CN113125117B - 显示模组色度检测方法 - Google Patents

显示模组色度检测方法 Download PDF

Info

Publication number
CN113125117B
CN113125117B CN202110290036.8A CN202110290036A CN113125117B CN 113125117 B CN113125117 B CN 113125117B CN 202110290036 A CN202110290036 A CN 202110290036A CN 113125117 B CN113125117 B CN 113125117B
Authority
CN
China
Prior art keywords
display module
energy
chromaticity
energy data
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110290036.8A
Other languages
English (en)
Other versions
CN113125117A (zh
Inventor
夏翔
刘同连
沈军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou HYC Technology Co Ltd
Original Assignee
Suzhou HYC Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou HYC Technology Co Ltd filed Critical Suzhou HYC Technology Co Ltd
Priority to CN202110290036.8A priority Critical patent/CN113125117B/zh
Publication of CN113125117A publication Critical patent/CN113125117A/zh
Application granted granted Critical
Publication of CN113125117B publication Critical patent/CN113125117B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters

Abstract

本发明涉及显示模组检测技术领域,公开了一种显示模组色度检测方法,包括获取测试装置在不同环境温度下对显示模组进行测试得到的校正比例系数;在特定环境温度下,使用测试装置对显示模组进行测试,获取在特定环境温度下显示模组的第一能量数据;使用校正比例系数对第一能量数据进行校正,获取第二能量数据;将第二能量数据转换为色度图上的坐标,在色度图上对显示模组的色度进行显示。预先试验获得测试模组在不同环境温度下对显示模组进行测试时,用于对显示模组的色度测量精度进行校正的校正比例系数。利用校正比例系数对在特定温度下获取的显示模组的能量进行校正,从而提升对显示模组色度测量的测量精度。

Description

显示模组色度检测方法
技术领域
本发明涉及显示模组检测技术领域,特别是涉及一种显示模组色度检测方法。
背景技术
测试装置在对显示装置进行测试时,会受各种因素的影响,从而导致测试结果存在相应的误差。当前对于测量装置的校正,主要使用仪器自身的传感器校准归零方式来解决内在误差,并采用相对密封黑色空间在一般环境条件下进行校正消除外界误差。但在对一些测量环境不稳定、不确定的高精密显示装置进行测试时,需要更高的测试精度。
发明内容
基于此,有必要针对现有测试装置在对一些测量环境不稳定、不确定的高精密显示装置进行测试时,需要更高的测试精度的问题,提供一种显示模组色度检测方法。
一种显示模组色度检测方法,包括获取测试装置在不同环境温度下对显示模组进行测试得到的校正比例系数;在特定环境温度下,使用所述测试装置对显示模组进行测试,获取在特定环境温度下所述显示模组的第一能量数据;使用所述校正比例系数对所述第一能量数据进行校正,获取第二能量数据;将所述第二能量数据转换为色度图上的坐标,在色度图上对所述显示模组的色度进行显示。
上述显示模组色度检测方法,在使用测试装置对显示模组进行测试前,先通过预先试验获得测试模组在不同环境温度下对显示模组进行测试时,用于对显示模组的色度测量精度进行校正的校正比例系数。在实际操作中使用测试装置对显示模组进行测试时,在特定温度下获取显示模组的能量,并且利用预先获取的校正比例系数对测试获取的能量数据进行校正,经过校正后的数据更接近于显示模组实际的能量数据,从而提升了对显示模组色度测量的测量精度。通过提高对显示模组色度的测试精度,可以在后续的校正过程中提升显示模组的色彩精度。
在其中一个实施例中,所述获取测试装置在不同环境温度下对显示模组进行测试得到的校正比例系数包括对所述测试装置的校正标准能量进行设置;在不同环境温度下的封闭空间中,分别获取所述显示模组处于纯黑画面状态时的第一测试能量;在不同环境温度下的封闭空间中,分别获取所述显示模组处于显示画面状态时的第二测试能量;根据所述第一测试能量、所述第二测试能量和所述校正标准能量,获取在不同环境温度下的所述校正比例系数。
在其中一个实施例中,所述根据所述第一测试能量、所述第二测试能量和所述校正标准能量,获取在不同环境温度下的所述校正比例系数包括对在第一环境温度下分别获取的所述第二测试能量与所述第一测试能量作差获取差值,并将所述差值除以所述校正标准能量以获取在第一环境温度下的所述校正比例系数。
在其中一个实施例中,使用光谱仪获取所述显示模组处于纯黑画面状态时的第一测试能量以及所述显示模组处于显示画面状态时的第二测试能量。
在其中一个实施例中,在不同环境温度下的封闭空间中,分别获取所述显示模组处于纯黑画面状态时的第一测试能量之前,所述方法还包括对所述光谱仪的曝光和平均次数进行设置;控制所述光谱仪进行自校准。
在其中一个实施例中,所述不同环境温度包括多个不同的测试温度,所述特定环境温度为多个不同的所述测试温度中的任一温度。
在其中一个实施例中,使用所述校正比例系数对所述第一能量数据进行校正,获取第二能量数据包括对在第一环境温度下分别获取的所述第一能量数据与所述第一测试能量作差,并与在第一环境温度下的所述校正比例系数相乘,以获取在第一环境温度下的所述第二能量数据。
在其中一个实施例中,所述将所述第二能量数据转换为色度图上的坐标,在色度图上对所述显示模组的色度进行显示包括根据标准色度转换系数将所述第二能量数据转换为色度系统中的RGB三刺激值;根据色度转换标准将所述RGB三刺激值转换为所述第二能量数据在色度图上的坐标。
在其中一个实施例中,所述标准色度转换系数包括标准R转换系数、标准G转换系数和标准B转换系数,所述根据标准色度转换系数将所述第二能量数据转换为色度系统中的RGB三刺激值包括将所述第二能量数据与标准R转换系数相乘,以获取所述第二能量数据在所述色度系统中的R刺激值;将所述第二能量数据与标准G转换系数相乘,以获取所述第二能量数据在所述色度系统中的G刺激值;将所述第二能量数据与标准B转换系数相乘,以获取所述第二能量数据在所述色度系统中的B刺激值。
在其中一个实施例中,所述色度转换标准包括CIE1931国际标准。
附图说明
为了更清楚地说明本说明书实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明其中一实施例的显示模组色度检测方法的方法流程示意图;
图2为本发明其中一实施例的获取校正比例系数的方法流程示意图;
图3为本发明其中一实施例的将第二能量数据转换为色度图坐标的方法流程示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的优选实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反的,提供这些实施方式的目的是为了对本发明的公开内容理解得更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“前”、“后”、“周向”以及类似的表述是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在显示模组的产品设计与测试中,通常需要利用不同的测试装置对显示模组设计多种不同的试验。测试装置可以为老化测试装置、温湿度控制箱等装置,用于对显示装置进行老化试验、极端环境试验等等。在使用各种测试装置对显示模组进行测试时,还需要测量获取显示模组的性能数据,将性能数据作为试验中用于评测显示模组状态的依据。然而在不同的环境因素下测量显示模组的性能时,又可能受到各种因素影响而存在相应的误差,与实际情况存在偏差,从而导致试验结果不准确。
例如,在使用老化测试装置对显示模组进行老化试验时,对显示模组的色度进行测量,从而根据显示模组的色度变化情况来观察显示模组的老化情况。在对显示模组进行老化测试时又常常需要将其置于不同的温度环境下,来模拟显示模组的真实使用场景。然而,显示模组在不同温度的色度显示存在差异,因此不同环境温度可能会影响显示模组的色度测量精度。
本发明提供的显示模组色度检测方法能够有效提高对显示模组色度的测量精度,并且提高装置的校正效率。图1为本发明其中一实施例的显示模组色度检测方法的方法流程示意图,在其中一个实施例中,显示模组色度检测方法包括如下步骤S100至S400。
S100:获取测试装置在不同环境温度下对显示模组进行测试得到的校正比例系数。
S200:在特定环境温度下,使用测试装置对显示模组进行测试,获取在特定环境温度下显示模组的第一能量数据。
S300:使用校正比例系数对第一能量数据进行校正,获取第二能量数据。
S400:将第二能量数据转换为色度图上的坐标,在色度图上对显示模组的色度进行显示。
在本实施例中,通过预先试验获得测试模组在不同环境温度下对显示模组进行测试时,用于对显示模组的色度测量进行校正的校正比例系数。校正比例系数可以通过预先试验获取但获取方法并不限于此,也可以通过例如分析历史测试数据等其他方式获取。
在特定环境温度下使用测试装置对显示模组进行测试时,获取显示模组的第一能量数据,可以直接利用预先获取的该特定环境温度下的校正比例系数对第一能量数据进行校正。经过校正后的第二能量数据更接近于显示模组实际的能量数据,从而提升了对显示模组色度测量的测量精度。通过将经过校正的第二能量数据转换为色度图上的坐标,从而获取显示模组的色度,并在色度图上对显示模组的色度进行显示,使试验人员可以更直观地对显示模组在不同环境温度下进行测试时的色彩显示效果进行观察。
上述显示模组色度检测方法,通过提高对显示模组色度的测试精度,在后续的校正过程中可以进一步地提升显示模组的色彩精度。另外,由于在不同环境温度下的校正比例系数是通过预先获取的,因此在实际测量时只需直接将校正比例系数应用于计算中,有效地提高了测量装置的校正效率。
在其中一个实施例中,用于对显示模组进行色度检测的检测装置包括温湿度控制箱、Solar光谱仪和运动模组。其中,Solar光谱仪包括光纤探头。使用测试装置对显示模组进行测试时,将测试装置以及显示模组置于温湿度控制箱内,利用温湿度控制箱对环境温度进行调节,使测试装置和显示模组处于不同的环境温度下。Solar光谱仪与光纤探头电连接,Solar光谱仪通过光纤探头对显示模组进行测量。由于在分析显示模组的色彩显示效果时,主要针对显示模组发出可见光的显示效果进行分析,因此,光谱仪主要获取显示模组在可见光的光学波长范围内的能量。在本实施例中,可见光的光纤波长范围为380~780nm。光纤探头还与运动模组机械连接,在使用Solar光谱仪对显示模组的能量进行测量时,通过运动模组带动光纤探头移动到显示模组的显示区域,光纤探头对显示区域的能量进行探测,从而获取在显示模组可见光的光学波长范围内的能量。
图2为本发明其中一实施例的获取校正比例系数的方法流程示意图,在其中一个实施例中,获取测试装置在不同环境温度下对显示模组进行测试得到的校正比例系数包括如下步骤S110至S140。
S110:对测试装置的校正标准能量进行设置。
S120:在不同环境温度下的封闭空间中,分别获取显示模组处于纯黑画面状态时的第一测试能量。
S130:在不同环境温度下的封闭空间中,分别获取显示模组处于显示画面状态时的第二测试能量。
S140:根据第一测试能量、第二测试能量和校正标准能量,获取在不同环境温度下的校正比例系数。
由于光谱仪主要获取显示模组在可见光的光学波长范围内的能量,因此,在本实施例中,对测试装置在380~780的光学波长范围内的校正标准能量S380-780进行设置,并对校正标准能量S380-780进行保存。
将测试装置以及显示模组置于温湿度控制箱内,温湿度控制箱可以向测试装置以及显示模组提供一个相对密闭的黑色空间。同时,温湿度控制箱还可以对内部密闭空间中的温度进行调节,使测试装置和显示模组处于不同的环境温度下。选择测试温度时,可以选择包括显示装置在实际应用时常见的环境温度以及一些极端环境下的温度。在本实施例中,令温湿度控制箱内密封空间中的温度分别处于-20℃,0℃,20℃,40℃,60℃,80℃六种不同的温度情况。
在六种不同的温度情况下,令显示模组处于纯黑画面的状态,并分别控制运动模组带动光纤探头移动至显示模组上方,光谱仪通过光纤探头对显示模组的显示区域处的能量进行探测。使用光谱仪依次获取测试装置对显示模组在纯黑画面下进行测试时,380~780光学波长范围内的第一能量数据Di 380-780,其中,i可以分别取值为-20℃,0℃,20℃,40℃,60℃,80℃,从而得到6组第一能量数据Di 380-780,并对第一能量数据Di 380-780进行保存备用。
在测试装置以及显示模组仍然置于当前温湿度控制箱内的封闭空间下,再控制温湿度控制箱对密封空间内的温度进行调节,令测试装置以及显示模组分别处于-20℃,0℃,20℃,40℃,60℃,80℃的环境温度。在六种不同的温度情况下,令显示模组处于显示画面的状态,并分别控制运动模组带动光纤探头移动至显示模组上方,光谱仪通过光纤探头对显示模组的显示区域处的能量进行探测。所述显示状态可以为显示模组呈现红绿蓝画面的状态。
使用光谱仪依次获取测试装置对显示模组在显示画面下进行测试时,380~780光学波长范围内的第二能量数据Ti 380-780,其中,i可以分别取值为-20℃,0℃,20℃,40℃,60℃,80℃,从而得到6组第二能量数据Ti 380-780,并对第二能量数据Ti 380-780进行保存备用。根据在同一环境温度下测得的第一测试能量Di 380-780和第二测试能量Ti 380-780以及校正标准能量S380-780,即可获取在不同环境温度下的校正比例系数Ci 380-780,同样地,i可以取值为-20℃,0℃,20℃,40℃,60℃,80℃。
通过令测试装置以及显示模组置于温湿度控制箱内相对密闭的黑暗空间中,并获取在不同环境温度下显示模组处于纯黑画面状态时的第一测试能量Di 380-780,从而利用第一测试能量Di 380-780去除在不同环境温度条件下的暗电流,达到进一步减少误差的效果。利用本实施例中公开的预先试验,可以获得测试装置在不同环境温度下对显示模组进行测试时,用于对显示模组的色度测量进行校准的校正比例系数Ci 380-780。进一步地,在测试装置处于上述环境温度的任意一温度条件下对显示模组进行实际测试时,可以使用该温度条件下的校正比例系数Ci 380-780对色度测量数据进行校正,有效地提高了对于显示模组的色度检测精度以及校准效率。
在其中一个实施例中,根据在同一环境温度下测得的第一测试能量Di 380-780和第二测试能量Ti 380-780以及校正标准能量S380-780,获取在不同环境温度下的校正比例系数Ci 380-780时,对在同一环境温度下获取的第二测试能量Ti 380-780与第一测试能量Di 380-780作差以获取差值。
利用在显示模组处于纯黑画面状态下获取的第一测试能量Di 380-780对在显示模组处于显示画面状态下获取的第二测试能量Ti 380-780进行校正,从而减少暗电流对测试结果造成的误差。将第二测试能量Ti 380-780与第一测试能量Di 380-780作差获取的差值除以校正标准能量S380-780,即可获取在该环境温度下的校正比例系数Ci 380-780
上述计算过程可以总结归纳为一计算公式,该计算公式即可视为校正比例系数的计算公式。将第一测试能量Di 380-780和第二测试能量Ti 380-780以及校正标准能量S380-780代入校正比例系数的计算公式,即可获取在不同环境温度下的校正比例系数Ci 380-780。该校正比例系数的计算公式为:
其中,i为当前设置的温度,Ci 380-780为在环境温度为i时的校正比例系数,Ti 380-780为在环境温度为i时的第二测试能量,Di 380-780为在环境温度为i时的第一测试能量,S380-780为测试装置预先设置的校正标准能量。
在其中一个实施例中,使用光谱仪获取显示模组处于纯黑画面状态时的第一测试能量以及显示模组处于显示画面状态时的第二测试能量。在本实施例中,所述光谱仪为Solar光谱仪,使用Solar光谱仪对显示模组在380~780光学波长范围内的能量进行测量。
当显示模组处于纯黑画面的状态时,通过控制运动模组运动,从而带动光纤探头移动至显示模组上方,光谱仪通过光纤探头对显示模组的显示区域处的能量进行探测,获取显示模组在380~780光学波长范围内的第一能量数据。同样地,当显示模组处于显示画面的状态时,控制运动模组运动从而带动光纤探头移动至显示模组上方,光谱仪通过光纤探头对显示模组的显示区域处的能量进行探测,获取显示模组在380~780光学波长范围内的第二能量数据。
在其中一个实施例中,在不同环境温度下的封闭空间中,分别获取显示模组处于纯黑画面状态时的第一测试能量之前,显示模组色度检测方法还包括对光谱仪的曝光和平均次数进行设置,并控制光谱仪进行自校准。将显示模组色度检测方法应用于实际测试中时,可以根据实际的试验需求选择合适的测试变量,对光谱仪设置合适的曝光参数和曝光平均次数,以保证光谱仪能够更精确地获取显示模组在380~780光学波长范围内的能量,提高检测数据的检测精度及检测效率。控制光谱仪进行自校准,进一步保证光谱仪对显示模组的测量精度。
在其中一个实施例中,不同环境温度包括多个不同的测试温度,利用温湿度控制箱对温度进行调节,可以使测试装置和显示模组处于不同的环境温度下。根据试验需求,选择合适的测试温度。在本实施例中,根据显示模组常见应用场景下的环境温度以及一些极端环境下的环境温度,将多个不同的测试温度定义为-20℃,0℃,20℃,40℃,60℃,80℃。通过预先试验,获取测试装置分别在-20℃,0℃,20℃,40℃,60℃,80℃的环境温度下对显示模组进行测试时,用于对显示模组的色度测量进行校准的校正比例系数。
在其中一个实施例中,在测试装置对显示模组正常进行测试时,由温湿度控制箱将内部密闭空间内的温度设置为特定环境温度。控制运动模组运动从而带动光纤探头移动至显示模组上方,光谱仪通过光纤探头对显示模组的显示区域处的能量进行探测,获取显示模组在380~780光学波长范围内的第一能量数据T'i 380-780。其中,特定环境温度为多个不同的测试温度中的任一温度。
在测试装置处于上述测试温度的任意一温度条件下对显示模组进行实际测试时,可以使用该温度条件下的校正比例系数Ci 380-780对色度测量数据进行校正,有效地提高了对于显示模组的色度检测精度以及校准效率。例如,在实际测试中,测试装置和显示模组所处环境的温度为20℃,则使用预先试验中获取的在20℃环境温度下的校正比例系数C20 380-780对显示装置的色度测试数据进行校正。
在其中一个实施例中,使用校正比例系数对第一能量数据进行校正,以获取第二能量数据。对在同一环境温度下获取的第一能量数据T'i 380-780与第一测试能量Di 380-780作差以获取差值。利用在显示模组处于纯黑画面状态下获取的第一测试能量Di 380-780对在显示模组处于显示画面状态下获取的第二测试能量T'i 380-780进行校正,从而减少暗电流对测试结果造成的误差。
将第一能量数据T'i 380-780与第一测试能量Di 380-780的差值与在该环境温度下的校正比例系数Ci 380-780相乘,以获取在该环境温度下的第二能量数据Ri 380-780。例如,在环境温度为20℃的情况下获取的第一能量数据为T'20 380-780,第一测试能量为D20 380-780,在环境温度为20℃的情况下的校正比例系数为C20 380-780。将第一能量数据T'20 380-780与第一测试能量D20 380-780作差后乘以校正比例系数C20 380-780,即可获取在环境温度为20℃的情况下的第二能量数据R20 380-780。经过校正后的第二能量数据R20 380-780更接近于显示模组在环境温度为20℃的情况下的实际能量数据,从而提升了对显示模组色度测量的测量精度。
上述计算过程可以总结归纳为一计算公式,该计算公式即可视为能量数据校正公式。将第一能量数据T'i 380-780、第一测试能量Di 380-780以及校正比例系数Ci 380-780代入能量数据校正公式,即可获取在不同环境温度下的经过校正后的第二能量数据Ri 380-780。该校正比例系数的计算公式为:
Ri 380-780=(T'i 380-780-Di 380-780)×Ci 380-780
其中,i为当前设置的温度,Ri 380-780为在环境温度为i时的第二能量数据,T'i 380-780为在环境温度为i时的第一能量数据,Di 380-780为在环境温度为i时的第一测试能量,Ci 380-780为在环境温度为i时的校正比例系数。
图3为本发明其中一实施例的将第二能量数据转换为色度图坐标的方法流程示意图,在其中一个实施例中,将第二能量数据转换为色度图上的坐标,在色度图上对显示模组的色度进行显示包括如下步骤S410至S420。
S410:根据标准色度转换系数将第二能量数据转换为色度系统中的RGB三刺激值。
S420:根据色度转换标准将RGB三刺激值转换为第二能量数据在色度图上的坐标。
不同颜色的实质是不同波长的光波,人眼接收到的颜色是根据由被观察对象吸收或者反射不同波长的光波决定的。而人眼所能接收的颜色只是波长在可见光范围内的光波信号。光是能量的一种传播方式,因此,在对显示模组显示的色彩进行处理时,可以通过获取显示模组的能量,再将能量转换为色度图上的坐标,从而在色度图上对显示模组的色度进行显示。
在颜色匹配实验中,与待测色达到色匹配时所需要的三原色的数量称为三刺激值,记作R、G、B。一种颜色与一组R、G、B值相对应。三原色各自在R+G+B总量中的相对比例叫做色度坐标,以色度坐标r,g表示的平面图称为色度图。因此,根据标准色度转换系数可将380~780对应波段的第二能量数据Ri 380-780转换为色度系统中380~780对应波段的RGB三刺激值。根据RGB三刺激值可获取第二能量数据Ri 380-780在色度图上的坐标。通过将经过校正的第二能量数据Ri 380-780转换为色度图上的坐标,以在色度图上对显示模组的色度进行显示,从而可以使试验人员直观地对显示模组在不同环境温度下进行测试时的色彩显示效果进行观察。
应该理解的是,虽然图1-图3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-图3中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在其中一个实施例中,标准色度转换系数包括标准R转换系数CieR380-780、标准G转换系数CieG380-780和标准B转换系数CieB380-780。将第二能量数据Ri 380-780与标准R转换系数CieR380-780相乘,即可获取第二能量数据Ri 380-780在色度系统中的R刺激值SumR380-780。将第二能量数据Ri 380-780与标准G转换系数CieG380-780相乘,即可获取第二能量数据Ri 380-780在色度系统中的G刺激值SumG380-780。将第二能量数据Ri 380-780与标准B转换系数CieB380-780相乘,即可获取第二能量数据Ri 380-780在色度系统中的B刺激值SumB380-780
上述计算过程可以总结归纳为标准色度转换公式,将第二能量数据Ri 380-780代入标准色度转换公式,即可获取第二能量数据Ri 380-780的在色度系统中的RGB三刺激值。该标准色度转换公式为:
其中,i为当前设置的温度,SumR380-780为第二能量数据在色度系统中的R刺激值,CieR380-780为标准R转换系数,Ri 380-780为为在环境温度为i时的第二能量数据,SumG380-780为第二能量数据在色度系统中的G刺激值,CieG380-780为标准G转换系数,SumB380-780为第二能量数据在色度系统中的B刺激值,CieB380-780为标准B转换系数。
在其中一个实施例中,色度转换标准包括CIE1931国际标准。使用CIE1931国际标准,根据上述实施例中获取的第二能量数据Ri 380-780在色度系统中的RGB三刺激值,计算第二能量数据Ri 380-780在色度图上的横纵坐标Xi、Y。由于三原色各自在R+G+B总量中的相对比例叫做色度坐标,而色度坐标r、g表示的平面图称为色度图。因此,第二能量数据Ri 380-780在CIE1931色彩空间上的横纵坐标Xi、Yi的计算公式即为:
其中,i为当前设置的温度,Xi为第二能量数据在色度图上的横坐标,SumR380-780为第二能量数据在色度系统中的R刺激值,SumG380-780为第二能量数据在色度系统中的G刺激值,SumB380-780为第二能量数据在色度系统中的B刺激值,Yi为第二能量数据在色度图上的纵坐标。
利用色度图可以直观地显示对检测获取的显示模组在可见光波长范围内进行校正后的色度。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种显示模组色度检测方法,其特征在于,包括:
获取测试装置在不同环境温度下对显示模组进行测试得到的校正比例系数,包括:对测试装置的校正标准能量进行设置;在不同环境温度下的封闭空间中,分别获取所述显示模组处于纯黑画面状态时的第一测试能量;在不同环境温度下的封闭空间中,分别获取所述显示模组处于显示画面状态时的第二测试能量;根据所述第一测试能量、所述第二测试能量和所述校正标准能量,获取在不同环境温度下的所述校正比例系数,包括:对在第一环境温度下分别获取的所述第二测试能量与所述第一测试能量作差获取差值,并将所述差值除以所述校正标准能量以获取在第一环境温度下的所述校正比例系数;
在特定环境温度下,使用所述测试装置对显示模组进行测试,获取在特定环境温度下所述显示模组的第一能量数据;
使用所述校正比例系数对所述第一能量数据进行校正,获取第二能量数据,包括:对在第一环境温度下分别获取的所述第一能量数据与所述第一测试能量作差,并与在第一环境温度下的所述校正比例系数相乘,以获取在第一环境温度下的所述第二能量数据;
将所述第二能量数据转换为色度图上的坐标,在色度图上对所述显示模组的色度进行显示,包括:根据标准色度转换系数将所述第二能量数据转换为色度系统中的RGB三刺激值,根据色度转换标准将所述RGB三刺激值转换为所述第二能量数据在色度图上的坐标。
2.根据权利要求1所述的显示模组色度检测方法,其特征在于,使用光谱仪获取所述显示模组处于纯黑画面状态时的第一测试能量以及所述显示模组处于显示画面状态时的第二测试能量。
3.根据权利要求2所述的显示模组色度检测方法,其特征在于,在不同环境温度下的封闭空间中,分别获取所述显示模组处于纯黑画面状态时的第一测试能量之前,所述方法还包括:
对所述光谱仪的曝光和平均次数进行设置;
控制所述光谱仪进行自校准。
4.根据权利要求1所述的显示模组色度检测方法,其特征在于,所述不同环境温度包括多个不同的测试温度,所述特定环境温度为多个不同的所述测试温度中的任一温度。
5.根据权利要求1所述的显示模组色度检测方法,其特征在于,所述标准色度转换系数包括标准R转换系数、标准G转换系数和标准B转换系数,所述根据标准色度转换系数将所述第二能量数据转换为色度系统中的RGB三刺激值包括:
将所述第二能量数据与标准R转换系数相乘,以获取所述第二能量数据在所述色度系统中的R刺激值;
将所述第二能量数据与标准G转换系数相乘,以获取所述第二能量数据在所述色度系统中的G刺激值;
将所述第二能量数据与标准B转换系数相乘,以获取所述第二能量数据在所述色度系统中的B刺激值。
6.根据权利要求5所述的显示模组色度检测方法,其特征在于,所述色度转换标准包括CIE1931国际标准。
7.根据权利要求1所述的显示模组色度检测方法,其特征在于,所述对显示模组在380~780nm光学波长范围内的能量进行测量。
CN202110290036.8A 2021-03-18 2021-03-18 显示模组色度检测方法 Active CN113125117B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110290036.8A CN113125117B (zh) 2021-03-18 2021-03-18 显示模组色度检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110290036.8A CN113125117B (zh) 2021-03-18 2021-03-18 显示模组色度检测方法

Publications (2)

Publication Number Publication Date
CN113125117A CN113125117A (zh) 2021-07-16
CN113125117B true CN113125117B (zh) 2024-04-19

Family

ID=76773436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110290036.8A Active CN113125117B (zh) 2021-03-18 2021-03-18 显示模组色度检测方法

Country Status (1)

Country Link
CN (1) CN113125117B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009535A (ja) * 1998-06-25 2000-01-14 Toshiba Corp 測色装置と測色方式
JP2007256086A (ja) * 2006-03-23 2007-10-04 Denso Corp 表示装置、補正係数演算装置、補正係数演算システム、および補正係数演算方法
CN101527108A (zh) * 2009-04-17 2009-09-09 天津光电星球显示设备有限公司 Led显示屏色度参数的测量方法
JP2010139324A (ja) * 2008-12-10 2010-06-24 Seiko Epson Corp 色ムラ測定方法、および色ムラ測定装置
DE102009004236A1 (de) * 2009-01-09 2010-07-15 Marc Leppla TV-Anordnung und Verfahren zur Kalibrierung eines TV-Geräts
KR101705818B1 (ko) * 2015-12-30 2017-02-10 주식회사 맥사이언스 색도 및 휘도 측정 장치, 시스템 및 측정방법
CN106969906A (zh) * 2017-04-26 2017-07-21 武汉华星光电技术有限公司 一种显示器的色度学计算方法及色度计算方法
CN107702798A (zh) * 2017-10-10 2018-02-16 京东方科技集团股份有限公司 测量显示器色彩准确度方法及校正显示器色彩表现方法
CN108957799A (zh) * 2018-06-19 2018-12-07 信利光电股份有限公司 一种lcd显示模组背光色度均匀性的检测方法
CN109506781A (zh) * 2018-12-25 2019-03-22 武汉精立电子技术有限公司 一种色度测量方法及装置
CN110514304A (zh) * 2019-10-25 2019-11-29 武汉精立电子技术有限公司 一种面阵色度测量装置及方法
JP2020003302A (ja) * 2018-06-27 2020-01-09 株式会社クリイノ創研 色差算出方法
CN111256826A (zh) * 2020-05-01 2020-06-09 武汉精立电子技术有限公司 显示屏色度测量方法、装置及终端设备

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009535A (ja) * 1998-06-25 2000-01-14 Toshiba Corp 測色装置と測色方式
JP2007256086A (ja) * 2006-03-23 2007-10-04 Denso Corp 表示装置、補正係数演算装置、補正係数演算システム、および補正係数演算方法
JP2010139324A (ja) * 2008-12-10 2010-06-24 Seiko Epson Corp 色ムラ測定方法、および色ムラ測定装置
DE102009004236A1 (de) * 2009-01-09 2010-07-15 Marc Leppla TV-Anordnung und Verfahren zur Kalibrierung eines TV-Geräts
CN101527108A (zh) * 2009-04-17 2009-09-09 天津光电星球显示设备有限公司 Led显示屏色度参数的测量方法
KR101705818B1 (ko) * 2015-12-30 2017-02-10 주식회사 맥사이언스 색도 및 휘도 측정 장치, 시스템 및 측정방법
CN106969906A (zh) * 2017-04-26 2017-07-21 武汉华星光电技术有限公司 一种显示器的色度学计算方法及色度计算方法
CN107702798A (zh) * 2017-10-10 2018-02-16 京东方科技集团股份有限公司 测量显示器色彩准确度方法及校正显示器色彩表现方法
CN108957799A (zh) * 2018-06-19 2018-12-07 信利光电股份有限公司 一种lcd显示模组背光色度均匀性的检测方法
JP2020003302A (ja) * 2018-06-27 2020-01-09 株式会社クリイノ創研 色差算出方法
CN109506781A (zh) * 2018-12-25 2019-03-22 武汉精立电子技术有限公司 一种色度测量方法及装置
CN110514304A (zh) * 2019-10-25 2019-11-29 武汉精立电子技术有限公司 一种面阵色度测量装置及方法
CN111256826A (zh) * 2020-05-01 2020-06-09 武汉精立电子技术有限公司 显示屏色度测量方法、装置及终端设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
光度、色度多参数测量校准装置关键技术的研究;方静;中国优秀硕士学位论文全文数据库 信息科技辑;全文 *
滤光片式LED色度测量准确度影响因素研究;周藩;电子科学技术(第03期);全文 *
色度学实验研究;王翠花 等;大学物理实验(第01期);全文 *

Also Published As

Publication number Publication date
CN113125117A (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
US7218358B2 (en) Method and apparatus for calibrating color temperature of color display devices
US8704895B2 (en) Fast calibration of displays using spectral-based colorimetrically calibrated multicolor camera
TWI495857B (zh) 藉由以分光儀協助之特定設計圖案閉迴路校準之高準確成像色度計
EP3054273B1 (en) Colorimetry system for display testing
US8531474B2 (en) Methods, systems and apparatus for jointly calibrating multiple displays in a display ensemble
US9754543B2 (en) Image self-calibration method and device for LCD displays
US9076363B2 (en) Parallel sensing configuration covers spectrum and colorimetric quantities with spatial resolution
US20090179881A1 (en) Color sensor unit for use in display device, color measuring device for use in display device, display system incorporated with color sensor unit, and display calibration method
CN109506781B (zh) 一种色度测量方法及装置
US20130033528A1 (en) Method for controlling an image display device to allow the same perception of colours over a large variety of observers
CN109459136B (zh) 一种色度测量的方法与装置
JP2007093477A (ja) 色測定装置の校正方法および校正装置、色測定方法、色測定装置
EP2998952A2 (en) Image self calibration method and device for lcd displays
CN113257144B (zh) 提高led显示屏单箱校正后箱体间拼接亮度一致性的方法
CN113125117B (zh) 显示模组色度检测方法
CN115065814B (zh) 屏幕色彩准确度检测方法及装置
US20220059049A1 (en) System and Method for Color Calibration
US11200828B2 (en) Method for matching color temperature of display and system thereof
KR20080103313A (ko) Pid 제어를 이용한 모니터 캘리브레이션 및 그 보정방법
CN114923672B (zh) 一种液晶显示面板的光学性能检测方法
TWI839658B (zh) 色度量測方法及裝置
Li et al. Comparative study on colorimetric characterization of LCD based on polynomial
TW202321672A (zh) 色度量測方法及裝置
CN118010311A (zh) 显示均一性检测方法、显示补偿方法及计算机设备
CN116884326A (zh) 一种显示光场辐射测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant