CN113153254B - 一种低孔低渗强水敏性储层的高效防膨压裂工艺 - Google Patents

一种低孔低渗强水敏性储层的高效防膨压裂工艺 Download PDF

Info

Publication number
CN113153254B
CN113153254B CN202110056530.8A CN202110056530A CN113153254B CN 113153254 B CN113153254 B CN 113153254B CN 202110056530 A CN202110056530 A CN 202110056530A CN 113153254 B CN113153254 B CN 113153254B
Authority
CN
China
Prior art keywords
fracturing
fluid
swelling
low
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110056530.8A
Other languages
English (en)
Other versions
CN113153254A (zh
Inventor
牟莎莎
徐峰
陈金菊
付利琴
郑婷婷
王兰
宋俊
姚快
徐昌晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petroleum Engineering Technology Research Institute Of Hanjiang Oil Field Branch Sinopec
China Petroleum and Chemical Corp
Original Assignee
Petroleum Engineering Technology Research Institute Of Hanjiang Oil Field Branch Sinopec
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Engineering Technology Research Institute Of Hanjiang Oil Field Branch Sinopec, China Petroleum and Chemical Corp filed Critical Petroleum Engineering Technology Research Institute Of Hanjiang Oil Field Branch Sinopec
Publication of CN113153254A publication Critical patent/CN113153254A/zh
Application granted granted Critical
Publication of CN113153254B publication Critical patent/CN113153254B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • C09K8/685Compositions based on water or polar solvents containing organic compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/887Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/90Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/12Swell inhibition, i.e. using additives to drilling or well treatment fluids for inhibiting clay or shale swelling or disintegrating

Abstract

本发明公开了一种低孔低渗强水敏性储层的高效防膨压裂工艺,首先对压裂液配方进行设计和优化,将高效防膨压裂液按特定泵注工艺泵入地层,并结合优化的压裂工艺,实现针对低孔低渗强水敏性储层的高效增产目的。本发明针对低孔低渗强水敏地层因粘土矿物膨胀导致油井措施低产等问题,首次提出一种基于高防膨组分浓度的压裂液体系,并通过对其配制工艺及压裂工艺进行优化,可有效抑制地层粘土矿物膨胀,并有效保证所得压裂液的有效期,进而促进油井大幅度增产。

Description

一种低孔低渗强水敏性储层的高效防膨压裂工艺
技术领域
本发明属于油气田勘探开发技术领域,具体涉及一种低孔低渗强水敏性储层高效防膨压裂工艺。
背景技术
对于粘土矿物伊利石、伊-蒙混层含量高,但孔喉半径却很小的低孔低渗强水敏性储层,用常规的压裂体系及工艺还存在几方面的不足之处:1)压裂液体系防膨性能与地层实际粘土矿物膨胀程度不匹配,导致低渗储层的孔喉堵塞;2)压裂液中直接配入高浓度的季铵盐类防膨剂,能保持液体性能的有效期短,不能满足大规模压裂运行时长的需求。因此,进一步探索和优化针对低渗强水敏储层的压裂工艺具有重要的研究和应用意义。
发明内容
本发明主要针对低渗强水敏储层因粘土矿物膨胀导致堵塞孔喉、措施井低液低产等问题,提供一种高效防膨压裂工艺方法,通过优化压裂液配方体系及压裂工艺,可长时间保持压裂液体性能稳定,实现针对低孔低渗强水敏性储层的高效增产目的。
为实现上述目的,本发明采用的技术方案为:
一种低孔低渗强水敏性储层高效防膨压裂工艺,包括如下步骤:
1)高效防膨压裂液配比设计;各原料及其所占质量百分比为:增稠组分0.2-0.6%,pH值调节剂0.035-0.055%,表面活性剂0.5-0.6%,防膨组分5-7%,杀菌剂0.1-0.15%,交联剂0.8-0.9%,其余为水;
2)高效防膨压裂液的配制;按上述配比称取各原料,首先将称取的增稠剂溶解于部分水中,然后依次加入称取表面活性剂、杀菌剂、部分pH值调节剂,搅拌均匀,得基液;
向部分水中加入剩余的pH值调节剂和防膨组分,搅拌均匀,得防膨液;
向剩余水中加入交联剂,混合均匀,得交联液;
3)压裂工艺;包括压裂前置液阶段、压裂携砂液阶段和压裂顶替液阶段;其中前置液阶段和压裂携砂液阶段采用高效防膨压裂液,高效防膨压裂液中的基液、防膨液和交联液在施工现场进行混合并泵入地层,携砂阶段采用裂缝饱充填的泵注工艺。
上述方案中,所述增稠组分为羟丙基胍胶或羧甲基羟丙基胍胶,等。
上述方案中,所述pH值调节剂为NaOH。
上述方案中,表面活性剂为氟碳表面活性剂。
上述方案中,所述防膨组分为JC-NW2,为季铵盐类粘土稳定剂。
上述方案中,所述杀菌剂为醛类杀菌剂。
上述方案中,所述交联剂为硼砂。上述方案中,所述基液I中,用水量占设计用水量的80-90%(体积);pH值调节剂的用量占设计用量的40-64%(体积)。
上述方案中,所述防膨液II中,用水量占设计用水量的4-5%(体积)。
根据上述方案所得高效防膨压裂液,良好的携砂效果;室内试验表明防膨率大于85%,在水敏性矿物含量高的地层具有优良的防膨性能。
上述方案中,所述泵入温度为40-120℃。
上述方案中,所述前置液和携砂液阶段的高效防膨压裂液交联冻胶在地层温度下的粘度为120-160mpa.s。
上述方案中,所述裂缝饱充填工艺,为不同粒径支撑剂加砂工艺,包括大粒径支撑剂、中粒径支撑剂、小粒径支撑剂,对应的尺寸大小分别为30-50目、40-70目、70-140目;优选体积比为(1-2):2:1;先按5-8%砂比携带70-140目支撑剂进行注液,完成前置液工序;再按10-25%砂比(优选按增加5%的砂比)开始携带40-70目支撑剂,然后按30-40%的砂比携带30-50目支撑剂,完成主裂缝的支撑工序。
上述方案中,所述支撑剂可选用陶粒、石英砂等,其耐压强度≥69MPa。
上述方案中,所述施工排量前置液阶段按照1.0-1.5m3/min的排量,主加砂段可保持排量或为提高加砂顺利程度将排量提升到2.0-3.0m3/min。
与现有技术相比,本发明的有益效果为:
1)本发明首次提出一种针对低孔低渗强水敏储层的压裂工艺方法,可有效提高此类高敏感储层的压裂改造效果,为敏感性储层压裂工艺提供一条新思路。
2)本发明首次提出针对低孔低渗高水敏储层的高防膨组分浓度(5-7%浓度)的压裂液体系,并采用基液+防膨液+交联液的配液制度并结合现场实时泵入高效防膨液的方式,有效避免季铵盐类有机防膨剂对压裂液性能的影响,显著延长压裂液的有效期,以满足大型压裂施工的要求;同时配合不同粒径裂缝饱充填和变排量工艺方式,提高油井增产效果;且涉及的改进方法简单、成功率高、材料来源广通用性强、安全性可靠性高、操作方便,适用性广。
3)本发明采用的压裂液配方体系组成简单、成本适中,可显著提高对低孔低渗强水敏储层的压裂增产效果,具有重要的经济效益和社会效益。
附图说明
图1为实施例1所述低孔低渗强水敏地层压后增油柱状图;
图2为实施例1所述高效防膨液100℃温度条件下的剪切曲线图;
图3为实施例1所得防膨剂压裂液防膨周期示意图;
图4为对比例1加砂压力;
图5为沙斜38井下1 4压后生产曲线;
图6为对比例2压裂压力图;
图7为对比例2流变性试验结果;
图8为对比例2增产效果图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下实施例中,采用的JW-201、JC-NW2分别由中石化江汉油田分公司工程院提供。
实施例1
一种低孔低渗强水敏性储层高效防膨压裂工艺,针对的S38井的孔喉半径在3.49μm,孔隙度12.3%,渗透率5.2md,敏感性评价试验为中等偏强水敏,属于低孔低渗强水敏性储层;该井2017年压裂无效,日产油由压前的1.2吨下降到0.5吨;2018年压裂同层,压裂配方采用本发明所述高效防膨压裂液体系进行压裂,具体包括如下步骤:
1)采用如下配方体系;增稠组分HPG 0.4%,pH值调节剂NaOH 0.055%,表面活性剂JW-2010.5%,防膨组分JC-NW2 5%,杀菌剂JC-SJ2 0.1%,交联剂0.8%,其余为水;
2)高效防膨压裂液的配制;
按上述配比称取各原料,首先将称取的增稠剂溶解于部分水中,然后依次加入称取表面活性剂、杀菌剂,45%占比的pH调节剂搅拌均匀,得基液I;
向部分水中加入剩余的pH值调节剂和防膨组分,搅拌均匀,得防膨液II;
向剩余水中加入交联剂,混合均匀,得交联液;
控制所得基液、防膨液、交联液的体积比(泵入比例)为100:5:5;
3)压裂工艺;包括压裂前置液阶段、压裂携砂液阶段和压裂顶替液阶段;前置液阶段按1.0m3/min的排量,将混合的压裂液冻胶按5-8%的砂比开始携带70-140目陶粒支撑剂2m3,携砂液阶段按2.0m3/min的排量,再按10-20%的砂比(按增加5%的砂比)携带40-70目陶粒支撑剂4m3,当加入到主加砂段按30-40%的砂比时携带30-50目陶粒支撑剂2m3,完成主裂缝的支撑工序;停砂顶替完成压裂施工。其中前置液阶段和压裂携砂液阶段采用高效防膨压裂液,高效防膨压裂液中的基液、防膨液和交联液在施工现场进行混合并泵入地层,共69m3。携砂阶段采用裂缝饱充填的泵注工艺。压后日产量恢复至5.0吨.。
图1为本实施例所述低孔低渗强水敏地层压后增油柱状图;从现场应用井次情况看,高效防膨压裂工艺方法增产效果明显,解决强敏感性储层措施液体导致粘土矿物膨胀造成储层伤害问题。
图2为本发明实施例1所述高效防膨液100℃温度条件下的剪切曲线图;图3为本实施例所得防膨剂压裂液防膨周期示意图。
实施例2
陵76斜6-1井2000年3月投产新下2 1.2.3,自投产以来未进行过酸化压裂等措施。2018年1月14日、停井,停井前生产情况为:日产液13.7t/d,日产油0.5t/d,含水97%,2019采用高效防膨压裂液进行压裂施工,压裂配方采用本发明所述高效防膨压裂液体系进行压裂,具体包括如下步骤:
1)采用如下配方体系;增稠组分HPG 0.45%,pH值调节剂NaOH 0.055%,表面活性剂JW-2010.5%,防膨组分JC-NW2 6.5%,杀菌剂JC-SJ2 0.1%,交联剂0.9%,其余为水;
2)高效防膨压裂液的配制;
按上述配比称取各原料,首先将称取的增稠剂溶解于部分水中,然后依次加入称取表面活性剂、杀菌剂、占比40wt%氢氧化钠,搅拌均匀,得基液I;
向部分水中加入剩余的pH值调节剂和防膨组分,搅拌均匀,得防膨液II;
向剩余水中加入交联剂,混合均匀,得交联液;
控制所得基液、防膨液、交联液的体积比(泵入比例)为100:5:5;
3)压裂工艺;包括压裂前置液阶段、压裂携砂液阶段和压裂顶替液阶段;前置液阶段按1.5m3/min的排量,将混合的压裂液冻胶按5~8%砂比开始携带70-140目陶粒支撑剂1.5m3,携砂液阶段按2.0m3/min排量,10-25%砂比(按增加5%的砂比)携带40-70目陶粒支撑剂3m3,当加入到主加砂段,按30-35%的砂比携带30-50目陶粒支撑剂2m3,完成主裂缝的支撑工序;停砂顶替完成压裂施工。其中前置液阶段和压裂携砂液阶段采用高效防膨压裂液,高效防膨压裂液中的基液I、防膨液II和交联液在施工现场进行混合并泵入地层,共85m3。携砂阶段采用裂缝饱充填的泵注工艺。
压裂后下泵投产最高日产油8.5t,目前稳定在日产油4.0t,取得好的增产效果,进一步说明高效防膨压裂液的优势。
对比例1
将本发明所述压裂工艺与常规压裂工艺进行对比,具体包括如下:
S38井下1 6生产层经过两次压裂,采用的常规配方压裂液(表1),未采用高效防膨体系,两次压裂前后并未增产,低产低液(表2)。
表1 S38井常规压裂液配方
Figure GDA0003107538770000041
Figure GDA0003107538770000051
表2 S38井下1 6施工参数
Figure GDA0003107538770000052
2018年补孔下1 4层,采用高效防膨压裂液体系(表3),采用70-140目、40-70目、30-50目三种粒径支撑剂对裂缝饱充填,该井压裂施工过程顺利,总液量162.6m3,采用70-140目支撑剂2m3、40-70目支撑剂5m3、30-50目支撑剂15m3,,施工排量2.5m3/min,平均砂比18.9%,加砂压力41-48MPa(图4)。压裂后下泵投产最高日产油4.5t,目前稳定在日产油2.6t,取得好的增产效果(图5)。而且对比下1 4和下1 6的储层物性,下1 6的储层物性明显好于下1 4措施层,进一步说明高效防膨压裂液对该类储层的适应性(沙斜38井下1 4压后生产曲线见图5)。
表3 S38高效防膨压裂液配方
Figure GDA0003107538770000053
对比例2
T12x-1井,措施油层孔隙度为3%,渗透率为2.1md,粘土矿物中伊利石含量相对含量平均32.3%、伊/蒙混层39.3%,绿泥石相对含量28.5%,油层平均孔喉半径1.105~4.176μm。2019年进行压裂措施,压裂配方采用本发明所述高效防膨压裂液体系进行压裂,压裂工艺采用常规压裂工艺;具体包括如下步骤:
1)采用如下配方体系;增稠组分HPG 0.5%,pH值调节剂NaOH 0.055%,表面活性剂JW-2010.5%,防膨组分JC-NW25%,杀菌剂JC-SJ2 0.1%,交联剂0.9%,其余为水;
2)高效防膨压裂液的配制;按上述配比称取各原料,首先将称取的增稠剂溶解于全部水中,然后依次加入称取表面活性剂、杀菌剂,pH调节剂搅拌均匀,得基液;
向剩余水中加入交联剂,混合均匀,得交联液;
控制所得基液、交联液的体积比(泵入比例)为100:5;
3)压裂工艺;包括压裂前置液阶段、压裂携砂液阶段和压裂顶替液阶段;前置液阶段按2.0m3/min的排量,将混合的压裂液冻胶按8~10%砂比开始携带粉砂支撑剂2m3,携砂液阶段保持2.0m3/min的排量,10-40%砂比(按增加5%的砂比)携带30-50目陶粒支撑剂20m3(设计25m3),完成主裂缝的支撑工序;停砂顶替完成压裂施工。
其中前置液阶段和压裂携砂液阶段采用高效防膨压裂液,高效防膨压裂液中采用常规方式交联并泵入地层,共160m3
压裂后期压力爬升明显(图6),停止加砂,判断为液体配置36小时后性能较差,无法满足高砂比支撑剂的泵入。取样对液体进行流变性试验,液体粘度剪切1小时后仅52mpa.s(图7)。压后单井日产油0.2吨,日产液1.2方(图8),压裂施工及增产效果均不理想。
上述实施例仅是为了清楚地说明所做的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或者变动,这里无需也无法对所有的实施方式予以穷举,因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (7)

1.一种低孔低渗强水敏性储层的高效防膨压裂工艺,其特征在于,包括如下步骤:
1)高效防膨压裂液配比设计;各原料及其所占质量百分比为:增稠组分 0.2-0.6%,pH值调节剂0.035-0.055%,表面活性剂0.5-0.6%,防膨组分5-7%,杀菌剂0.1-0.15%,交联剂0.8-0.9%,其余为水;
2)高效防膨压裂液的配制;按上述配比称取各原料,首先将称取的增稠剂溶解于部分水中,然后依次加入称取的表面活性剂、杀菌剂、部分pH值调节剂,搅拌均匀,得基液;
向部分水中加入剩余的pH值调节剂和防膨组分,搅拌均匀,得防膨液;
向剩余水中加入交联剂,混合均匀,得交联液;
3)压裂工艺;包括压裂前置液阶段、压裂携砂液阶段和压裂顶替液阶段;其中压裂前置液阶段和压裂携砂液阶段采用高效防膨压裂液,高效防膨压裂液中的基液、防膨液和交联液在施工现场进行混合并泵入地层,携砂阶段采用裂缝饱充填的泵注工艺;
所述防膨组分为季铵盐类粘土稳定剂;
所述基液中,用水量占设计用水量的80-90%,pH值调节剂的用量占设计用量的40-64%;
防膨液中,用水量占设计用量的4-5%。
2.根据权利要求1所述的高效防膨压裂工艺,其特征在于,所述增稠组分为羟丙基胍胶或羧甲基羟丙基胍胶;pH值调节剂为NaOH。
3.根据权利要求1所述的高效防膨压裂工艺,其特征在于,步骤3)中所述泵入温度为40-120℃。
4.根据权利要求1所述的高效防膨压裂工艺,其特征在于,所述压裂前置液阶段和携砂液阶段的高效防膨压裂液交联冻胶在地层温度下的粘度为120-160mpa.s。
5.根据权利要求1所述的高效防膨压裂工艺,其特征在于,所述裂缝饱充填工艺,为不同粒径支撑剂加砂工艺,包括大粒径支撑剂、中粒径支撑剂、小粒径支撑剂,对应的尺寸大小分别为30-50目、40-70目、70-140目。
6.根据权利要求1所述的高效防膨压裂工艺,其特征在于,先按5-8%砂比携带70-140目支撑剂进行注液,完成前置液工序;再按10-25%砂比开始携带40-70目支撑剂,然后按30-40%的砂比携带30-50目支撑剂,完成主裂缝的支撑工序。
7.根据权利要求1所述的高效防膨压裂工艺,其特征在于,压裂前置液阶段按照1.0-1.5m3/min的排量,主加砂段保持排量施工或将排量提升到2.0-3.0m³/min施工,完成压裂。
CN202110056530.8A 2020-10-16 2021-01-15 一种低孔低渗强水敏性储层的高效防膨压裂工艺 Active CN113153254B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112159 2020-10-16
CN2020111121594 2020-10-16

Publications (2)

Publication Number Publication Date
CN113153254A CN113153254A (zh) 2021-07-23
CN113153254B true CN113153254B (zh) 2022-12-27

Family

ID=76878408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110056530.8A Active CN113153254B (zh) 2020-10-16 2021-01-15 一种低孔低渗强水敏性储层的高效防膨压裂工艺

Country Status (1)

Country Link
CN (1) CN113153254B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183312A1 (zh) * 2013-05-16 2014-11-20 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种油井用新型植物胶压裂液冻胶
CN104498018A (zh) * 2014-12-23 2015-04-08 中国石油天然气股份有限公司 一种低浓度瓜尔胶海水基压裂液及其制备方法与应用
CN105838341A (zh) * 2016-05-04 2016-08-10 中国石油化工股份有限公司江汉油田分公司石油工程技术研究院 一种压裂用的长效防膨剂及其制备方法、应用
CN107057661A (zh) * 2017-06-02 2017-08-18 中国石油集团渤海钻探工程有限公司 完井液用环保型黏土防膨剂及其制备方法
CA3055128A1 (en) * 2019-01-22 2019-11-18 Sichuan Aaosaide Material Technology Co., Ltd. High temperature-resistance fully-suspended low-damage fracturing fluid and preparing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014183312A1 (zh) * 2013-05-16 2014-11-20 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种油井用新型植物胶压裂液冻胶
CN104498018A (zh) * 2014-12-23 2015-04-08 中国石油天然气股份有限公司 一种低浓度瓜尔胶海水基压裂液及其制备方法与应用
CN105838341A (zh) * 2016-05-04 2016-08-10 中国石油化工股份有限公司江汉油田分公司石油工程技术研究院 一种压裂用的长效防膨剂及其制备方法、应用
CN107057661A (zh) * 2017-06-02 2017-08-18 中国石油集团渤海钻探工程有限公司 完井液用环保型黏土防膨剂及其制备方法
CA3055128A1 (en) * 2019-01-22 2019-11-18 Sichuan Aaosaide Material Technology Co., Ltd. High temperature-resistance fully-suspended low-damage fracturing fluid and preparing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
户部寨地区强水敏储层压裂改造保护技术研究;刘洪升等;《特种油气藏》;20050228;第12卷(第01期);第80-83页 *
清洁压裂液技术研究与应用;王均等;《中外能源》;20090515;第14卷(第05期);第51-56页 *

Also Published As

Publication number Publication date
CN113153254A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CA2570421C (en) Viscosified treatment fluids and associated methods of use
AU780512B2 (en) Subterranean formation treating fluid concentrates treating fluids and methods
US7001872B2 (en) Subterranean formation treating fluid and methods of fracturing subterranean formations
US7931084B2 (en) Methods for treating a subterranean formation by introducing a treatment fluid containing a proppant and a swellable particulate and subsequently degrading the swellable particulate
AU2003236481B2 (en) Re-use of recovered treating fluid
CN102439110B (zh) 使用包含水溶性多糖、水溶性盐和尿素的处理液来处理井的方法
US20050137094A1 (en) Subterranean formation treatment fluids and methods of using such fluids
CA2520361A1 (en) Well treating composition containing relatively lightweight proppant and acid
US9752072B2 (en) Propping compositions for enhancing fracture conductivity
US9803132B2 (en) Methods for altering fluid rheology
EP3156471A1 (en) Propping agent and method for placing same in a hydraulic fracture
CN104948159A (zh) 一种天然水压裂施工方法
WO2011123249A2 (en) Method of subterranean formation treatment
CN112111265A (zh) 一种用于水力压裂的原位生成支撑剂
CN113337266A (zh) 一种增强支撑剂承压能力的压裂液体系及其使用方法
US10000692B2 (en) Fracturing or gravel-packing fluid with CMHEC in brine
CN113153254B (zh) 一种低孔低渗强水敏性储层的高效防膨压裂工艺
US10883041B2 (en) Crosslinked proppant-gel matrix
WO2013081805A1 (en) BREAKING DIUTAN WITH OXALIC ACID AT 180 °F to 220 °F
CN109762551A (zh) 一种提高自悬浮支撑剂油藏适应性的方法
AU2014299302B2 (en) Inhibiting salting out of diutan or scleroglucan in well treatment
CN112282724B (zh) 一种低滤失造长缝清洁压裂工艺
CN114622884A (zh) 一种油气井多尺度裂缝的全支撑压裂方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant