CN113128744A - Distribution planning method and device - Google Patents
Distribution planning method and device Download PDFInfo
- Publication number
- CN113128744A CN113128744A CN202010043857.7A CN202010043857A CN113128744A CN 113128744 A CN113128744 A CN 113128744A CN 202010043857 A CN202010043857 A CN 202010043857A CN 113128744 A CN113128744 A CN 113128744A
- Authority
- CN
- China
- Prior art keywords
- distribution
- delivery
- order
- nodes
- network model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
- G06Q10/047—Optimisation of routes or paths, e.g. travelling salesman problem
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
- G06Q10/0835—Relationships between shipper or supplier and carriers
- G06Q10/08355—Routing methods
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Economics (AREA)
- Strategic Management (AREA)
- Quality & Reliability (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Game Theory and Decision Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种配送规划方法和装置,涉及计算机技术领域。该方法包括:根据待配送的订单信息构建配送网络模型;其中,所述配送网络模型由节点、以及节点之间的边组成;所述节点用于表示订单的配送点,所述节点之间的边用于表示订单配送点之间的连接关系;对所述配送网络模型中的节点进行聚类,以得到多个聚簇;将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域。通过以上步骤,能够根据待配送的订单信息动态、合理地划分配送区域,使得各个配送区域内的配送单量趋于平衡,进而有助于从整体上提高配送效率。
The invention discloses a distribution planning method and device, and relates to the technical field of computers. The method includes: constructing a distribution network model according to the order information to be distributed; wherein, the distribution network model consists of nodes and edges between the nodes; the nodes are used to represent the distribution points of the order, and the nodes between the nodes are used for The edge is used to represent the connection relationship between the order distribution points; the nodes in the distribution network model are clustered to obtain multiple clusters; the range covered by each of the multiple clusters is taken as a Delivery area to get multiple delivery areas. Through the above steps, the delivery areas can be dynamically and reasonably divided according to the order information to be delivered, so that the quantity of delivery orders in each delivery area tends to be balanced, thereby helping to improve the delivery efficiency as a whole.
Description
技术领域technical field
本发明涉及计算机技术领域,尤其涉及一种配送规划方法和装置。The invention relates to the field of computer technology, and in particular, to a distribution planning method and device.
背景技术Background technique
在物流配送场景中,需要划分配送区域,并为各个配送区域指定相应的配送人员。在现有技术中,配送区域在划分好之后往往保持固定不变,快递员根据分配的配送区域进行货物分拣和配送。In the logistics distribution scenario, it is necessary to divide the distribution area, and assign corresponding distribution personnel to each distribution area. In the prior art, the distribution area is often kept fixed after being divided, and the courier sorts and distributes the goods according to the assigned distribution area.
在实现本发明过程中,发明人发现现有技术中至少存在如下问题:第一、由于各个配送区域内的订单数量是动态变化的,因此,很可能出现不同配送区域的配送单量和配送时间极不平衡的情况,甚至有些快递员之间的配送时间差达到2至3小时。第二、在当前配送过程中,快递员往往是根据经验确定配送路径。当配送范围较小时,按照经验进行配送可能对配送效率的影响不大。但是,当配送范围变大时,按照经验进行配送就会出现配送路径规划不合理、配送效率低等问题。In the process of realizing the present invention, the inventor found that there are at least the following problems in the prior art: First, since the number of orders in each distribution area changes dynamically, it is very likely that the number of orders and the time of delivery in different distribution areas will appear. In extremely unbalanced situations, even some couriers have a 2 to 3 hour difference in delivery time. Second, in the current delivery process, couriers often determine the delivery route based on experience. When the distribution range is small, the distribution according to the experience may have little effect on the distribution efficiency. However, when the distribution range becomes larger, problems such as unreasonable distribution path planning and low distribution efficiency will occur when distribution is carried out according to experience.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供一种配送规划方法和装置,能够根据待配送的订单信息动态、合理地划分配送区域,使得各个配送区域内的配送单量趋于平衡,进而有助于从整体上提高配送效率。进一步,基于启发式算法在划分后的配送区域内进行路径规划,能够进一步提高配送效率。In view of this, the present invention provides a distribution planning method and device, which can dynamically and reasonably divide distribution areas according to the order information to be distributed, so that the amount of distribution orders in each distribution area tends to be balanced, thereby contributing to the overall Improve delivery efficiency. Further, the path planning in the divided distribution area based on the heuristic algorithm can further improve the distribution efficiency.
为实现上述目的,根据本发明的一个方面,提供了一种配送规划方法。To achieve the above object, according to one aspect of the present invention, a distribution planning method is provided.
本发明的配送规划方法包括:根据待配送的订单信息构建配送网络模型;其中,所述配送网络模型由节点、以及节点之间的边组成;所述节点用于表示订单的配送点,所述节点之间的边用于表示订单配送点之间的连接关系;对所述配送网络模型中的节点进行聚类,以得到多个聚簇;将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域。The distribution planning method of the present invention includes: constructing a distribution network model according to the order information to be distributed; wherein, the distribution network model consists of nodes and edges between nodes; the nodes are used to represent the distribution points of the order, and the The edges between the nodes are used to represent the connection relationship between the order distribution points; the nodes in the distribution network model are clustered to obtain multiple clusters; each of the multiple clusters is covered by The range is used as a delivery area to get multiple delivery areas.
可选地,所述根据待配送的订单信息构建配送网络模型包括:将订单的配送点坐标转化为配送网络模型中的节点,将订单配送点之间的连接关系转化为节点之间的边,并将订单配送点之间的物流配送难度综合评分转化为节点之间的边的权重。Optionally, the constructing a distribution network model according to the order information to be distributed includes: converting the coordinates of the distribution points of the order into nodes in the distribution network model, and converting the connection relationships between the order distribution points into edges between nodes, The comprehensive score of logistics distribution difficulty between order distribution points is converted into the weight of edges between nodes.
可选地,所述对所述配送网络模型中的节点进行聚类,以得到多个聚簇包括:确定K个聚簇中心点的初始位置;计算所述配送网络模型中每个节点与各个聚簇中心点的距离,并将所述节点分配至所述距离最小的聚簇中,以实现聚簇的更新;计算更新后的聚簇中心点的位置,直至满足迭代停止条件;其中,K为大于1的整数。Optionally, the clustering of nodes in the distribution network model to obtain multiple clusters includes: determining the initial positions of K cluster center points; calculating the relationship between each node and each node in the distribution network model. the distance of the cluster center point, and assign the node to the cluster with the smallest distance to realize the cluster update; calculate the position of the updated cluster center point until the iteration stop condition is met; wherein, K is an integer greater than 1.
可选地,所述计算所述配送网络模型中每个节点与各个聚簇中心点的距离包括:根据所述配送网络模型中一个节点至一个聚簇中心点之间的各条边的权重、以及各条边对应的真实路径长度,计算该节点至该聚簇中心点之间的距离。Optionally, the calculating the distance between each node and each cluster center point in the distribution network model includes: according to the weight of each edge between a node and a cluster center point in the distribution network model, And the actual path length corresponding to each edge, calculate the distance from the node to the center point of the cluster.
可选地,所述方法包括:在得到多个配送区域之后,根据启发式算法在所述配送区域内进行订单配送路径规划,并将规划出的订单配送路径返回至用户终端。Optionally, the method includes: after obtaining multiple delivery areas, planning an order delivery path in the delivery area according to a heuristic algorithm, and returning the planned order delivery path to the user terminal.
可选地,所述根据启发式算法在所述配送区域内进行订单配送路径规划包括:确定所述配送区域内的一条候选订单配送路径,根据该候选订单配送路径对应的总派车成本和总行驶成本计算该候选配送路径的配送总成本;以所述配送总成本最小为目标函数,对所述候选订单配送路径进行优化,直至得到规划出的订单配送路径。Optionally, the planning of the order delivery route in the delivery area according to the heuristic algorithm includes: determining a candidate order delivery route in the delivery area, and according to the total dispatch cost and total dispatch cost corresponding to the candidate order delivery route The travel cost calculates the total delivery cost of the candidate delivery route; taking the minimum total delivery cost as the objective function, the candidate order delivery route is optimized until the planned order delivery route is obtained.
可选地,所述方法包括:根据以下至少一个影响因素确定所述订单配送点之间的物流配送难度综合评分:订单配送点之间的真实路径长度、订单配送点之间的道路条件、订单配送点之间的停车难易情况、在订单配送点之间的车载货物重量。Optionally, the method includes: determining a comprehensive score of logistics distribution difficulty between the order distribution points according to at least one of the following influencing factors: the actual path length between the order distribution points, the road conditions between the order distribution points, the order Parking difficulty between delivery points, weight of on-board cargo between order delivery points.
为实现上述目的,根据本发明的另一个方面,提供了一种配送规划装置。To achieve the above object, according to another aspect of the present invention, a delivery planning device is provided.
本发明的配送装置包括:构建模块,用于根据待配送的订单信息构建配送网络模型;其中,所述配送网络模型由节点、以及节点之间的边组成;所述节点用于表示订单的配送点,所述节点之间的边用于表示订单配送点之间的连接关系;聚类模块,用于对所述配送网络模型中的节点进行聚类,以得到多个聚簇;还用于将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域。The distribution device of the present invention includes: a building module for constructing a distribution network model according to the order information to be distributed; wherein, the distribution network model is composed of nodes and edges between nodes; the nodes are used to represent the distribution of orders point, the edges between the nodes are used to represent the connection relationship between the order distribution points; the clustering module is used to cluster the nodes in the distribution network model to obtain multiple clusters; also used for The range covered by each of the plurality of clusters is taken as a delivery area to obtain a plurality of delivery areas.
为实现上述目的,根据本发明的再一个方面,提供了一种电子设备。To achieve the above object, according to yet another aspect of the present invention, an electronic device is provided.
本发明的电子设备,包括:一个或多个处理器;以及,存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现本发明的配送规划方法。The electronic device of the present invention includes: one or more processors; and a storage device for storing one or more programs; when the one or more programs are executed by the one or more processors, all the programs are executed. The one or more processors implement the delivery planning method of the present invention.
为实现上述目的,根据本发明的又一个方面,提供了一种计算机可读介质。To achieve the above object, according to yet another aspect of the present invention, a computer-readable medium is provided.
本发明的计算机可读介质,其上存储有计算机程序,所述程序被处理器执行时实现本发明的配送规划方法。The computer-readable medium of the present invention has a computer program stored thereon, and when the program is executed by the processor, the delivery planning method of the present invention is implemented.
上述发明中的一个实施例具有如下优点或有益效果:通过根据待配送的订单信息构建配送网络模型,对所述配送网络模型中的节点进行聚类,以得到多个聚簇,将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域这些步骤,能够根据待配送的订单信息动态、合理地划分配送区域,使得各个配送区域内的配送单量趋于平衡,进而有助于从整体上提高配送效率。One embodiment of the above invention has the following advantages or beneficial effects: by constructing a distribution network model according to the order information to be distributed, clustering the nodes in the distribution network model to obtain multiple clusters, The range covered by each of the clusters is used as a delivery area to obtain multiple delivery areas. These steps can dynamically and reasonably divide delivery areas according to the order information to be delivered, so that the volume of delivery orders in each delivery area tends to be balance, which in turn helps to improve the overall efficiency of distribution.
上述的非惯用的可选方式所具有的进一步效果将在下文中结合具体实施方式加以说明。Further effects of the above non-conventional alternatives will be described below in conjunction with specific embodiments.
附图说明Description of drawings
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:The accompanying drawings are used for better understanding of the present invention and do not constitute an improper limitation of the present invention. in:
图1是根据本发明第一实施例的配送规划方法的主要流程示意图;Fig. 1 is the main flow chart of the distribution planning method according to the first embodiment of the present invention;
图2是根据本发明第二实施例的配送规划方法的主要流程示意图;Fig. 2 is the main flow chart of the distribution planning method according to the second embodiment of the present invention;
图3是根据本发明实施例构建的配送网络模型的结构示意图;3 is a schematic structural diagram of a distribution network model constructed according to an embodiment of the present invention;
图4是根据本发明实施例的节点与聚簇中心点的位置关系示意图;4 is a schematic diagram of the positional relationship between a node and a cluster center point according to an embodiment of the present invention;
图5是根据本发明第三实施例的配送规划装置的主要模块示意图;5 is a schematic diagram of the main modules of a distribution planning device according to a third embodiment of the present invention;
图6是根据本发明第四实施例的配送规划装置的主要模块示意图;6 is a schematic diagram of the main modules of a distribution planning device according to a fourth embodiment of the present invention;
图7是本发明实施例可以应用于其中的示例性系统架构图;FIG. 7 is an exemplary system architecture diagram to which an embodiment of the present invention may be applied;
图8是适于用来实现本发明实施例的电子设备的计算机系统的结构示意图。FIG. 8 is a schematic structural diagram of a computer system suitable for implementing an electronic device according to an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明的示范性实施例做出说明,其中包括本发明实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本发明的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present invention are described below with reference to the accompanying drawings, which include various details of the embodiments of the present invention to facilitate understanding and should be considered as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the invention. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.
图1是根据本发明第一实施例的配送规划方法的主要流程示意图。如图1所示,本发明实施例的配送规划方法包括:FIG. 1 is a schematic flow chart of a distribution planning method according to the first embodiment of the present invention. As shown in FIG. 1, the distribution planning method of the embodiment of the present invention includes:
步骤S101、根据待配送的订单信息构建配送网络模型。Step S101 , constructing a distribution network model according to the order information to be distributed.
其中,所述配送网络模型由节点、以及节点之间的边组成;所述节点用于表示订单的配送点(所述订单配送点也可称为“订单收货地点”、或者“快递收货地点”等),所述节点之间的边用于表示订单配送点之间的连接关系。另外,所述节点之间的边还可设有对应的权重值。Wherein, the distribution network model consists of nodes and edges between nodes; the nodes are used to represent the distribution points of orders (the order distribution points may also be referred to as "order receiving locations" or "express delivery points"). Location", etc.), the edges between the nodes are used to represent the connection relationship between the order distribution points. In addition, the edges between the nodes may also be provided with corresponding weight values.
在一个示例中,所述配送网络模型可表示为G=(V,E)。其中,V表示配送网络模型中的节点集合,E表示配送网络模型中的节点之间的边的集合。In one example, the distribution network model can be expressed as G=(V,E). Among them, V represents the set of nodes in the distribution network model, and E represents the set of edges between nodes in the distribution network model.
在另一个示例中,为了便于计算,所述配送网络模型还可通过邻接矩阵A表示。在邻接矩阵A中,元素Aij的取值为1或0。其中,Aij的取值为1表示节点i与节点j之间存在连接关系(即节点i与节点j之间存在边),Aij的取值为0表示节点i与节点j之间无连接关系(即节点i与节点j之间不存在边)。In another example, the distribution network model can also be represented by an adjacency matrix A for the convenience of calculation. In the adjacency matrix A, the value of the element A ij is 1 or 0. Among them, the value of A ij is 1, indicating that there is a connection between node i and node j (that is, there is an edge between node i and node j), and the value of A ij is 0, indicating that there is no connection between node i and node j relationship (that is, there is no edge between node i and node j).
在再一个示例中,为了便于计算,所述配送网络模型还可通过权重邻接矩阵A'表示。在权重邻接矩阵A'中,元素A'ij的取值为权重值ωij或0。其中,Aij的取值为权重值时表示节点i与节点j之间存在边,且该边的权重值为ωij,Aij的取值为0表示节点i与节点j之间无连接关系(即节点i与节点j之间不存在边)。In yet another example, for the convenience of calculation, the distribution network model can also be represented by a weighted adjacency matrix A'. In the weighted adjacency matrix A', the value of the element A' ij is the weight value ω ij or 0. Among them, when the value of A ij is the weight value, it means that there is an edge between node i and node j, and the weight value of this edge is ω ij , and the value of A ij is 0, which means that there is no connection between node i and node j (that is, there is no edge between node i and node j).
在构建配送网络模型时,从理论上来说,在各个订单配送点之间都可连线。在具体实施时,为了简化网络模型,对于同一小区或是同一片区内的订单配送点来说,可选取距其最近的n(n可以根据需求进行设置,比如设置为2或者3)个订单配送点进行连线,并且在两个小区或是两个片区之间进行连线,比如可选择两个片区之间距离最短的两个订单配送点进行连线。When building a distribution network model, it is theoretically possible to connect each order distribution point. In specific implementation, in order to simplify the network model, for order distribution points in the same community or in the same area, the nearest n (n can be set according to requirements, such as 2 or 3) order distribution points can be selected. Points are connected, and the connection is made between two cells or two areas. For example, two order delivery points with the shortest distance between the two areas can be selected for connection.
步骤S102、对所述配送网络模型中的节点进行聚类,以得到多个聚簇;将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域。Step S102: Cluster the nodes in the distribution network model to obtain multiple clusters; take the range covered by each of the multiple clusters as a distribution area to obtain multiple distribution areas.
示例性地,可采用k-means(k均值)聚类算法或者其他聚类算法对所述配送网络模型中的节点进行聚类。Exemplarily, k-means (k-means) clustering algorithm or other clustering algorithms can be used to cluster the nodes in the distribution network model.
在一个可选实施方式中,采用k均值聚类算法对所述配送网络模型中的节点进行聚类,以得到多个聚簇包括:确定K个聚簇中心点的初始位置;计算所述配送网络模型中每个节点与各个聚簇中心点的距离,并将所述节点分配至所述距离最小的聚簇中,以实现聚簇的更新;计算更新后的聚簇中心点的位置,直至满足迭代停止条件。其中,K为大于1的整数。具体实施时,K的取值可灵活设置。比如,可根据待配送的订单总量、以及历史区域配送量平均值确定K的取值。In an optional embodiment, clustering the nodes in the distribution network model by using a k-means clustering algorithm to obtain multiple clusters includes: determining the initial positions of K cluster center points; calculating the distribution The distance between each node and each cluster center point in the network model, and assign the node to the cluster with the smallest distance to realize the update of the cluster; calculate the position of the updated cluster center point until The iteration stop condition is satisfied. Wherein, K is an integer greater than 1. During specific implementation, the value of K can be flexibly set. For example, the value of K can be determined according to the total amount of orders to be delivered and the average value of historical regional delivery volumes.
在本发明实施例中,通过根据待配送的订单信息构建配送网络模型,对所述配送网络模型中的节点进行聚类,以得到多个聚簇,将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域这些步骤,能够根据待配送的订单信息动态、合理地划分配送区域,使得各个配送区域内的配送单量趋于平衡,进而有助于从整体上提高配送效率。In the embodiment of the present invention, by constructing a distribution network model according to the order information to be distributed, the nodes in the distribution network model are clustered to obtain multiple clusters, and each of the multiple clusters is The covered area is used as a distribution area to obtain multiple distribution areas. These steps can dynamically and reasonably divide the distribution areas according to the order information to be distributed, so that the amount of distribution orders in each distribution area tends to be balanced, which in turn helps Improve overall delivery efficiency.
图2是根据本发明第二实施例的配送规划方法的主要流程示意图。如图2所示,本发明实施例的配送规划方法包括:FIG. 2 is a schematic flow chart of a distribution planning method according to a second embodiment of the present invention. As shown in FIG. 2 , the distribution planning method according to the embodiment of the present invention includes:
步骤S201、根据待配送的订单信息构建配送网络模型。Step S201 , constructing a distribution network model according to the order information to be distributed.
如图3所示,本发明实施例构建的配送网络模型由节点、以及节点之间的边组成。其中,所述节点用于表示订单的配送点,所述节点之间的边用于表示订单配送点之间的连接关系。另外,所述节点之间的边还可设有对应的权重值。As shown in FIG. 3 , the distribution network model constructed in the embodiment of the present invention is composed of nodes and edges between nodes. The nodes are used to represent the delivery points of the order, and the edges between the nodes are used to represent the connection relationship between the delivery points of the order. In addition, the edges between the nodes may also be provided with corresponding weight values.
进一步,为了便于计算,所述配送网络模型可通过权重邻接矩阵A'表示。在权重邻接矩阵A'中,元素A'ij的取值为权重值ωij或0。其中,Aij的取值为权重值时表示节点i与节点j之间存在边,且该边的权重值为ωij,Aij的取值为0表示节点i与节点j之间无连接关系(即节点i与节点j之间不存在边)。Further, for the convenience of calculation, the distribution network model can be represented by a weighted adjacency matrix A'. In the weighted adjacency matrix A', the value of the element A' ij is the weight value ω ij or 0. Among them, when the value of A ij is the weight value, it means that there is an edge between node i and node j, and the weight value of this edge is ω ij , and the value of A ij is 0, which means that there is no connection between node i and node j (that is, there is no edge between node i and node j).
在构建配送网络模型时,从理论上来说,在各个订单配送点之间都可连线。在具体实施时,为了简化网络模型,对于同一小区或是同一片区内的订单配送点来说,可选取距其最近的n(n可以根据需求进行设置,比如设置为2或者3)个订单配送点进行连线,并且在两个小区或是两个片区之间进行连线,比如可选择两个片区之间距离最短的两个订单配送点进行连线。When building a distribution network model, it is theoretically possible to connect each order distribution point. In specific implementation, in order to simplify the network model, for order distribution points in the same community or in the same area, the nearest n (n can be set according to requirements, such as 2 or 3) order distribution points can be selected. Points are connected, and the connection is made between two cells or two areas. For example, two order delivery points with the shortest distance between the two areas can be selected for connection.
在一个可选示例中,步骤S201可具体包括:将订单的配送点坐标转化为配送网络模型中的节点,将订单配送点之间的连接关系转化为节点之间的边,并将订单配送点之间的物流配送难度综合评分转化为节点之间的边的权重。In an optional example, step S201 may specifically include: converting the coordinates of the distribution points of the order into nodes in the distribution network model, converting the connection relationship between the order distribution points into edges between nodes, and converting the order distribution points into nodes in the distribution network model. The comprehensive score of logistics distribution difficulty between nodes is converted into the weight of edges between nodes.
其中,所述订单配送点之间的物流配送难度综合评分可根据以下至少一个影响因素确定:订单配送点之间的真实路径长度、订单配送点之间的道路条件、订单配送点之间的停车难易情况、在订单配送点之间的车载货物重量。比如,在一个具体示例中,可根据订单配送点之间的真实路径长度、订单配送点之间的道路条件、订单配送点之间的停车难易情况、以及在订单配送点之间的车载货物重量这四个影响因素确定订单配送点之间的物流配送难度综合评分。表1示出了这四个影响因素的评分情况。Wherein, the comprehensive score of the logistics distribution difficulty between the order distribution points may be determined according to at least one of the following influencing factors: the actual path length between the order distribution points, the road conditions between the order distribution points, and the parking between the order distribution points. Difficulty, weight of on-board cargo between order delivery points. For example, in a specific example, the actual path length between the order delivery points, the road conditions between the order delivery points, the difficulty of parking between the order delivery points, and the on-board cargo between the order delivery points The four influencing factors of weight determine the comprehensive score of logistics distribution difficulty between order distribution points. Table 1 shows the scores of these four influencing factors.
表1Table 1
进一步,在该具体示例中,这四种影响因素的权重分别为wi(i=1,2,3,4),且每个影响因素的评分为ci(i=1,3,5),进而,订单配送点i与订单配送点j之间的物流配送难度综合评分为具体实施时,这四种影响因素的权重的取值可根据应用场景灵活设置。Further, in this specific example, the weights of these four influencing factors are respectively wi (i=1, 2, 3, 4), and The score of each influencing factor is c i (i=1,3,5), and further, the comprehensive score of logistics distribution difficulty between order distribution point i and order distribution point j is During specific implementation, the values of the weights of the four influencing factors can be flexibly set according to application scenarios.
步骤S202、对所述配送网络模型中的节点进行聚类,以得到多个聚簇;将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域。Step S202: Cluster the nodes in the distribution network model to obtain multiple clusters; take the range covered by each of the multiple clusters as a distribution area to obtain multiple distribution areas.
在一个可选示例中,步骤S202具体包括:步骤1至步骤3。In an optional example, step S202 specifically includes: step 1 to step 3.
步骤1、确定K个聚簇中心点的初始位置。
在该步骤中,可从订单配送点集合X={xi|xi∈R,i=1,2,...,N}中随机抽取K个点作为聚簇中心点z1,z2,...,zk,这K个聚簇可记为W1,W2,...,Wk。其中,K为大于1的整数。具体实施时,K的取值可灵活设置。比如,可根据待配送的订单总量、以及历史区域配送量平均值确定K的取值。此外,在确定K个聚簇中心点的初始位置后,可选取距离聚簇中心点最近的m个订单配送点(m的取值可以根据需求进行设置,比如设置为2或者3)与该聚簇中心点进行连线。In this step, K points can be randomly selected from the order delivery point set X={x i | xi ∈R,i=1,2,...,N} as the cluster center points z 1 , z 2 ,...,z k , these K clusters can be written as W 1 ,W 2 ,...,W k . Wherein, K is an integer greater than 1. During specific implementation, the value of K can be flexibly set. For example, the value of K can be determined according to the total amount of orders to be delivered and the average value of historical regional delivery volumes. In addition, after determining the initial positions of the K cluster center points, the m order distribution points closest to the cluster center point can be selected (the value of m can be set as required, such as 2 or 3) and the cluster center point. Connect the cluster center points.
步骤2、计算所述配送网络模型中每个节点与各个聚簇中心点的距离,并将所述节点分配至所述距离最小的聚簇中,以实现聚簇的更新。Step 2: Calculate the distance between each node in the distribution network model and the center point of each cluster, and assign the node to the cluster with the smallest distance, so as to update the cluster.
示例性地,在该步骤中,可根据所述配送网络模型中一个节点至一个聚簇中心点之间的各条边的权重、以及各条边对应的真实路径长度,计算该节点至该聚簇中心点之间的距离。Exemplarily, in this step, according to the weight of each edge between a node and a cluster center point in the distribution network model, and the actual path length corresponding to each edge, calculate the distance from the node to the cluster. Distance between cluster center points.
在该示例的一个可选实施方式中,当某一节点i与一个聚簇中心点k之间只存在一条连通道路(该连通道路是指由存在的各条边构成的道路)时,则可根据如下公式计算节点i至该聚簇中心点k之间的距离:In an optional implementation of this example, when there is only one connected road between a node i and a cluster center point k (the connected road refers to a road composed of existing edges), then Calculate the distance from node i to the cluster center point k according to the following formula:
其中,dik为节点i至该聚簇中心点k之间的距离,lr为节点i至该聚簇中心点k之间存在的第r条边的真实路径长度,Cr为节点i至该聚簇中心点k之间存在的第r条边的权重。进一步,当某一节点i与一个聚簇中心点k之间存在两条或两条以上连通道路时,可通过上述公式计算出多个距离,并将所述多个距离中的最小值作为节点i至该聚簇中心点k之间的距离。where d ik is the distance from node i to the cluster center point k, l r is the actual path length of the rth edge existing between node i and the cluster center point k, and C r is the distance from node i to the cluster center point k The weight of the rth edge that exists between the cluster center points k. Further, when there are two or more connected roads between a node i and a cluster center point k, multiple distances can be calculated by the above formula, and the minimum value among the multiple distances can be used as the node. The distance from i to the cluster center point k.
在计算出每个节点与各个聚簇中心点的距离之后,可将该节点分配至所述距离最小的聚簇中。例如,假设共有三个聚簇a、b、c,节点1至聚簇a的中心点的距离为35,节点1至聚簇b的中心点的距离为25,节点1至聚簇c的中心点的距离为40,则将节点1划分至聚簇b中。After calculating the distance between each node and each cluster center point, the node can be assigned to the cluster with the smallest distance. For example, assuming there are three clusters a, b, c, the distance from
步骤3、计算更新后的聚簇中心点的位置,直至满足迭代停止条件。Step 3: Calculate the position of the updated cluster center point until the iteration stop condition is satisfied.
在该步骤中,可根据更新后的聚簇中的各个节点的坐标计算聚簇中心点的位置,具体可采用如下公式:In this step, the position of the cluster center point can be calculated according to the updated coordinates of each node in the cluster, and the following formula can be used specifically:
其中,zk为聚簇中心点的位置,nk为更新后的聚簇中所包含的节点数量,x表示聚簇Wk中的任意一个节点。Among them, z k is the position of the cluster center point, n k is the number of nodes included in the updated cluster, and x represents any node in the cluster W k .
其中,所述迭代停止条件可灵活设置。比如,可将迭代停止条件设置为:不存在节点分给不同聚簇中心的情况;还可将所述迭代停止条件设置为:聚簇中心点的位置不变或者误差小于规定阈值等。Wherein, the iterative stop condition can be flexibly set. For example, the iterative stop condition can be set as: no nodes are assigned to different cluster centers; the iteration stop condition can also be set as: the position of the cluster center point is unchanged or the error is smaller than a predetermined threshold, etc.
步骤S203、根据启发式算法在所述配送区域内进行订单配送路径规划。Step S203 , carrying out order delivery path planning in the delivery area according to a heuristic algorithm.
示例性地,所述根据启发式算法在所述配送区域内进行订单配送路径规划包括:确定所述配送区域内的一条候选订单配送路径,根据该候选订单配送路径对应的总派车成本和总行驶成本计算该候选配送路径的配送总成本;以所述配送总成本最小为目标函数,对所述候选订单配送路径进行优化,直至得到规划出的订单配送路径。具体实施时,可采用模拟退火算法、变领域分散搜索算法等启发式算法进行订单配送路径规划。Exemplarily, the planning of the order delivery route in the delivery area according to the heuristic algorithm includes: determining a candidate order delivery route in the delivery area, and according to the total dispatch cost and total cost of the candidate order delivery route The travel cost calculates the total delivery cost of the candidate delivery route; taking the minimum total delivery cost as the objective function, the candidate order delivery route is optimized until the planned order delivery route is obtained. In specific implementation, heuristic algorithms such as simulated annealing algorithm and variable-domain distributed search algorithm can be used to plan the order distribution path.
在一个实际应用场景中,在进行订单配送的同时,还需满足客户的退货需求和寄件需求。针对这一实际应用场景进行配送路径规划时,可设置如下目标函数:In a practical application scenario, while the order is delivered, it is also necessary to meet the customer's return demand and shipping demand. When planning the distribution path for this practical application scenario, the following objective functions can be set:
进一步,针对这一实际应用场景进行配送路径规划时,可设置如表2所示的约束条件。Further, when planning the distribution path for this practical application scenario, the constraints shown in Table 2 can be set.
表2Table 2
以下对目标函数和约束条件中涉及的参数、以及约束条件的含义进行说明。其中,The parameters involved in the objective function and constraints, and the meanings of constraints are described below. in,
V:表示配送快递的点集,V=V'∪{0},V'=(1,2,...n)。V: Represents the point set of express delivery, V=V'∪{0}, V'=(1,2,...n).
i,j:表示订单配送点的索引。i,j: Indicates the index of the order delivery point.
k:表示配送车的索引。k: Indicates the index of the delivery vehicle.
Kt:表示配送车辆的类型t的集合。K t : a set representing the type t of delivery vehicles.
T:表示配送车辆集合。T: Represents a collection of delivery vehicles.
t:表示配送车辆类型的索引。t: Indicates the index of the type of delivery vehicle.
Qt:表示配送车类型t的车容量。Q t : Indicates the vehicle capacity of the delivery vehicle type t.
Ztk:表示配送车类型t的第k辆车的派车成本。Z tk : Indicates the delivery cost of the k-th vehicle of the delivery vehicle type t.
eij:表示订单配送点i与订单配送点j的驾驶成本。e ij : Indicates the driving cost of order delivery point i and order delivery point j.
pi:表示订单配送点i对应的客户的逆向需求量(即退货需求量)。p i : Indicates the reverse demand of the customer corresponding to the order delivery point i (ie, the demand for return).
di:表示订单配送点i对应的客户i的寄件需求量。d i : Indicates the delivery demand of customer i corresponding to the order delivery point i.
αijtk:表示配送车类型为t的第k辆车配送完订单配送点i后继续去订单配送点j为1,反之为0。α ijtk : Indicates that the k-th vehicle whose delivery vehicle type is t has delivered the order delivery point i and continues to go to the order delivery point j is 1, otherwise it is 0.
γitk:表示配送车类型t的第k辆车负责订单配送点i为1,反之为0。γ itk : indicates that the k-th vehicle of the delivery vehicle type t is responsible for the order delivery point i is 1, otherwise it is 0.
εi:表示订单配送点i与订单配送点j的配送车取货量。ε i : Indicates the pickup volume of the delivery vehicle at the order delivery point i and the order delivery point j.
:表示订单配送点i与订单配送点j的配送车送货量。 : Indicates the delivery volume of the delivery vehicle between the order delivery point i and the order delivery point j.
其中,目标函数表示希望得到区域派车成本和行驶成本之和最小的订单配送路径。约束条件(1)用于保证客户均有配送车辆服务;约束条件(2)用于保证点i与点j之间只有一辆车服务;约束条件(3)用于保证配送车辆不会超载;约束条件(4)和(5)用于对送货、取货车载量进行约束;约束条件(6)用于保证配送车辆执行完成配送任务后回到配送中心;约束条件(7)用于对配送车辆总数的约束;约束条件(8)至(11)用于表示符号范围。Among them, the objective function expresses the hope to obtain the order delivery route with the smallest sum of the regional dispatch cost and the travel cost. Constraint (1) is used to ensure that customers have delivery vehicle services; Constraint (2) is used to ensure that there is only one vehicle service between point i and point j; Constraint (3) is used to ensure that the delivery vehicle will not be overloaded; Constraints (4) and (5) are used to constrain the vehicle capacity of delivery and pickup; Constraint (6) is used to ensure that the distribution vehicle returns to the distribution center after completing the distribution task; Constraint (7) is used to Constraints on the total number of delivery vehicles; constraints (8) to (11) are used to represent the range of symbols.
步骤S204、将规划出的订单配送路径返回至用户终端。Step S204, returning the planned order delivery route to the user terminal.
示例性地,所述规划出的订单配送路径可包括:按照配送先后顺序排列的各个待配送订单的序列。例如,假设某配送区域内的待配送订单为200个,配送车辆有4辆,则可将规划出的每台配送车辆负责的、按照配送先后顺序排列后的订单序列返回至用户终端。Exemplarily, the planned order delivery route may include: a sequence of orders to be delivered arranged in order of delivery. For example, assuming that there are 200 orders to be delivered in a delivery area and there are 4 delivery vehicles, the planned order sequence for each delivery vehicle and arranged in the order of delivery can be returned to the user terminal.
具体实施时,在快递员完成配送任务回到终端终点,或者遇到客户拒收等情况,可通过用户终端输入触发指令,以再次执行步骤S203,重新进行路径规划。In specific implementation, when the courier completes the delivery task and returns to the terminal end point, or encounters the customer's rejection, etc., a trigger instruction can be input through the user terminal to perform step S203 again to re-plan the route.
在本发明实施例中,通过以上步骤能够根据待配送的订单信息动态、合理地划分配送区域,使得各个配送区域内的配送单量趋于平衡,进而有助于从整体上提高配送效率。进一步,基于启发式算法在划分后的配送区域内进行路径规划,能够进一步提高配送效率。In the embodiment of the present invention, the above steps can dynamically and reasonably divide the delivery area according to the order information to be delivered, so that the quantity of delivery orders in each delivery area tends to be balanced, thereby helping to improve the delivery efficiency as a whole. Further, the path planning in the divided distribution area based on the heuristic algorithm can further improve the distribution efficiency.
图4是根据本发明实施例的节点与聚簇中心点的位置关系示意图。以下结合图4对如何计算节点与聚簇中心点之间的距离进行详细说明。FIG. 4 is a schematic diagram of a positional relationship between a node and a cluster center point according to an embodiment of the present invention. The following describes in detail how to calculate the distance between the node and the cluster center point with reference to FIG. 4 .
如图4所示,配送网络模型中的节点3与图中所示聚簇中心点之间存在两条连通道路,一条连通道路由节点3与节点1之间的边、节点1与聚簇中心点之间的边组成,另一条连通道路由节点3与节点2之间的边、以及节点2与聚簇中心点之间的边组成。在计算节点3与聚簇中心点之间的距离时,可采用如下公式:As shown in Figure 4, there are two connected roads between
d3z=min{l31·C31+l1z·C1z,l32·C32+l2z·C2z}d 3z =min{l 31 ·C 31 +l 1z ·C 1z ,l 32 ·C 32 +l 2z ·C 2z }
其中,d3z表示节点3与该聚簇中心点的距离,l31表示节点3与节点1之间的边的真实路径长度,C31表示节点3与节点1之间的边的权重,l1z表示节点1与该聚簇中心点的边的真实路径长度,C1z表示节点1与该聚簇中心点的边的权重,l32表示节点3与节点2之间的边的真实路径长度,C32表示节点3与节点2之间的边的权重,l2z表示节点2与该聚簇中心点的边的真实路径长度,C2z表示节点2与该聚簇中心点的边的权重。以上公式表示;将两条连通道路中的距离最小值作为节点3与聚簇中心点之间的距离d3z。Among them, d 3z represents the distance between
图5是根据本发明第三实施例的配送规划装置的主要模块示意图。如图5所示,本发明实施例的配送规划装置500包括:构建模块501、聚类模块502。FIG. 5 is a schematic diagram of main modules of a distribution planning apparatus according to a third embodiment of the present invention. As shown in FIG. 5 , the
构建模块501,用于根据待配送的订单信息构建配送网络模型。The
其中,所述配送网络模型由节点、以及节点之间的边组成;所述节点用于表示订单的配送点(所述订单配送点也可称为“订单收货地点”、或者“快递收货地点”等),所述节点之间的边用于表示订单配送点之间的连接关系。另外,所述节点之间的边还可设有对应的权重值。Wherein, the distribution network model consists of nodes and edges between nodes; the nodes are used to represent the distribution points of orders (the order distribution points may also be referred to as "order receiving locations" or "express delivery points"). Location", etc.), the edges between the nodes are used to represent the connection relationship between the order distribution points. In addition, the edges between the nodes may also be provided with corresponding weight values.
在一个示例中,所述配送网络模型可表示为G=(V,E)。其中,V表示配送网络模型中的节点集合,E表示配送网络模型中的节点之间的边的集合。In one example, the distribution network model can be expressed as G=(V,E). Among them, V represents the set of nodes in the distribution network model, and E represents the set of edges between nodes in the distribution network model.
在另一个示例中,为了便于计算,所述配送网络模型还可通过邻接矩阵A表示。在邻接矩阵A中,元素Aij的取值为1或0。其中,Aij的取值为1表示节点i与节点j之间存在连接关系(即节点i与节点j之间存在边),Aij的取值为0表示节点i与节点j之间无连接关系(即节点i与节点j之间不存在边)。In another example, the distribution network model can also be represented by an adjacency matrix A for the convenience of calculation. In the adjacency matrix A, the value of the element A ij is 1 or 0. Among them, the value of A ij is 1, indicating that there is a connection between node i and node j (that is, there is an edge between node i and node j), and the value of A ij is 0, indicating that there is no connection between node i and node j relationship (that is, there is no edge between node i and node j).
在再一个示例中,为了便于计算,所述配送网络模型还可通过权重邻接矩阵A'表示。在权重邻接矩阵A'中,元素A'ij的取值为权重值ωij或0。其中,Aij的取值为权重值时表示节点i与节点j之间存在边,且该边的权重值为ωij,Aij的取值为0表示节点i与节点j之间无连接关系(即节点i与节点j之间不存在边)。In yet another example, for the convenience of calculation, the distribution network model can also be represented by a weighted adjacency matrix A'. In the weighted adjacency matrix A', the value of the element A' ij is the weight value ω ij or 0. Among them, when the value of A ij is the weight value, it means that there is an edge between node i and node j, and the weight value of this edge is ω ij , and the value of A ij is 0, which means that there is no connection between node i and node j (that is, there is no edge between node i and node j).
具体实施时,为了简化网络模型,对于同一小区或是同一片区内的订单配送点来说,可选取距其最近的n(n可以根据需求进行设置,比如设置为2或者3)个订单配送点进行连线,并且在两个小区或是两个片区之间进行连线,比如可选择两个片区之间距离最短的两个订单配送点进行连线。During specific implementation, in order to simplify the network model, for order distribution points in the same community or in the same area, the nearest n (n can be set according to requirements, such as 2 or 3) order distribution points can be selected. Connect, and connect between two cells or two areas. For example, you can select two order delivery points with the shortest distance between the two areas to connect.
聚类模块502,用于对所述配送网络模型中的节点进行聚类,以得到多个聚簇;将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域。The
示例性地,可采用k-means(k均值)聚类算法或者其他聚类算法对所述配送网络模型中的节点进行聚类。Exemplarily, k-means (k-means) clustering algorithm or other clustering algorithms can be used to cluster the nodes in the distribution network model.
在一个可选实施方式中,聚类模块502采用k均值聚类算法对所述配送网络模型中的节点进行聚类,以得到多个聚簇包括:聚类模块502确定K个聚簇中心点的初始位置;聚类模块502计算所述配送网络模型中每个节点与各个聚簇中心点的距离,并将所述节点分配至所述距离最小的聚簇中,以实现聚簇的更新;聚类模块502计算更新后的聚簇中心点的位置,直至满足迭代停止条件。其中,K为大于1的整数。具体实施时,K的取值可灵活设置。比如,可根据待配送的订单总量、以及历史区域配送量平均值确定K的取值。In an optional embodiment, the
在本发明实施例的装置中,通过构建模块根据待配送的订单信息构建配送网络模型,通过聚类模块对所述配送网络模型中的节点进行聚类,以得到多个聚簇,将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域以得到多个配送区域,能够根据待配送的订单信息动态、合理地划分配送区域,使得各个配送区域内的配送单量趋于平衡,进而有助于从整体上提高配送效率。In the device of the embodiment of the present invention, a distribution network model is constructed according to the order information to be distributed by a building module, and nodes in the distribution network model are clustered by a clustering module to obtain a plurality of clusters, and the The range covered by each of the multiple clusters is used as a distribution area to obtain multiple distribution areas, which can dynamically and reasonably divide the distribution areas according to the order information to be distributed, so that the amount of distribution orders in each distribution area tends to balance , which in turn helps to improve the overall delivery efficiency.
图6是根据本发明第四实施例的配送规划装置的主要模块示意图。如图6所示,本发明实施例的配送规划装置600包括:构建模块601、聚类模块602、路径规划模块603。FIG. 6 is a schematic diagram of main modules of a delivery planning apparatus according to a fourth embodiment of the present invention. As shown in FIG. 6 , the
构建模块601,用于根据待配送的订单信息构建配送网络模型。The
本发明实施例构建的配送网络模型由节点、以及节点之间的边组成。其中,所述节点用于表示订单的配送点,所述节点之间的边用于表示订单配送点之间的连接关系。另外,所述节点之间的边还可设有对应的权重值。The distribution network model constructed by the embodiment of the present invention is composed of nodes and edges between the nodes. The nodes are used to represent the delivery points of the order, and the edges between the nodes are used to represent the connection relationship between the delivery points of the order. In addition, the edges between the nodes may also be provided with corresponding weight values.
进一步,为了便于计算,所述配送网络模型可通过权重邻接矩阵A'表示。在权重邻接矩阵A'中,元素A'ij的取值为权重值ωij或0。其中,Aij的取值为权重值时表示节点i与节点j之间存在边,且该边的权重值为ωij,Aij的取值为0表示节点i与节点j之间无连接关系(即节点i与节点j之间不存在边)。Further, for the convenience of calculation, the distribution network model can be represented by a weighted adjacency matrix A'. In the weighted adjacency matrix A', the value of the element A' ij is the weight value ω ij or 0. Among them, when the value of A ij is the weight value, it means that there is an edge between node i and node j, and the weight value of this edge is ω ij , and the value of A ij is 0, which means that there is no connection between node i and node j (that is, there is no edge between node i and node j).
在构建配送网络模型时,从理论上来说,在各个订单配送点之间都可连线。在具体实施时,为了简化网络模型,对于同一小区或是同一片区内的订单配送点来说,可选取距其最近的n(n可以根据需求进行设置,比如设置为2或者3)个订单配送点进行连线,并且在两个小区或是两个片区之间进行连线,比如可选择两个片区之间距离最短的两个订单配送点进行连线。When building a distribution network model, it is theoretically possible to connect each order distribution point. In specific implementation, in order to simplify the network model, for order distribution points in the same community or in the same area, the nearest n (n can be set according to requirements, such as 2 or 3) order distribution points can be selected. Points are connected, and the connection is made between two cells or two areas. For example, two order delivery points with the shortest distance between the two areas can be selected for connection.
在一个可选示例中,构建模块601根据待配送的订单信息构建配送网络模型可具体包括:构建模块601将订单的配送点坐标转化为配送网络模型中的节点,构建模块601将订单配送点之间的连接关系转化为节点之间的边,并将订单配送点之间的物流配送难度综合评分转化为节点之间的边的权重。In an optional example, the
其中,所述订单配送点之间的物流配送难度综合评分可根据以下至少一个影响因素确定:订单配送点之间的真实路径长度、订单配送点之间的道路条件、订单配送点之间的停车难易情况、在订单配送点之间的车载货物重量。比如,在一个具体示例中,可根据订单配送点之间的真实路径长度、订单配送点之间的道路条件、订单配送点之间的停车难易情况、以及在订单配送点之间的车载货物重量这四个影响因素确定订单配送点之间的物流配送难度综合评分。Wherein, the comprehensive score of the logistics distribution difficulty between the order distribution points may be determined according to at least one of the following influencing factors: the actual path length between the order distribution points, the road conditions between the order distribution points, and the parking between the order distribution points. Difficulty, weight of on-board cargo between order delivery points. For example, in a specific example, the actual path length between the order delivery points, the road conditions between the order delivery points, the difficulty of parking between the order delivery points, and the on-board cargo between the order delivery points The four influencing factors of weight determine the comprehensive score of logistics distribution difficulty between order distribution points.
聚类模块602,用于对所述配送网络模型中的节点进行聚类,以得到多个聚簇;还用于将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域。The
在一个可选示例中,聚类模块602对所述配送网络模型中的节点进行聚类以得到多个聚簇具体包括:步骤1至步骤3。In an optional example, the
步骤1、聚类模块602确定K个聚簇中心点的初始位置。
在该步骤中,聚类模块602可从订单配送点集合X={xi|xi∈R,i=1,2,...,N}中随机抽取K个点作为聚簇中心点z1,z2,…,zk,这K个聚簇可记为W1,W2,…,Wk。其中,K为大于1的整数。具体实施时,K的取值可灵活设置。比如,可根据待配送的订单总量、以及历史区域配送量平均值确定K的取值。此外,在确定K个聚簇中心点的初始位置后,可选取距离聚簇中心点最近的m个订单配送点(m的取值可以根据需求进行设置,比如设置为2或者3)与该聚簇中心点进行连线。In this step, the
步骤2、聚类模块602计算所述配送网络模型中每个节点与各个聚簇中心点的距离,并将所述节点分配至所述距离最小的聚簇中,以实现聚簇的更新。Step 2: The
示例性地,在该步骤中,聚类模块602可根据所述配送网络模型中一个节点至一个聚簇中心点之间的各条边的权重、以及各条边对应的真实路径长度,计算该节点至该聚簇中心点之间的距离。Exemplarily, in this step, the
在该示例的一个可选实施方式中,当某一节点i与一个聚簇中心点k之间只存在一条连通道路(该连通道路是指由存在的各条边构成的道路)时,则聚类模块602可根据如下公式计算节点i至该聚簇中心点k之间的距离:In an optional implementation of this example, when there is only one connected road between a certain node i and a cluster center point k (the connected road refers to a road composed of existing edges), the clustering The
其中,dik为节点i至该聚簇中心点k之间的距离,lr为节点i至该聚簇中心点k之间存在的第r条边的真实路径长度,Cr为节点i至该聚簇中心点k之间存在的第r条边的权重。进一步,当某一节点i与一个聚簇中心点k之间存在两条或两条以上连通道路时,聚类模块602可通过上述公式计算出多个距离,并将所述多个距离中的最小值作为节点i至该聚簇中心点k之间的距离。where d ik is the distance from node i to the cluster center point k, l r is the actual path length of the rth edge existing between node i and the cluster center point k, and C r is the distance from node i to the cluster center point k The weight of the rth edge that exists between the cluster center points k. Further, when there are two or more connected roads between a node i and a cluster center point k, the
在计算出每个节点与各个聚簇中心点的距离之后,可将该节点分配至所述距离最小的聚簇中。例如,假设共有三个聚簇a、b、c,节点1至聚簇a的中心点的距离为35,节点1至聚簇b的中心点的距离为25,节点1至聚簇c的中心点的距离为40,则将节点1划分至聚簇b中。After calculating the distance between each node and each cluster center point, the node can be assigned to the cluster with the smallest distance. For example, assuming there are three clusters a, b, c, the distance from
步骤3、聚类模块602计算更新后的聚簇中心点的位置,直至满足迭代停止条件。Step 3: The
在该步骤中,聚类模块602可根据更新后的聚簇中的各个节点的坐标计算聚簇中心点的位置,具体可采用如下公式:In this step, the
其中,zk为聚簇中心点的位置,nk为更新后的聚簇中所包含的节点数量,x表示聚簇Wk中的任意一个节点。Among them, z k is the position of the cluster center point, n k is the number of nodes included in the updated cluster, and x represents any node in the cluster W k .
其中,所述迭代停止条件可灵活设置。比如,可将迭代停止条件设置为:不存在节点分给不同聚簇中心的情况;还可将所述迭代停止条件设置为:聚簇中心点的位置不变或者误差小于规定阈值等。Wherein, the iterative stop condition can be flexibly set. For example, the iterative stop condition can be set as: no nodes are assigned to different cluster centers; the iteration stop condition can also be set as: the position of the cluster center point is unchanged or the error is smaller than a predetermined threshold, etc.
路径规划模块603,用于根据启发式算法在所述配送区域内进行订单配送路径规划,并将规划出的订单配送路径返回至用户终端。The
示例性地,路径规划模块603根据启发式算法在所述配送区域内进行订单配送路径规划包括:路径规划模块603确定所述配送区域内的一条候选订单配送路径,根据该候选订单配送路径对应的总派车成本和总行驶成本计算该候选配送路径的配送总成本;以所述配送总成本最小为目标函数,对所述候选订单配送路径进行优化,直至得到规划出的订单配送路径。具体实施时,路径规划模块603可采用模拟退火算法、变领域分散搜索算法等启发式算法进行订单配送路径规划。Exemplarily, the
在本发明实施例的装置中,通过构建模块、聚类模块能够根据待配送的订单信息动态、合理地划分配送区域,使得各个配送区域内的配送单量趋于平衡,进而有助于从整体上提高配送效率。进一步,通过路径规划模块基于启发式算法在划分后的配送区域内进行路径规划,能够进一步提高配送效率。In the device of the embodiment of the present invention, the building module and the clustering module can dynamically and reasonably divide the delivery area according to the order information to be delivered, so that the quantity of delivery orders in each delivery area tends to be balanced, thereby helping to improve the overall Improve delivery efficiency. Further, the route planning module performs route planning in the divided delivery area based on the heuristic algorithm, which can further improve the delivery efficiency.
图7示出了可以应用本发明实施例的配送规划方法或配送规划装置的示例性系统架构700。FIG. 7 shows an
如图7所示,系统架构700可以包括终端设备701、702、703,网络704和服务器705。网络704用以在终端设备701、702、703和服务器705之间提供通信链路的介质。网络704可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。As shown in FIG. 7 , the
用户可以使用终端设备701、702、703通过网络704与服务器705交互,以接收或发送消息等。终端设备701、702、703上可以安装有各种通讯客户端应用,例如物流配送管理类应用、购物类应用、网页浏览器应用、搜索类应用、即时通信工具、邮箱客户端、社交平台软件等。The user can use the
终端设备701、702、703可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。The
服务器705可以是提供各种服务的服务器,例如对用户利用终端设备701、702、703所浏览的物流配送管理类应用或网站提供支持的后台管理服务器。后台管理服务器可以对接收到的配送规划请求等数据进行分析等处理,并将处理结果(例如配送区域划分结果)反馈给终端设备。The
需要说明的是,本发明实施例所提供的配送规划方法一般由服务器705执行,相应地,配送规划装置一般设置于服务器705中。It should be noted that the delivery planning method provided in the embodiment of the present invention is generally executed by the
应该理解,图7中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。It should be understood that the numbers of terminal devices, networks and servers in FIG. 7 are only illustrative. There can be any number of terminal devices, networks and servers according to implementation needs.
下面参考图8,其示出了适于用来实现本发明实施例的电子设备的计算机系统800的结构示意图。图8示出的计算机系统仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。Referring next to FIG. 8 , it shows a schematic structural diagram of a
如图8所示,计算机系统800包括中央处理单元(CPU)801,其可以根据存储在只读存储器(ROM)802中的程序或者从存储部分808加载到随机访问存储器(RAM)803中的程序而执行各种适当的动作和处理。在RAM 803中,还存储有系统800操作所需的各种程序和数据。CPU 801、ROM 802以及RAM 803通过总线804彼此相连。输入/输出(I/O)接口805也连接至总线804。As shown in FIG. 8, a
以下部件连接至I/O接口805:包括键盘、鼠标等的输入部分806;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分807;包括硬盘等的存储部分808;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分809。通信部分809经由诸如因特网的网络执行通信处理。驱动器810也根据需要连接至I/O接口805。可拆卸介质811,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器810上,以便于从其上读出的计算机程序根据需要被安装入存储部分808。The following components are connected to the I/O interface 805: an
特别地,根据本发明公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分809从网络上被下载和安装,和/或从可拆卸介质811被安装。在该计算机程序被中央处理单元(CPU)801执行时,执行本发明的系统中限定的上述功能。In particular, the processes described above with reference to the flowcharts may be implemented as computer software programs in accordance with the disclosed embodiments of the present invention. For example, embodiments disclosed herein include a computer program product comprising a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart. In such an embodiment, the computer program may be downloaded and installed from the network via the
需要说明的是,本发明所示的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本发明中,计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、RF等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium shown in the present invention may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing. In the present invention, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. In the present invention, however, a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device . Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
附图中的流程图和框图,图示了按照本发明各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations, can be implemented in special purpose hardware-based systems that perform the specified functions or operations, or can be implemented using A combination of dedicated hardware and computer instructions is implemented.
描述于本发明实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的模块也可以设置在处理器中,例如,可以描述为:一种处理器包括构建模块、聚类模块。其中,这些模块的名称在某种情况下并不构成对该模块本身的限定,例如,构建模块还可以被描述为“构建配送网络模型的模块”。The modules involved in the embodiments of the present invention may be implemented in a software manner, and may also be implemented in a hardware manner. The described modules can also be set in the processor, for example, it can be described as: a processor includes a building module and a clustering module. Wherein, the names of these modules do not constitute a limitation of the module itself under certain circumstances, for example, a building module can also be described as a "module for building a distribution network model".
作为另一方面,本发明还提供了一种计算机可读介质,该计算机可读介质可以是上述实施例中描述的设备中所包含的;也可以是单独存在,而未装配入该设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该设备包括:根据待配送的订单信息构建配送网络模型;其中,所述配送网络模型由节点、以及节点之间的边组成;所述节点用于表示订单的配送点,所述节点之间的边用于表示订单配送点之间的连接关系;对所述配送网络模型中的节点进行聚类,以得到多个聚簇;将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域。As another aspect, the present invention also provides a computer-readable medium, which may be included in the device described in the above embodiments; or may exist alone without being assembled into the device. The above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by a device, the device includes: constructing a distribution network model according to the order information to be distributed; wherein, the distribution network model It consists of nodes and edges between nodes; the nodes are used to represent the distribution points of the order, and the edges between the nodes are used to represent the connection relationship between the distribution points of the order; for the nodes in the distribution network model Clustering is performed to obtain multiple clusters; the range covered by each of the multiple clusters is taken as a delivery area to obtain multiple delivery areas.
根据本发明实施例的技术方案,通过根据待配送的订单信息构建配送网络模型,对所述配送网络模型中的节点进行聚类,以得到多个聚簇,将所述多个聚簇中的每一个所覆盖的范围作为一个配送区域,以得到多个配送区域这些步骤,能够根据待配送的订单信息动态、合理地划分配送区域,使得各个配送区域内的配送单量趋于平衡,进而有助于从整体上提高配送效率。According to the technical solution of the embodiment of the present invention, by constructing a distribution network model according to the order information to be distributed, the nodes in the distribution network model are clustered to obtain multiple clusters, and the nodes in the multiple clusters are clustered. Each covered area is used as a distribution area to obtain multiple distribution areas. These steps can dynamically and reasonably divide the distribution area according to the order information to be distributed, so that the amount of distribution orders in each distribution area tends to be balanced, and then there are Helps to improve overall delivery efficiency.
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above-mentioned specific embodiments do not constitute a limitation on the protection scope of the present invention. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions may occur depending on design requirements and other factors. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010043857.7A CN113128744B (en) | 2020-01-15 | 2020-01-15 | Distribution planning method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010043857.7A CN113128744B (en) | 2020-01-15 | 2020-01-15 | Distribution planning method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113128744A true CN113128744A (en) | 2021-07-16 |
CN113128744B CN113128744B (en) | 2025-02-25 |
Family
ID=76771641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010043857.7A Active CN113128744B (en) | 2020-01-15 | 2020-01-15 | Distribution planning method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113128744B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113919734A (en) * | 2021-10-26 | 2022-01-11 | 北京京东振世信息技术有限公司 | Order delivery method and device |
CN114298391A (en) * | 2021-12-23 | 2022-04-08 | 拉扎斯网络科技(上海)有限公司 | Method, device and equipment for determining distribution route |
CN114819860A (en) * | 2022-06-23 | 2022-07-29 | 武汉理工大学 | Logistics electric vehicle energy-saving optimization method and system under cargo exchange mode |
CN115062868A (en) * | 2022-07-28 | 2022-09-16 | 北京建筑大学 | Pre-polymerization type vehicle distribution path planning method and device |
WO2023221448A1 (en) * | 2022-05-17 | 2023-11-23 | 北京京东叁佰陆拾度电子商务有限公司 | Order allocation method and apparatus, and storage medium |
CN117332912A (en) * | 2023-09-26 | 2024-01-02 | 山东浪潮爱购云链信息科技有限公司 | An intelligent order arranging method and equipment |
CN117474191A (en) * | 2023-12-28 | 2024-01-30 | 成都秦川物联网科技股份有限公司 | GIS (geographic information system) inspection management method based on intelligent water meter, internet of things system and device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103383756A (en) * | 2013-07-22 | 2013-11-06 | 浙江省烟草公司绍兴市公司 | Planning method for tobacco logistics distribution routes |
CN105719111A (en) * | 2015-05-22 | 2016-06-29 | 北京小度信息科技有限公司 | Method and device for dynamically adjusting transport capacity |
US20170116566A1 (en) * | 2015-10-23 | 2017-04-27 | Prahfit, Inc. | Apparatus and method for predictive dispatch for geographically distributed, on-demand services |
CN109472524A (en) * | 2017-09-08 | 2019-03-15 | 北京京东尚科信息技术有限公司 | Information processing method and device |
CN109816132A (en) * | 2017-11-20 | 2019-05-28 | 北京京东尚科信息技术有限公司 | Information generating method and device |
CN110490510A (en) * | 2019-07-08 | 2019-11-22 | 北京三快在线科技有限公司 | A kind of logistics distribution route generation method and device |
WO2019242520A1 (en) * | 2018-06-20 | 2019-12-26 | 菜鸟智能物流控股有限公司 | Logistics distribution station planning method, and server |
-
2020
- 2020-01-15 CN CN202010043857.7A patent/CN113128744B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103383756A (en) * | 2013-07-22 | 2013-11-06 | 浙江省烟草公司绍兴市公司 | Planning method for tobacco logistics distribution routes |
CN105719111A (en) * | 2015-05-22 | 2016-06-29 | 北京小度信息科技有限公司 | Method and device for dynamically adjusting transport capacity |
US20170116566A1 (en) * | 2015-10-23 | 2017-04-27 | Prahfit, Inc. | Apparatus and method for predictive dispatch for geographically distributed, on-demand services |
CN109472524A (en) * | 2017-09-08 | 2019-03-15 | 北京京东尚科信息技术有限公司 | Information processing method and device |
CN109816132A (en) * | 2017-11-20 | 2019-05-28 | 北京京东尚科信息技术有限公司 | Information generating method and device |
WO2019242520A1 (en) * | 2018-06-20 | 2019-12-26 | 菜鸟智能物流控股有限公司 | Logistics distribution station planning method, and server |
CN110490510A (en) * | 2019-07-08 | 2019-11-22 | 北京三快在线科技有限公司 | A kind of logistics distribution route generation method and device |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113919734A (en) * | 2021-10-26 | 2022-01-11 | 北京京东振世信息技术有限公司 | Order delivery method and device |
CN114298391A (en) * | 2021-12-23 | 2022-04-08 | 拉扎斯网络科技(上海)有限公司 | Method, device and equipment for determining distribution route |
WO2023221448A1 (en) * | 2022-05-17 | 2023-11-23 | 北京京东叁佰陆拾度电子商务有限公司 | Order allocation method and apparatus, and storage medium |
CN114819860A (en) * | 2022-06-23 | 2022-07-29 | 武汉理工大学 | Logistics electric vehicle energy-saving optimization method and system under cargo exchange mode |
CN115062868A (en) * | 2022-07-28 | 2022-09-16 | 北京建筑大学 | Pre-polymerization type vehicle distribution path planning method and device |
CN117332912A (en) * | 2023-09-26 | 2024-01-02 | 山东浪潮爱购云链信息科技有限公司 | An intelligent order arranging method and equipment |
CN117332912B (en) * | 2023-09-26 | 2024-05-28 | 山东浪潮爱购云链信息科技有限公司 | Intelligent order arranging method and device |
CN117474191A (en) * | 2023-12-28 | 2024-01-30 | 成都秦川物联网科技股份有限公司 | GIS (geographic information system) inspection management method based on intelligent water meter, internet of things system and device |
CN117474191B (en) * | 2023-12-28 | 2024-04-05 | 成都秦川物联网科技股份有限公司 | GIS (geographic information system) inspection management method based on intelligent water meter, internet of things system and device |
Also Published As
Publication number | Publication date |
---|---|
CN113128744B (en) | 2025-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113128744A (en) | Distribution planning method and device | |
CN110645983B (en) | Path planning method, device and system for unmanned vehicle | |
CN111044062B (en) | Path planning and recommending method and device | |
CN113240175B (en) | Distribution route generation method, distribution route generation device, storage medium, and program product | |
CN109345166B (en) | Method and apparatus for generating information | |
CN108734559A (en) | A kind of order processing method and apparatus | |
US20230177545A1 (en) | Systems for management of location-aware market data | |
CN111178810B (en) | Method and device for generating information | |
CN112200336A (en) | A method and device for vehicle travel path planning | |
CN113762566B (en) | Method and device for calculating delivery time | |
CN110703758A (en) | Path planning method and device | |
CN110871980B (en) | Storage classification method and device | |
CN113255950B (en) | Method and device for optimizing logistics network | |
CN114254825A (en) | Distribution path determining method and device, electronic equipment and storage medium | |
CN105739929A (en) | Data center selection method for big data to migrate to cloud | |
CN113919734A (en) | Order delivery method and device | |
Zhou et al. | A domain‐of‐influence based pricing strategy for task assignment in crowdsourcing package delivery | |
CN116402432B (en) | Route planning method, device, equipment and storage medium | |
CN114298203B (en) | Method, apparatus, device and computer readable medium for data classification | |
CN115099865A (en) | Data processing method and device | |
CN112837003B (en) | Method and device for determining delivery range of courier | |
CN114580920A (en) | Task processing method and device, electronic equipment and medium | |
CN111141297A (en) | Path planning and recommending method and device | |
CN119228518A (en) | A method and device for processing business data | |
US11971263B1 (en) | Geographical unit generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |