坐标参数,其中,子午面几何参数包括叶轮出口内径R1、叶轮出口外径R2以及诱导轮外端面与径向面之间的夹角α1,整流锥几何参数包括整流锥锥角β及无量纲的整流锥头部直径D0/D1等,将上述敏感几何参数及坐标作为优化变量,在优化设计中对三维叶轮及整流锥几何实施协同精细化调节,实现对旋涡空化流动的有效控制。The specific steps of sensitive parameter extraction are as follows: by changing the geometric parameters of the meridian contour line and the coordinate parameters of the arc control point of the blade shape, the geometry of impellers and rectifier cones of different shapes is obtained, and geometric modeling, grid division and flow field values are carried out. Simulation and analysis. Analyze the flow field data obtained after the simulation, and obtain the geometric parameters sensitive to the vortex-cavitation flow through variable sensitivity analysis, including the geometric parameters of the meridian surface, the geometric parameters of the straightening cone, and the three-dimensional blade tip and blade root profile The coordinate parameters of some control points of the middle arc, among which, the geometric parameters of the meridian surface include the inner diameter R 1 of the impeller outlet, the outer diameter R 2 of the impeller outlet, and the angle α 1 between the outer end surface of the inducer and the radial surface, and the geometric parameters of the rectifier cone include The rectifier cone angle β and the dimensionless rectifier cone head diameter D 0 /D 1 , etc., the above-mentioned sensitive geometric parameters and coordinates are used as optimization variables, and the three-dimensional impeller and rectifier cone geometry are coordinated and fine-tuned in the optimization design to realize Effective control of vortex cavitation flow.
基于上述几何参数化方法编制自有程序,用于在优化过程中,根据不同几何参数控制变量快速生成包括叶轮子午面型线、整流锥型面以及三维叶片在内的三维几何文件,用于数值模拟。Based on the above-mentioned geometric parameterization method, the self-owned program is used to quickly generate three-dimensional geometric files including the impeller meridian surface profile, rectifying cone surface and three-dimensional blades according to different geometric parameter control variables during the optimization process. simulation.
旋涡空化特征量提取及旋涡空化抑制目标函数构建的具体方式为:The specific methods of extracting vortex cavitation feature quantity and constructing vortex cavitation suppression objective function are as follows:
低温液体膨胀机叶轮下游的旋涡-空化流动高度耦合,通过大量数值模拟对不同形态旋涡-空化流动进行机理分析,提取叶轮叶片吸力面的平均气体体积分数vfracave作为叶轮出口处空化程度表征量,叶轮下游扩压管内平均旋涡强度λave作为旋涡流动表征量,其具体内涵和计算方式如下:The vortex-cavitation flow downstream of the impeller of the cryogenic liquid expander is highly coupled, and the mechanism analysis of different forms of vortex-cavitation flow is carried out through a large number of numerical simulations, and the average gas volume fraction vfrac ave of the suction surface of the impeller blade is extracted as the degree of cavitation at the outlet of the impeller The characterization quantity, the average vortex intensity λ ave in the diffuser downstream of the impeller is used as the characterization quantity of the vortex flow, and its specific connotation and calculation method are as follows:
叶轮出口处空化流动表征量及其计算:将叶轮叶片吸力面的平均气体体积分数vfracave作为叶轮出口处空化程度表征量,其大小不仅反映叶轮出口处空化的剧烈程度,还与下游扩压管内空化强度正相关,vfracave为气体体积分数在叶片吸力面上的积分平均,其计算公式为:vfrac为当地气体体积分数,dA为微元面积,Areablade为叶片吸力面表面积。The characterization of cavitation flow at the impeller outlet and its calculation: the average gas volume fraction vfrac ave on the suction surface of the impeller blade is used as the characterization of the cavitation degree at the impeller outlet. The cavitation intensity in the diffuser is positively correlated, vfrac ave is the integral average of the gas volume fraction on the suction surface of the blade, and its calculation formula is: vfrac is the local gas volume fraction, dA is the microelement area, and Area blade is the surface area of the suction surface of the blade.
旋涡流动表征量及其计算:将叶轮下游扩压管内平均旋涡强度λave作为旋涡流动表征量,其定义为扩压管轴对称中间截面上旋涡强度λ的面积加权平均值,即其中,dA为微元面积,Areatube扩压管中间截面面积,λci为当地漩涡强度,可通过对数值模拟得到的如下速度梯度张量D进行特征值分析得到,具体为:Vortex flow characterization and its calculation: The average vortex intensity λave in the diffuser downstream of the impeller is used as the vortex flow characterization, which is defined as the area-weighted average of the vortex intensity λ on the axisymmetric middle section of the diffuser, namely Among them, dA is the microelement area, the area of the middle section of the diffuser tube of the Area tube , and λci is the local vortex intensity, which can be obtained by analyzing the eigenvalues of the following velocity gradient tensor D obtained by numerical simulation, specifically:
其特征值λ满足:Its eigenvalue λ satisfies:
λ3+Pλ2+Qλ+R=0λ 3 +Pλ 2 +Qλ+R=0
其中,in,
Q=(d22d33-d23d32)+(d11d22-d12d21)+(d33d11-d13d31)Q=(d 22 d 33 -d 23 d 32 )+(d 11 d 22 -d 12 d 21 )+(d 33 d 11 -d 13 d 31 )
R=d11(d23d32-d22d33)+d12(d21d33-d31d23)+d13(d31d22-d21d32)R=d 11 (d 23 d 32 -d 22 d 33 )+d 12 (d 21 d 33 -d 31 d 23 )+d 13 (d 31 d 22 -d 21 d 32 )
设定:set up:
当满足:When satisfied:
则张量D有一个实特征值λr和一对共轭复特征值λcr±iλci,其中:Then the tensor D has a real eigenvalue λ r and a pair of conjugate complex eigenvalues λ cr ±iλ ci , where:
设定:set up:
则:but:
其中,λci为所需计算的当地漩涡强度。Among them, λ ci is the local eddy strength to be calculated.
为同时抑制旋涡-空化的发生,综合叶轮出口处空化程度表征量 vfracave以及叶轮下游扩压管内平均旋涡强度λave,构建如下旋涡-空化抑制优化多目标函数:In order to suppress the occurrence of vortex-cavitation at the same time, the following vortex-cavitation suppression optimization multi-objective function is constructed by integrating the cavitation degree vfrac ave at the outlet of the impeller and the average vortex intensity λ ave in the diffuser tube downstream of the impeller:
其中,代表对旋涡-空化流动敏感的叶轮及整流锥几何敏感参数, Refrioriginal和Refri分别代表优化前后膨胀机所产制冷量,该目标函数用于同时最小化叶片吸力面气体体积分数以及叶轮下游扩压管内旋涡强度,约束条件则用于保证优化前后膨胀机制冷量不显著下降,以满足空分及低温流程所需。in, Represents the geometrically sensitive parameters of the impeller and rectifier cone that are sensitive to vortex-cavitation flow, Refri original and Refri respectively represent the cooling capacity produced by the expander before and after optimization, this objective function is used to minimize the gas volume fraction on the suction surface of the blade and the downstream expansion of the impeller The vortex strength in the compression tube and the constraint conditions are used to ensure that the cooling capacity of the expander does not decrease significantly before and after optimization, so as to meet the needs of air separation and low temperature processes.
以旋涡-空化抑制为目的的多目标复杂非性优化问题的高效求解的过程为:The process of efficiently solving multi-objective complex non-linear optimization problems for the purpose of vortex-cavitation suppression is:
结合多目标自适应采样代理模型方法、协同优化算法、带整流锥的膨胀机叶轮几何参数化方法及低温两相旋涡空化流动数值预测方法,建立如图4所示的低温液体膨胀机抗空化整流锥与叶轮的协同优化设计平台,其主要功能模块及具体实施为:Combining the multi-objective adaptive sampling surrogate model method, the collaborative optimization algorithm, the geometric parameterization method of the impeller of the expander with a rectifying cone, and the numerical prediction method of the low-temperature two-phase vortex cavitation flow, the cavitation resistance of the low-temperature liquid expander as shown in Figure 4 is established. The collaborative optimization design platform of rectifier cone and impeller, its main functional modules and specific implementation are as follows:
几何参数化模块:基于带整流锥的膨胀机叶轮几何参数化表达方法编制自动化程序,根据不同几何参数变量快速生成包括叶轮子午面型线、整流锥型面以及三维叶片在内的几何文件,用于数值分析。Geometric parameterization module: Based on the geometric parametric expression method of the impeller of the rectifying cone, the automatic program is compiled, and the geometric files including the impeller meridian surface profile, the rectifying cone surface and the three-dimensional blade are quickly generated according to different geometric parameter variables. in numerical analysis.
旋涡空化流动自动数值预测模块:基于液体膨胀机低温两相旋涡空 化流动数值预测方法,将数值模拟的整个过程,通过自有程序调用CFD 模块全自动完成,在优化过程中,通过批调用所述旋涡空化流动自动数 值预测模块,具体过程为:第一步,启用几何参数化模块获得候选设计 的三维几何文件;第二步,将几何模型导入到网格软件中,通过拓扑模 板技术进行自动化网格划分;第三步,进行两相数值模拟的设置,包括 导入网格、物性模型,设置边界条件、空化模型及湍流模型;第四步, 通过自有程序启动CFD求解器并行求解;第五步,计算收敛后,通过调 用后处理模块,到处所需流场数据;第六步,分别计算以及并完成目标函数计算。Automatic numerical prediction module of vortex cavitation flow: based on the numerical prediction method of low-temperature two-phase vortex cavitation flow of liquid expander, the whole process of numerical simulation is fully automatically completed by calling the CFD module through its own program. The specific process of the vortex cavitation flow automatic numerical prediction module is as follows: the first step is to enable the geometric parameterization module to obtain the three-dimensional geometric file of the candidate design; the second step is to import the geometric model into the grid software, and use the topology template technology Carry out automatic grid division; the third step is to set up the two-phase numerical simulation, including importing the grid, physical model, setting boundary conditions, cavitation model and turbulence model; the fourth step is to start the CFD solver in parallel through its own program Solving; the fifth step, after the calculation converges, the required flow field data can be found everywhere by calling the post-processing module; the sixth step, respectively calculate as well as And complete the calculation of the objective function.
代理模型初始化模块:针对膨胀机叶轮及整流锥几何敏感参数,利 用DOE(Designof Experiment,实验设计方法)在其变化范围内确定 NUM组叶轮和整流锥几何参数,针对每组几何参数对应的三维叶轮 及整流锥几何,通过旋涡空化流动自动数值预测模块获得其流场数据, 并计算特征量以及的数值。在此基础上, 计算M组变量组合多对应的目标函数值,将其几何参数及对应的目标函 数值储存进数据库模块,在NUM组控制变量及对应目标函数值 的基础上拟合相对粗糙的初始代理模型,所述代理模型用 于在优化过程中预测未知变量组合对应的目标函数值、指导以抑制旋涡 空化为目标的优化过程。Proxy model initialization module: for the geometrically sensitive parameters of the expander impeller and rectifier cone, use DOE (Design of Experiment, experimental design method) to determine the geometric parameters of NUM groups of impeller and rectifier cone within its variation range, and for each set of geometric parameters The corresponding three-dimensional impeller and rectifying cone geometry, the flow field data are obtained through the automatic numerical prediction module of vortex cavitation flow, and the characteristic quantities are calculated as well as value. On this basis, calculate the objective function values corresponding to the M group of variable combinations, store the geometric parameters and corresponding objective function values in the database module, and control variables in the NUM group and the corresponding objective function value Fitting a relatively rough initial surrogate model on the basis of , the surrogate model is used to predict the objective function value corresponding to the unknown variable combination in the optimization process, and guide the optimization process with the goal of suppressing vortex cavitation.
自适应采样-协同优化模块:基于克里金代理模型(Kriging Surrogate Model)、多目标改进期望矩阵方法(Expected Improvement Matrix,EIM) 和协同进化算法(Cooperative Co-evolutionary Algorithm,CCEA)建立多 目标自适应采样-协同优化为特征的优化方法模块,适用于需要耗时数值 模拟的非线性优化问题求解。Adaptive sampling-cooperative optimization module: based on Kriging Surrogate Model, multi-objective improved expectation matrix method (Expected Improvement Matrix, EIM) and cooperative evolutionary algorithm (Cooperative Co-evolutionary Algorithm, CCEA) to establish a multi-objective self- Adaptive sampling-co-optimization is an optimization method module, which is suitable for solving nonlinear optimization problems that require time-consuming numerical simulation.
其中,克里金代理模型负责建立样本数据库中几何变量与其对应的 目标函数值的相关关系,用于预测未知变量组合对于的目标函数值及指 导抑制旋涡-空化为目标的优化过程。对于以下具有m个优化目标的多 目标优化函数,拟合后的克里金代理模型可同时提供优化变量处的预 测值及预测标准差 Among them, the Kriging surrogate model is responsible for establishing the correlation between the geometric variables in the sample database and their corresponding objective function values, which is used to predict the objective function value of the combination of unknown variables and guide the optimization process with the goal of suppressing vortex-cavitation. For the following multi-objective optimization function with m optimization objectives, the fitted kriging surrogate model can simultaneously provide the optimization variables predicted value at and predicted standard deviation
对于样本库中已知的最小值yi,min,1≤i≤m,在优化变量处,改进值在处的期望函数,即多目标改进期望矩阵 (Expected Improvement Matrix,EIM)定义为:For the known minimum value y i, min in the sample library, 1≤i≤m, in the optimization variable place, improved value exist The expectation function at , that is, the multi-objective improvement expectation matrix (Expected Improvement Matrix, EIM) is defined as:
构建同时考虑模型预测值及预测标准差 的多目标采样策略,该策略通过最大化如下多目标改 进期望矩阵(Expected Improvement Matrix,EIM)的规范数即搜索最具潜力的候选设计,以考虑代理模型的预测 最优值与预测不确定度,指出最优设计最可能存在的潜在区域以及模型 预测精度较差的区域。Build while taking model predictions into account and predicted standard deviation A multi-objective sampling strategy, which maximizes the normative number of the expected improvement matrix (Expected Improvement Matrix, EIM) by maximizing the following multi-objective which is The most potential candidate designs are searched to account for the predicted optimal value and prediction uncertainty of the surrogate model, pointing out the potential regions where the optimal design is most likely to exist and the regions where the model prediction accuracy is poor.
将搜索得到的候选设计用于改善模型精度以及全局搜索,其中,k为 从NUM个已评估样本点中,通过非支配排序获得的多目标帕累托前沿 非支配点的个数。The candidate designs obtained from the search are used to improve model accuracy and global search, where k is the number of non-dominated points of the multi-objective Pareto front obtained by non-dominated sorting from NUM evaluated sample points.
该辅助优化问题为高维非线性优化问题,求解异常困难。本发明利 用协同进化算法CCEA对其进行求解。该方法通过变量相关性分析,将 多维优化问题分解为若干易于求解的子问题协同求解,快速得到具有潜 力的新设计样本及修正后的代理模型参数即同时进行全局搜索以This auxiliary optimization problem is a high-dimensional nonlinear optimization problem, which is extremely difficult to solve. The present invention utilizes the co-evolutionary algorithm CCEA to solve it. Through variable correlation analysis, this method decomposes the multidimensional optimization problem into several easy-to-solve sub-problems to be solved collaboratively, and quickly obtains potential new design samples and the modified proxy model parameters i.e. simultaneously conduct a global search to
针对新获得样本对应的三维叶轮及整流锥几何,调用旋涡空化流 动自动数值预测模块获得其流场数据并计算对应的目标函数值,新增样 本及其目标函数同时存入数据库,并进行下一步寻优。For newly acquired samples For the corresponding three-dimensional impeller and rectifying cone geometry, the automatic numerical prediction module of vortex cavitation flow is called to obtain the flow field data and calculate the corresponding objective function value. The newly added samples and their objective functions are stored in the database at the same time, and the next step of optimization is carried out.
根据上述步骤进行迭代循环,通过自适应采样-协同优化模块不断交互,以持续改善代理模型精度并提供更优设计,直至满足预定的寻优搜索终止判据为止,并输出优化后的叶轮及整流锥几何。Carry out an iterative cycle according to the above steps, and continuously interact through the adaptive sampling-cooperative optimization module to continuously improve the accuracy of the proxy model and provide a better design until the predetermined optimization search termination criterion is met, and the optimized impeller and rectifier are output cone geometry.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容做出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,仍属于本发明技术方案的范围内。The above description is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Anyone familiar with this field Those skilled in the art, without departing from the scope of the technical solution of the present invention, may use the method and technical content disclosed above to make some changes or modifications to equivalent embodiments with equivalent changes, but all without departing from the content of the technical solution of the present invention Any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still belong to the scope of the technical solutions of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110130574.0A CN113158356B (en) | 2021-01-29 | 2021-01-29 | A Collaborative Optimization Design Method for Anti-cavitation Rectifier Cone of Cryogenic Liquid Expander |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110130574.0A CN113158356B (en) | 2021-01-29 | 2021-01-29 | A Collaborative Optimization Design Method for Anti-cavitation Rectifier Cone of Cryogenic Liquid Expander |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113158356A CN113158356A (en) | 2021-07-23 |
CN113158356B true CN113158356B (en) | 2022-12-09 |
Family
ID=76879110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110130574.0A Active CN113158356B (en) | 2021-01-29 | 2021-01-29 | A Collaborative Optimization Design Method for Anti-cavitation Rectifier Cone of Cryogenic Liquid Expander |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113158356B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114357632B (en) * | 2022-03-21 | 2022-07-15 | 潍柴动力股份有限公司 | A method and device for optimizing fuel injector |
CN117307266B (en) * | 2023-08-31 | 2024-03-19 | 中科合肥技术创新工程院 | Control system for vortex cavitation flow in low-temperature liquid expander |
CN119180267A (en) * | 2024-08-26 | 2024-12-24 | 航粤智能电气股份有限公司 | Intelligent analysis and display method for enterprise energy data |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4904158A (en) * | 1988-08-18 | 1990-02-27 | Union Carbide Corporation | Method and apparatus for cryogenic liquid expansion |
CN108197390A (en) * | 2018-01-04 | 2018-06-22 | 西安交通大学 | A kind of optimum design method of two-phase cryogenic liquid expanding machine anti-cavitation |
CN108561195A (en) * | 2018-01-04 | 2018-09-21 | 西安交通大学 | A kind of effective control method of cryogenic liquid expanding machine inward turning vortex cavitation flowing |
CN109977345A (en) * | 2019-01-29 | 2019-07-05 | 河海大学 | A kind of method for numerical simulation of axial-flow pump clearance leakage of blade tip vortex cavitation |
CN111400941A (en) * | 2019-01-03 | 2020-07-10 | 江苏大学 | A Numerical Prediction Method of Internal Backflow and Backflow Vortex Cavitation in Vane Pumps |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9534576B2 (en) * | 2011-12-30 | 2017-01-03 | Xi'an Jiaotong University | Cryogenic liquid turbine |
-
2021
- 2021-01-29 CN CN202110130574.0A patent/CN113158356B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4904158A (en) * | 1988-08-18 | 1990-02-27 | Union Carbide Corporation | Method and apparatus for cryogenic liquid expansion |
CN108197390A (en) * | 2018-01-04 | 2018-06-22 | 西安交通大学 | A kind of optimum design method of two-phase cryogenic liquid expanding machine anti-cavitation |
CN108561195A (en) * | 2018-01-04 | 2018-09-21 | 西安交通大学 | A kind of effective control method of cryogenic liquid expanding machine inward turning vortex cavitation flowing |
CN111400941A (en) * | 2019-01-03 | 2020-07-10 | 江苏大学 | A Numerical Prediction Method of Internal Backflow and Backflow Vortex Cavitation in Vane Pumps |
CN109977345A (en) * | 2019-01-29 | 2019-07-05 | 河海大学 | A kind of method for numerical simulation of axial-flow pump clearance leakage of blade tip vortex cavitation |
Non-Patent Citations (2)
Title |
---|
Cryogenic Cavitation Mitigation in a Liquid Turbine Expander of an Air-Separation Unit through Collaborative Fine-Tuned Optimization of Impeller and Fairing Cone Geometries;Peng Song等;《energies》;20191220;第13卷(第1期);第1-23页 * |
大型空分设备用低温液体膨胀机内流及空化特性数值研究;司马铭等;《深冷技术》;20170228(第01期);第74-85页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113158356A (en) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113158356B (en) | A Collaborative Optimization Design Method for Anti-cavitation Rectifier Cone of Cryogenic Liquid Expander | |
CN102608914B (en) | Optimization design method of radial-flow-type hydraulic turbine | |
Pei et al. | Optimization on the impeller of a low-specific-speed centrifugal pump for hydraulic performance improvement | |
CN103939389A (en) | Multiple-working-condition hydraulic design method for guide vane type centrifugal pump | |
CN109598081B (en) | Aerodynamic optimization method for radial turbines based on data dimensionality reduction and multiple two-dimensional flow surfaces | |
CN105781626B (en) | Three-dimensional orthogonal unsteady design method of large meridian expansion turbine | |
CN108197390B (en) | An optimal design method for anti-cavitation of a two-phase cryogenic liquid expander | |
CN106326531B (en) | Industrial steam turbine exhaust system optimization method | |
CN108561195B (en) | Effective control method for vortex cavitation flow in low-temperature liquid expander | |
Wang et al. | A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers | |
Li et al. | Multipoint and multiobjective optimization of a centrifugal compressor impeller based on genetic algorithm | |
CN110617238B (en) | Optimization design method of centrifugal pump impeller | |
US20240184941A1 (en) | Method for integrated design of compressor blade and casing treatment | |
CN107122512A (en) | Liquid rotary pump unstable state gas flowfield and the simplified calculation method for sucking compression performance | |
Yang et al. | Hydraulic components’ matching optimization design and entropy production analysis in a large vertical centrifugal pump | |
CN110705079B (en) | Centrifugal compressor structure optimization method based on simulated annealing algorithm | |
Li et al. | Optimization design of radial inflow turbine combined with mean-line model and CFD analysis for geothermal power generation | |
Ji et al. | Computer 3D vision-aided full-3D optimization of a centrifugal impeller | |
CN115828456A (en) | A parametric optimization design method for external full-film cooling of turbine blades | |
Gan et al. | Multi-component optimization of a vertical inline pump based on multi-objective pso and artificial neural network | |
CN113158355B (en) | An optimal design method for all working conditions of a cryogenic liquid expander | |
CN115859490A (en) | One-dimensional pneumatic optimization design method and system for real gas centrifugal compressor | |
chol Nam et al. | Design optimization of hydraulic turbine draft tube based on CFD and DOE method | |
Obrovský et al. | Development of high specific speed Francis turbine for low head HPP | |
CN114692338B (en) | Comprehensive optimization design method for cavitation and efficiency of low-temperature centrifugal pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |