CN113144885A - Method for treating low-concentration VOCs (volatile organic compounds) by electrocatalytic oxidation and deodorizing - Google Patents

Method for treating low-concentration VOCs (volatile organic compounds) by electrocatalytic oxidation and deodorizing Download PDF

Info

Publication number
CN113144885A
CN113144885A CN202010077149.5A CN202010077149A CN113144885A CN 113144885 A CN113144885 A CN 113144885A CN 202010077149 A CN202010077149 A CN 202010077149A CN 113144885 A CN113144885 A CN 113144885A
Authority
CN
China
Prior art keywords
vocs
concentration
gas
electrolyte
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010077149.5A
Other languages
Chinese (zh)
Inventor
王丽芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangmen Lvyiyin Environmental Protection Technology Co ltd
Original Assignee
Jiangmen Lvyiyin Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangmen Lvyiyin Environmental Protection Technology Co ltd filed Critical Jiangmen Lvyiyin Environmental Protection Technology Co ltd
Priority to CN202010077149.5A priority Critical patent/CN113144885A/en
Publication of CN113144885A publication Critical patent/CN113144885A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Abstract

The invention belongs to the field of waste gas VOCs treatment, and particularly relates to a method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation, which comprises the following steps: adding electrolyte into water to prepare ionic electrolyte with a certain concentration; spraying in a fog form according to a certain direction; and (3) reversely feeding the VOCs gas into a special spray tower according to a certain flow, fully contacting the VOCs gas with electrolyte, wherein the ejection direction of the VOCs is opposite to the sprayed direction of the ionic liquid, and introducing direct-current voltage into a mixed liquid tank in which the VOCs gas is contacted with the ionic liquid to obtain the method for treating the low-concentration VOCs and deodorizing. The invention controls the proportion of current and voltage to realize the control of the intensity of an electric field and electrocatalysis of VOCs gas; the invention adopts the inlet of small-mouth gas and the outlet of large-mouth gas to control the contact time of the gas and the conducting liquid and realize the effective treatment of VOCs gas.

Description

Method for treating low-concentration VOCs (volatile organic compounds) by electrocatalytic oxidation and deodorizing
Technical Field
The invention belongs to the field of waste gas VOCs treatment, and particularly relates to a method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation.
Technical Field
Volatile Organic Compounds (VOCs) not only affect the health of people, but also have a direct relationship with the generation of haze. At present, the national environmental protection attention degree is higher and higher, the source punishment is increased, and green water green mountains are realized. The treatment of VOCs mainly comprises: non-recovery methods (including catalytic oxidation, thermal cracking, etc.) and recovery methods (adsorption, absorption, etc.).
Patent number "CN 110237665A" discloses an electrocatalytic oxidation VOC treatment device, which comprises a spraying mechanism, a pretreatment mechanism and an electrolysis mechanism; the spraying mechanism comprises a tower body, an air inlet and a plurality of spraying units, and each spraying unit comprises a packing layer and a plurality of uniformly arranged spray heads; the pretreatment mechanism comprises a storage box, a sedimentation box and an overflow box, wherein a sedimentation plate is arranged in the middle of the sedimentation box; the electrolysis mechanism comprises an electrolysis box and a water outlet box, a plurality of electrodes which are uniformly arranged are arranged in the electrolysis box, and the electrodes are electrically connected with a low-voltage power supply arranged outside the electrolysis box; the bottom of the electrolytic tank is provided with a water inlet which is communicated with the overflow tank through a spray pump, and the top of the water outlet tank is provided with a water outlet which is communicated with the spray head. The gas pollutant is transferred into the spray liquid, then the spray liquid is subjected to electrocatalytic oxidation treatment, and the spray liquid carrying oxidized free radicals is sprayed, so that the aim of purifying the gas is achieved.
Patent number "CN 103920377A" discloses an electricity-bio-trickling filter purifier of VOC waste gas, including electricity-bio-trickling filter, waste gas configuration device and spray water circulating device, electricity-bio-trickling filter includes including the tower body, pack the microorganism filler in the tower body, be equipped with the sample connection on the tower body, just establish negative and positive electrodes in the tower body, negative and positive electrodes are connected with outside adjustable constant voltage power supply. The invention purifies the waste gas pollutants by utilizing the cooperation of electrocatalysis and microbial reaction, and the biological activity can be influenced or improved under the action of an electric field, so that the biodegradation rate is changed, and the degradation efficiency of the VOC waste gas is greatly improved. The invention belongs to the structure, and has certain limitation on the practical application of the method.
Disclosure of Invention
The invention discloses a method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation, which can achieve the treatment efficiency of over 90 percent for the VOCs gas with low concentration (less than or equal to 300ppm), and control the intensity of an electric field and electrocatalysis the VOCs gas by controlling the proportion of current to voltage; the invention realizes the control of the gas inlet mode of the VOCs, adopts the inlet of small-mouth gas and the outlet of large-mouth gas, controls the contact time of the gas and the conducting liquid, and realizes the effective treatment of the VOCs gas.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation,
s1, adding electrolyte into water to prepare ionic electrolyte with a certain concentration;
s2, spraying the electrolyte of S1 in a mist form according to a certain direction;
s3, enabling VOCs gas to reversely enter a special spray tower according to a certain flow rate, enabling the VOCs gas to be fully contacted with electrolyte, enabling the ejection direction of VOCs to be opposite to the direction of sprayed ionic liquid, enabling the center of the sprayed ionic liquid and the center of the ejected VOCs gas to be on the same straight line, and adding a catalyst into the ionic electrolyte;
s4, in S3, introducing direct current voltage into a mixed liquid tank in which VOCs gas is contacted with ionic liquid, connecting the positive electrode and the negative electrode, and controlling certain current;
and S5, introducing voltage into S4 to obtain the method for treating the low-concentration VOCs by the electrocatalytic oxidation of the VOCs and deodorizing.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation of VOCs comprises adding electrolyte in S1, wherein the electrolyte is one of sodium sulfate, sodium chloride, sodium bicarbonate, sodium acetate, potassium nitrate, etc.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation of VOCs comprises the following steps of S1: the cation molar concentration is as follows: 0.5-1.0 mol/L.
In S3, the contact time of the ejected ionic liquid and the ejected VOCs gas is as follows: 0.5-0.8 s.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation of VOCs includes such steps as S3, and the retention time of VOCs in spray tower is 0.5-0.8S.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation of VOCs comprises the following steps of S4: the negative electrode of the plating titanium alloy plate or the plating titanium alloy net is as follows: stainless steel plate.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation of VOCs is disclosed, wherein in S4, the voltage is direct current voltage and is less than or equal to 46V.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation of VOCs includes such steps as introducing a voltage to a liquid tank (S4) to make its resistance value be 0.4-0.6 ohm.
A method for treating low-concentration VOCs and deodorizing VOCs by electrocatalytic oxidation of VOCs is disclosed, wherein in S4, the voltage is 24V, and the current is 50A.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation of VOCs, wherein in S3, the concentration of VOCs gas is less than or equal to 300 ppm.
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation of VOCs comprises adding an adsorption buffer method for treating VOCs with concentration not less than 300ppm until the concentration of VOCs is not more than 300ppm, and adding the method.
Further, the application field of the method for treating low-concentration VOCs and deodorizing by the electrocatalytic oxidation of the VOCs is as follows: leather factories, coating factories, electroplating factories, pharmaceutical factories, printing factories, lithium ion battery factories, furniture factories, chemical industries, and the like.
Technical effects
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation adopts an electrocatalytic oxidation treatment technology, and has extremely high treatment efficiency (up to more than 90%) for low-concentration (less than or equal to 300ppm) VOCs gas.
The invention controls the ratio of current and voltage, realizes the control of the intensity of the electric field by low voltage, and is safe.
The invention strictly controls the resistance value in electrocatalysis, controls the resistance value between 0.4 and 0.6 ohm, and can realize high-efficiency treatment of low-VOCs gas.
The invention adopts VOCs gas with small mouth to enter and gas with large mouth to flow out, controls the contact time of the gas and the conducting liquid, and realizes the effective treatment of the VOCs gas, and the retention time of the VOCs gas in the spray tower reaches 0.5s-0.8 s.
The invention reduces the VOCs gas with high concentration (more than or equal to 300ppm) to below 300ppm by combining with other treatment methods, and realizes high-efficiency treatment by combining with the invention.
DETAILED DESCRIPTION OF EMBODIMENT (S) OF INVENTION
Example 1
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation,
s1, adding electrolyte into water to prepare ionic electrolyte with a certain concentration;
s2, spraying the electrolyte of S1 in a mist form according to a certain direction;
s3, enabling VOCs gas to reversely enter a special spray tower according to a certain flow rate, enabling the VOCs gas to be fully contacted with electrolyte, enabling the ejection direction of VOCs to be opposite to the direction of sprayed ionic liquid, enabling the center of the sprayed ionic liquid and the center of the ejected VOCs gas to be on the same straight line, and adding a catalyst into the ionic electrolyte;
s4, in S3, introducing direct current voltage into a mixed liquid tank in which VOCs gas is contacted with ionic liquid, connecting the positive electrode and the negative electrode, and controlling certain current;
and S5, introducing voltage into S4 to obtain the method for treating the low-concentration VOCs by the electrocatalytic oxidation of the VOCs and deodorizing.
In the embodiment 1#, specifically: the electrolyte in S1 is sodium sulfate, and the cation molar concentration is as follows: 0.8 mol/L;
in S3, the retention time of VOCs gas in the spray tower is 0.5-0.7S;
in S4, the positive electrode is a plated titanium alloy plate or a plated titanium alloy mesh, and the negative electrode is: a stainless steel plate;
in S4, the voltage is 24V, and the current is 50A; in S4, a voltage liquid tank is introduced, and the resistance value is 0.48 ohm;
in S3, the concentration of VOCs gas is less than or equal to 300 ppm.
To the specific embodiment in 1# carry out the gaseous electro-catalysis experiment of VOCs to different VOCs gases, see table 1, respectively to waste gas such as leather factory, coating factory, electroplate factory, pharmaceutical factory, when this waste gas original concentration control is less than 300ppm, through this electro-catalysis method after, waste gas concentration reduces very big, realizes the electro-catalysis effect more than 90%, realizes directly discharging, in addition, the VOCs gas after this method is handled, odorless, environmental protection.
Table 1 example 1# electrocatalytic experiments on different VOCs gases
Source of VOCs Leather factory Coating plant Electroplating plant Pharmaceutical factory
Partial species of VOCs DMF, vinyl chloride, butane Ketones, etc., benzene series, etc Ethyl acetate, benzene series, ethyl acetate Butyl ethers of glycols, ketones, and the like Organic exhaust gas and the like DMF, benzene series, organic amine, ethyl acetate, dichloromethane and propyl Ketones, butanone, ethyl ether, dichloroethane, acetic acid, chloroform, etc
VOCs inlet concentration- ppm 300 280 280 290
VOCs air outlet concentration- ppm 29 28 27 28
Adsorption rate 90.3% 90% 90.3% 90.3%
Example 2
The concentration of the inlet VOCs gas is changed, the other contents are completely the same as 1#, the embodiment is 2#, wherein the concentration of the specific VOCs is shown in Table 2, the treatment method of the gas VOCs gas is added, the concentration of the VOCs is controlled, when the concentration of the gas entering the device is controlled to be less than 300ppm, the concentration of the waste gas is greatly reduced after the electrocatalysis method, the electrocatalysis effect of more than 90 percent is realized, the deodorization effect is realized, and the direct emission is realized.
Table 2 example 2 electrocatalytic experiments on different VOCs gases
Source of VOCs Leather factory Coating plant Electroplating plant Pharmaceutical factory
Partial species of VOCs DMF, vinyl chloride, butane Ketones, etc., benzene series, etc Ethyl acetate, benzene series, ethyl acetate Butyl ethers of glycols, ketones, and the like Organic waste gas Etc. of DMF, benzene series, organic amine, ethyl acetate, dichloromethane, Acetone, acetone,Butanone, diethyl ether, dichloroethane, acetic acid, chloroform, etc
Original mouth concentration/ppm of VOCs 1000 780 980 1000
Adding other conventional VOCs for treatment Post-process entry concentration 290 270 280 295
VOCs gas concentration & gt after 2# treatment ppm 29 26 27 28
Adsorption rate 90% 90.3% 90.3% 90.5%
Example 3
A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation,
s1, adding electrolyte into water to prepare ionic electrolyte with a certain concentration;
s2, spraying the electrolyte of S1 in a mist form according to a certain direction;
s3, enabling VOCs gas to reversely enter a special spray tower according to a certain flow rate, enabling the VOCs gas to be fully contacted with electrolyte, enabling the ejection direction of VOCs to be opposite to the direction of sprayed ionic liquid, enabling the center of the sprayed ionic liquid and the center of the ejected VOCs gas to be on the same straight line, and adding a catalyst into the ionic electrolyte;
s4, in S3, introducing direct current voltage into a mixed liquid tank in which VOCs gas is contacted with ionic liquid, connecting the positive electrode and the negative electrode, and controlling certain current;
and S5, introducing voltage into S4 to obtain the method for treating the low-concentration VOCs by the electrocatalytic oxidation of the VOCs and deodorizing.
The number 3# specifically includes: the electrolyte is a combination of sodium acetate and potassium nitrate (the concentration of cations in the two substances is 1: 1); the cation molar concentration is as follows: 0.7 mol/L;
in S3, the retention time of VOCs gas in the spray tower reaches 0.7S-0.75S;
in S4, the positive electrode is: the negative electrode of the plating titanium alloy plate or the plating titanium alloy net is as follows: a stainless steel plate;
in S4, the voltage is 36V, the current is 65A, in S4, the voltage liquid tank is introduced, and the resistance value is 0.55 ohm;
in S3, the concentration of VOCs gas is less than or equal to 300 ppm.
To the specific embodiment in 3# carry out the gaseous electro-catalysis experiment of VOCs to different VOCs gases, see table 3, to waste gas such as leather factory, coating factory, electroplate factory, pharmaceutical factory respectively, when this waste gas original concentration control is less than 300ppm, through this electro-catalysis method after, waste gas concentration reduces very big, realizes the electro-catalysis effect more than 90%, realizes directly discharging, in addition, the VOCs gas after this method is handled, odorless, environmental protection.
Table 3 example 3# gas electrocatalytic experiments on different VOCs
Source of VOCs Leather factory Coating plant Electroplating plant Pharmaceutical factory
Fractions of VOCs Species of DMF, vinyl chloride, butanone Etc. benzene series compounds Ethyl acetate, benzene series, ethylene glycol Butyl ethers of alcohols, ketones, and the like Organic waste Qi, etc DMF, benzene series, organic amine, ethyl acetate, dichloromethane, acetone and butyl Ketones, ethyl ether, dichloroethane, acetic acid, chloroform and the like
VOCs air inlet Concentration per ppm 289 285 278 290
VOCs gas outlet Concentration per ppm 29 28 27 28
Adsorption rate 90% 90.1% 90.2% 90.3%
Example 4
The concentration of the inlet VOCs gas is changed, the other contents are completely the same as 3#, the embodiment is 4#, wherein the concentration of the specific VOCs is shown in Table 2, the treatment method of the gas VOCs gas is added, the concentration of the VOCs is controlled, when the concentration of the gas entering the device is controlled to be less than 300ppm, the concentration of the waste gas is greatly reduced after the electrocatalysis method, the electrocatalysis effect of more than 90% is realized, the deodorization effect is realized, and the direct emission is realized.
Table 4 example 4# electrocatalytic experiments on different VOCs gases
Source of VOCs Leather factory Coating plant Electroplating plant Pharmaceutical factory
Partial species of VOCs DMF, vinyl chloride, butane Ketones, etc., benzene series, etc Ethyl acetate, benzene series, ethyl acetate Butyl ethers of glycols, ketones, and the like Organic exhaust gas and the like DMF, benzene series, organic amine, ethyl acetate and methylene dichloride Alkane, acetone, butanone, diethyl ether, dichloroethane, acetic acid, chlorine Imitation, etc
Original mouth concentration/ppm of VOCs 900 980 880 900
Adding other conventional VOCs for treatment Post-process entry concentration 290 280 285 292
2# treated VOCs gas concentration Degree/ppm 28 27 27 28
Adsorption rate >90% >90% >90% >90%
Example 5
Changing the retention time of VOCs gas in the spray tower, wherein the rest contents are the same as 1#, the serial number is 5#, and the retention time is less than 0.4 s; when the original concentration of the waste gas is controlled to be less than 300ppm for the waste gas of leather factories, coating factories, electroplating factories, pharmaceutical factories and the like, the concentration of the waste gas is reduced extremely after the electrocatalysis method, and the catalysis efficiency is 50 percent.
Example 6
After the current is changed, the resistance value of the liquid tank in S4 is the same as that of the liquid tank in No. 3, the serial number is 6#, the resistance value of the liquid tank is 0.2 ohm, the voltage is 24V, and the current is 120A; when the original concentration of the waste gas is controlled to be less than 300ppm for the waste gas of leather factories, coating factories, electroplating factories, pharmaceutical factories and the like, the concentration of the waste gas is reduced extremely after the electrocatalysis method, and the catalysis efficiency is 40 percent. No. 7, the resistance value of the liquid tank is 0.7 ohm, the voltage is 36V, the current is 51A, when the original concentration of the waste gas is controlled to be less than 300ppm for the waste gas of leather factories, coating factories, electroplating factories, pharmaceutical factories and the like, the reduction of the waste gas concentration is extremely small after the electrocatalysis method, and the catalytic efficiency is 50%. The reason is that different voltage and current values influence the strength of the electric field, the strength of the electric field directly influences the effect of electro-catalysis of the VOCs gas, the formed resistance value is 0.4-0.6 ohm, and the formed electric field strength can realize the high-efficiency treatment of the VOCs gas.
In summary, all the above embodiments and the materials used in the above embodiments are only examples of the present invention, and are not intended to limit the scope of the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (10)

1. A method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation,
s1, adding electrolyte into water to prepare ionic electrolyte with a certain concentration;
s2, spraying the electrolyte of S1 in a mist form according to a certain direction;
s3, enabling VOCs gas to reversely enter a special spray tower according to a certain flow rate, enabling the VOCs gas to be fully contacted with electrolyte, enabling the ejection direction of VOCs to be opposite to the direction of sprayed ionic liquid, enabling the center of the sprayed ionic liquid and the center of the ejected VOCs gas to be on the same straight line, and adding a catalyst into the ionic electrolyte;
s4, in S3, introducing direct current voltage into a mixed liquid tank in which VOCs gas is contacted with ionic liquid, connecting the positive electrode and the negative electrode, and controlling certain current;
and S5, introducing voltage into S4 to obtain the method for treating the low-concentration VOCs by the electrocatalytic oxidation of the VOCs and deodorizing.
2. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claim 1, wherein: the electrolyte added in S1 is one of sodium sulfate, sodium chloride, sodium bicarbonate, sodium acetate, potassium nitrate, etc.; the ion concentration in S1 is: the cation molar concentration is as follows: 0.5-1.0 mol/L; in S4, the positive electrode is: the negative electrode of the plating titanium alloy plate or the plating titanium alloy net is as follows: stainless steel plate.
3. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claim 1, wherein: in S3, the retention time of VOCs gas in the spray tower is 0.5S-0.8S.
4. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claim 1, wherein: in S4, the voltage is direct current voltage, and the voltage is less than or equal to 46V; and S4, introducing a voltage liquid tank, wherein the resistance value of the liquid tank is 0.4-0.6 ohm.
5. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claim 1, wherein: in S4, the voltage was 24V and the current was 50A.
6. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claim 1, wherein: in S3, the concentration of VOCs gas is less than or equal to 300 ppm.
7. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claim 1, wherein: and (3) adding an adsorption buffer method for treating the concentration of the VOCs gas of more than or equal to 300ppm until the concentration of the VOCs gas of less than or equal to 300ppm, and then adding the method.
8. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claims 1-7, specifically comprising:
s1, adding electrolyte into water to prepare ionic electrolyte with a certain concentration;
s2, spraying the electrolyte of S1 in a mist form according to a certain direction;
s3, enabling VOCs gas to reversely enter a special spray tower according to a certain flow rate, enabling the VOCs gas to be fully contacted with electrolyte, enabling the ejection direction of VOCs to be opposite to the direction of sprayed ionic liquid, enabling the center of the sprayed ionic liquid and the center of the ejected VOCs gas to be on the same straight line, and adding a catalyst into the ionic electrolyte;
s4, in S3, introducing direct current voltage into a mixed liquid tank in which VOCs gas is contacted with ionic liquid, connecting the positive electrode and the negative electrode, and controlling certain current;
s5, introducing voltage into S4 to obtain a method for treating low-concentration VOCs by electrocatalytic oxidation of VOCs and deodorizing;
wherein, the electrolyte in S1 is sodium sulfate, and the cation molar concentration is: 0.8 mol/L;
in S3, the retention time of VOCs gas in the spray tower is 0.5-0.7S;
in S4, the positive electrode is a plated titanium alloy plate or a plated titanium alloy mesh, and the negative electrode is: a stainless steel plate;
in S4, the voltage is 24V, and the current is 50A; in S4, a voltage liquid tank is introduced, and the resistance value is 0.48 ohm;
in S3, the concentration of VOCs gas is less than or equal to 300 ppm.
9. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claims 1-7, specifically comprising:
s1, adding electrolyte into water to prepare ionic electrolyte with a certain concentration;
s2, spraying the electrolyte of S1 in a mist form according to a certain direction;
s3, enabling VOCs gas to reversely enter a special spray tower according to a certain flow rate, enabling the VOCs gas to be fully contacted with electrolyte, enabling the ejection direction of VOCs to be opposite to the direction of sprayed ionic liquid, enabling the center of the sprayed ionic liquid and the center of the ejected VOCs gas to be on the same straight line, and adding a catalyst into the ionic electrolyte;
s4, in S3, introducing direct current voltage into a mixed liquid tank in which VOCs gas is contacted with ionic liquid, connecting the positive electrode and the negative electrode, and controlling certain current;
s5, introducing voltage into S4 to obtain a method for treating low-concentration VOCs by electrocatalytic oxidation of VOCs and deodorizing; wherein in s1, the electrolyte is a combination of sodium acetate and potassium nitrate (the cation concentration in the two substances is 1: 1); the cation molar concentration is as follows: 0.7 mol/L;
in S3, the retention time of VOCs gas in the spray tower reaches 0.7S-0.75S;
in S4, the positive electrode is: the negative electrode of the plating titanium alloy plate or the plating titanium alloy net is as follows: a stainless steel plate;
in S4, the voltage is 36V, the current is 65A, in S4, the voltage liquid tank is introduced, and the resistance value is 0.55 ohm;
in S3, the concentration of VOCs gas is less than or equal to 300 ppm.
10. The method for treating low-concentration VOCs and deodorizing by electrocatalytic oxidation according to claims 1-9, which has the application fields of: leather factories, coating factories, electroplating factories, pharmaceutical factories, printing factories, lithium ion battery factories, furniture factories, chemical industries, and the like.
CN202010077149.5A 2020-01-23 2020-01-23 Method for treating low-concentration VOCs (volatile organic compounds) by electrocatalytic oxidation and deodorizing Pending CN113144885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010077149.5A CN113144885A (en) 2020-01-23 2020-01-23 Method for treating low-concentration VOCs (volatile organic compounds) by electrocatalytic oxidation and deodorizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010077149.5A CN113144885A (en) 2020-01-23 2020-01-23 Method for treating low-concentration VOCs (volatile organic compounds) by electrocatalytic oxidation and deodorizing

Publications (1)

Publication Number Publication Date
CN113144885A true CN113144885A (en) 2021-07-23

Family

ID=76882237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010077149.5A Pending CN113144885A (en) 2020-01-23 2020-01-23 Method for treating low-concentration VOCs (volatile organic compounds) by electrocatalytic oxidation and deodorizing

Country Status (1)

Country Link
CN (1) CN113144885A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030088139A1 (en) * 2001-11-07 2003-05-08 Moez Nagji Method and system for treating volatile organic compounds using a catalytic oxidizer without a burner
CN1907541A (en) * 2005-08-02 2007-02-07 黄立维 Method for unwanted exhaust gas purification and dedicated apparatus
CN101332404A (en) * 2008-08-07 2008-12-31 上海交通大学 Method and device of processing gaseous VOCs using solid extraction- electrocatalysis
CN103920377A (en) * 2014-04-16 2014-07-16 浙江万里学院 Electric-biological drip filter purification device for VOC (volatile organic compounds) waste gas
CN205925352U (en) * 2016-06-30 2017-02-08 江苏齐清环境科技有限公司 Particle crowd electrode electricity catalytic oxidation treated water solubility organic waste gas's device
CN109364739A (en) * 2018-10-29 2019-02-22 江苏省环境科学研究院 A kind of continuous removal technique and its dedicated unit of exhaust gas VOCs
CN110237665A (en) * 2019-07-24 2019-09-17 河北瑛泽环保科技有限公司 A kind of electrocatalytic oxidation VOC controlling device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030088139A1 (en) * 2001-11-07 2003-05-08 Moez Nagji Method and system for treating volatile organic compounds using a catalytic oxidizer without a burner
CN1907541A (en) * 2005-08-02 2007-02-07 黄立维 Method for unwanted exhaust gas purification and dedicated apparatus
CN101332404A (en) * 2008-08-07 2008-12-31 上海交通大学 Method and device of processing gaseous VOCs using solid extraction- electrocatalysis
CN103920377A (en) * 2014-04-16 2014-07-16 浙江万里学院 Electric-biological drip filter purification device for VOC (volatile organic compounds) waste gas
CN205925352U (en) * 2016-06-30 2017-02-08 江苏齐清环境科技有限公司 Particle crowd electrode electricity catalytic oxidation treated water solubility organic waste gas's device
CN109364739A (en) * 2018-10-29 2019-02-22 江苏省环境科学研究院 A kind of continuous removal technique and its dedicated unit of exhaust gas VOCs
CN110237665A (en) * 2019-07-24 2019-09-17 河北瑛泽环保科技有限公司 A kind of electrocatalytic oxidation VOC controlling device

Similar Documents

Publication Publication Date Title
CN107469597B (en) Electrochemical-based waste gas and waste water coupling purification system and purification method thereof
CN110980895B (en) Method and device for electro-adsorption and degradation removal of antibiotics from water
CN1263686C (en) Photoelectrocatalysis and oxidation device for treating organic substance in water
CN102219323B (en) Method for simultaneously removing organic pollutants and ammonia in waste water and reactor
CN101347705A (en) Electrolysis reactor for removing gaseous noxious pollutant from airflow and method of use thereof
CN102553406B (en) Denitration method and device combining direct-current corona discharge with catalytic oxidation
CN102600692A (en) Purifying device for industrial organic waste gas
CN103130307A (en) Ozone and photo-electrochemical coupled oxidation water-treatment device and method
CN110721563A (en) Chlorine-containing organic waste gas purification treatment process
CN207307579U (en) A kind of exhaust gas waste water coupling purification system based on electrochemistry
CN105601052A (en) Treatment method for removing lead in electroplating wastewater
CN206188547U (en) Four -phase catalytic oxidation device
CN104226097A (en) Oxidation spray purification device for waste gas in garbage disposal and operation method of oxidation spray purification device
CN115722052B (en) Device and method for removing volatile organic compounds in industrial waste gas
CN112456729A (en) System and method for treating alkali waste water
CN111514743A (en) Catalytic oxidation system for treating malodorous gas
CN113144885A (en) Method for treating low-concentration VOCs (volatile organic compounds) by electrocatalytic oxidation and deodorizing
KR100854071B1 (en) Apparatus for removal of odor gas from pig pen and hen house by using mediated electrochemical oxidation
CN107376631B (en) A kind of microbiological fuel cell spray process removing ultrahigh concentration NOxMethod
CN107890758B (en) External circulation type electrochemical sewage treatment plant deodorization system and method
CN202538639U (en) Device for purifying nitrogen oxides in smoke by using electrode biomembrane
CN202590555U (en) Purification treatment device for industrial organic waste gas
CN110526484B (en) Process for treating industrial wastewater of organophosphorus pesticide
CN108479341A (en) A kind of plasma body cooperative iron-carbon micro-electrolysis handles the device of organic flue gas
CN215049460U (en) Alkaloid waste alkaline water treatment system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210723

RJ01 Rejection of invention patent application after publication