CN113122319A - Hydrocracking process for producing high-quality reforming raw material - Google Patents

Hydrocracking process for producing high-quality reforming raw material Download PDF

Info

Publication number
CN113122319A
CN113122319A CN201911418289.8A CN201911418289A CN113122319A CN 113122319 A CN113122319 A CN 113122319A CN 201911418289 A CN201911418289 A CN 201911418289A CN 113122319 A CN113122319 A CN 113122319A
Authority
CN
China
Prior art keywords
hydrocracking
hydrofining
reaction zone
heavy
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911418289.8A
Other languages
Chinese (zh)
Other versions
CN113122319B (en
Inventor
张霞
曹正凯
吴子明
崔哲
范思强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Dalian Petrochemical Research Institute Co ltd
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201911418289.8A priority Critical patent/CN113122319B/en
Publication of CN113122319A publication Critical patent/CN113122319A/en
Application granted granted Critical
Publication of CN113122319B publication Critical patent/CN113122319B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The invention discloses a hydrocracking process for producing high-quality reforming raw materials. The method comprises the following steps: (1) providing a hydrofining reaction zone and a hydrocracking reaction zone, wherein the hydrocracking reaction zone sequentially comprises a hydrofining catalyst bed layer and a plurality of hydrocracking catalyst bed layers connected in series; (2) the method comprises the following steps of (1) enabling nitrogen-containing raw oil and hydrogen to enter a hydrofining reaction zone together, and carrying out hydrofining reaction at an average reaction temperature of 330-350 ℃; (3) separating the hydrofining effluent to obtain a refined light component and a refined heavy component; (4) the refined heavy components and hydrogen gas enter a hydrocracking reaction zone together for reaction; (5) the refined light component enters a middle bed layer of a hydrocracking reaction zone; (6) and separating and fractionating the hydrocracking reaction effluent to obtain a heavy naphtha component. The method improves the potential aromatic hydrocarbon content of the obtained heavy naphtha component, and has better application prospect.

Description

Hydrocracking process for producing high-quality reforming raw material
Technical Field
The invention relates to a hydrogenation process method, in particular to a hydrogenation process method which is suitable for treating a low-nitrogen wax oil raw material in a hydrocracking process, and can realize the aims of improving the yield of heavy naphtha and improving the aromatic hydrocarbon potential by accurately controlling a hydrofining reaction and feeding the cut refined oil in sections.
Background
The hydrocracking technology has the characteristics of high production flexibility, strong raw material adaptability and high product quality, and plays a role of a medium-flow column in the aspect of adjusting the production balance of a whole plant. The products of the hydrocracking process include natural gas, liquefied gas, naphtha, jet fuel, diesel, and tail oil. The traditional hydrocracking technology mainly produces naphtha or middle distillate according to market change.
Along with the reduction of diesel oil demand in China, the automobile holding capacity is increased, and the diesel-gasoline ratio is continuously reduced. In order to adapt to severe oil market changes, the development of hydrocracking technology for producing heavy naphtha is imminent. The hydrocracking heavy naphtha has the characteristics of high naphthene, aromatic hydrocarbon and aromatic hydrocarbon potential, and is suitable for being used as a catalytic reforming feed. After catalytic reforming dehydrogenation, the generated oil can be used as a chemical raw material and also can be used as a high-quality gasoline blending component. The higher the content of monocyclic aromatics in the heavy naphtha is, the higher the octane number of the reformed gasoline is. It should be noted that a part of monocyclic aromatic hydrocarbons with side chains is converted from heavy components, and the content of monocyclic aromatic hydrocarbons in the effluent of a hydrofining reactor (hereinafter referred to as refined oil) is closely related to the refining depth. In view of the above problems, it is necessary to develop a corresponding hydrogenation process technology to retain monocyclic aromatic hydrocarbons in heavy naphtha to the maximum extent, so as to achieve the purpose of increasing the yield and aromatic hydrocarbon potential of heavy naphtha.
In hydrocracking technology, there are many reports on hydrocracking processes and technologies, but there are few hydrocracking processes for increasing heavy naphtha aromatics potential. CN 1955257A discloses a hydrocracking method for producing chemical raw materials, which comprises the steps of mixing poor quality catalytic cracking diesel oil and heavy hydrocracking raw materials in proportion, then carrying out hydrotreating and hydrocracking, and controlling the operation conditions to enable the yield of heavy naphtha to reach about 40 wt%. The heavy naphtha can be used as a high quality catalytic reforming feedstock. However, after the inferior diesel oil is doped, the smoke point of the aviation kerosene and the cetane number of the diesel oil are reduced, and even the diesel oil is unqualified.
CN 104560169 a discloses a hydrocracking process for producing heavy naphtha from a high nitrogen feedstock. The high-nitrogen raw oil and the hydrogen-rich gas are mixed and then heated to carry out the hydrofining reaction, the hydrocracking tail oil fraction is pressurized and then mixed with the recycle hydrogen to enter the hydrocracking reaction, and the tail oil fraction which is difficult to convert can be completely converted into the naphtha fraction. However, when the hydrocracking tail oil is recycled, the processing load is reduced due to the load limitation of a feed pump.
CN 104611062A discloses a method for producing high-octane gasoline. The method is used for processing catalytic diesel oil to produce high-octane gasoline fraction, fully utilizes the characteristics of hydrocracking and reactive distillation processes, reduces secondary cracking reaction of light fraction, and improves the liquid yield, wherein the gasoline fraction yield is more than 90%. The gasoline product has high octane number, simple process and energy saving. The method is limited by the nature of the raw oil, and when the aromatic hydrocarbon content in the raw oil is low, the aromatic hydrocarbon potential of the heavy naphtha cannot be obviously improved.
Disclosure of Invention
The invention aims to realize the purposes of retaining monocyclic aromatic hydrocarbon to the maximum extent and improving the yield and the aromatic hydrocarbon potential of heavy naphtha by accurately controlling the hydrorefining reaction of wax oil and feeding the cut refined oil in sections according to the distribution characteristics of the nitrogen content of the refined oil.
After research, the inventor of the invention finds that the content of monocyclic aromatic hydrocarbon in refined oil is the highest when the hydrofining reaction temperature is 340-350 ℃ under the reaction conditions of no matter what pressure, space velocity and hydrogen-oil ratio by taking the conventional straight-run wax oil as the raw material. However, in this temperature range, the nitrogen content of the refined oil is greater than 100ppm, which cannot meet the nitrogen content requirement of the refined oil and can cause basic nitrogen poisoning to the hydrocracking catalyst. After the refined oil is cut, the nitrogen content in the light component is low, and the nitrogen content in the heavy component is high. By controlling the proper cut point, the light component nitrogen content is not more than 10ppm, and the light component nitrogen can be used as the direct feed of a hydrocracking reactor. Heavy components need to be refined additionally and can be used as feed of a hydrocracking reactor. Therefore, the hydrofinishing reaction conditions can be precisely controlled so that the maximum amount of monocyclic aromatic hydrocarbons in the refined oil is retained. After the refined oil is subjected to hydrocracking reaction, a large amount of monocyclic aromatic hydrocarbon in the refined oil can be converted into heavy naphtha fraction, so that the aromatic hydrocarbon potential of the heavy naphtha is effectively improved.
The prior hydrocracking technology only has the requirement on the nitrogen content of hydrofined oil and does not directionally control the composition of the hydrofined oil, so that the product quality cannot be obviously improved. In order to overcome the defects in the prior art, the invention provides a hydrocracking process for producing high-quality reforming raw materials.
The hydrocracking process for producing the high-quality reforming raw material comprises the following steps of:
(1) providing a hydrofining reaction zone, wherein the hydrofining reaction zone comprises a hydrofining catalyst; providing a hydrocracking reaction zone, wherein the hydrocracking reaction zone sequentially comprises a hydrofining catalyst bed layer and a plurality of hydrocracking catalyst bed layers which are connected in series;
(2) the method comprises the following steps of (1) enabling nitrogen-containing raw oil and hydrogen to enter a hydrofining reaction zone together, and enabling the nitrogen-containing raw oil and the hydrogen to contact and react with a hydrofining catalyst under the condition that the average reaction temperature is 330-350 ℃, and preferably 335-345 ℃;
(3) carrying out gas-liquid separation on the hydrofining effluent obtained in the step (2), and enabling the obtained liquid phase to enter a fractionating tower to obtain a hydrofining light component and a hydrofining heavy component; the cutting temperature of the light component and the heavy component is 420-500 ℃, and preferably 440-480 ℃;
(4) allowing the heavy components obtained in the step (3) and hydrogen to enter a hydrocracking reaction zone, and sequentially contacting and reacting with a hydrofining catalyst and a hydrocracking catalyst;
(5) the light component obtained in the step (3) and optional hydrogen enter a middle bed layer of a hydrocracking reaction zone to contact and react with a hydrocracking catalyst;
(6) and separating and fractionating reaction effluent obtained by hydrocracking to obtain a gas product and a liquid product comprising a heavy naphtha component.
In the invention, the nitrogen-containing raw material is a low-nitrogen wax oil raw material, the initial boiling point of the low-nitrogen wax oil raw material is generally 260-320 ℃, the final boiling point of the low-nitrogen wax oil raw material is generally 400-530 ℃, and the nitrogen content is less than 1200 mu g/g. When processing inferior nitrogenous raw materials, a protective agent is generally filled before a hydrofining agent, and the protective agent comprises a demetallizing agent, a carbon residue removing agent, a silicon catching agent and the like.
In the step (1), 1-6 hydrofining catalyst beds are generally arranged in a hydrofining reaction zone along the material flow direction, and 2-4 refining catalyst beds are preferably arranged; the hydrocracking reaction zone is generally provided with 1 refined catalyst bed layer and 2-6 cracking catalyst bed layers along the material flow direction.
The hydrofinishing catalyst, which is generally comprised of a support and a metal. The metal is non-noble metal, the main active metal is the VIB metal component in the periodic table of elements, such as tungsten or/and molybdenum, and the weight of the metal oxide is 5-50 wt%, preferably 10-40 wt%. The auxiliary agent is mainly a metal component in the VIII B in the periodic table of elements, such as cobalt or/and molybdenum, and the weight of the auxiliary agent is 2-30 wt%, preferably 3-15 wt% based on the weight of metal oxide. The carrier can be a single carrier or a mixture of alumina, amorphous silicon aluminum and a molecular sieve, and the carrier is 60-90 wt%, preferably 60-85 wt%. The above carrier may be used to carry an active metal and prepare a hydrorefining catalyst, or an industrial catalyst such as FF-46, FF-56, and FF-66 from the institute of petrochemical engineering may be used.
The average reaction temperature of the hydrogenation refining reaction zone in the step (2) is preferably 335-345 ℃.
The cutting point of the light and heavy components in the step (3) is 420-500 ℃, and is preferably 440-480 ℃. Or the nitrogen content in the light component after cutting is controlled to be not more than 20ppm, preferably not more than 10ppm based on the nitrogen content in the light component.
The hydrocracking catalyst generally comprises a cracking component, a hydrogenation component and a binder. The cracking component typically comprises amorphous silica-alumina and/or molecular sieves, typically molecular sieves such as Y-type or beta-type molecular sieves. The binder is typically alumina or silica. The hydrogenation component is a metal, a metal oxide or a metal sulfide of a metal in a VI group, a VII group or a VIII group, and more preferably one or more of iron, chromium, molybdenum, tungsten, cobalt, nickel or sulfides or oxides thereof. The hydrogenation component content is usually 10-35 wt% based on the weight of the catalyst. Specifically, the existing hydrocracking catalyst may be selected, or a specific hydrocracking catalyst may be prepared as required. Commercial hydrocracking catalysts are mainly: FC-12, FC-16, FC-24, FC-32, FC-46, FC-52, etc. developed by FRIPP.
In the hydrocracking reaction zone in the step (2), the volume space velocity of the fresh feed relative to the hydrofining catalyst is 4.0-16 h-1Preferably 6.0 to 14.0 hours-1. The volume space velocity of the fresh feed relative to the hydrocracking catalyst is 0.5-3 h-1Preferably 1.0 to 2.5 hours-1
And (3) the feeding position of the light component obtained in the step (5) is an intermediate cracking catalyst bed layer of a hydrocracking reaction zone. The middle cracking catalyst bed layer of the hydrocracking reaction zone refers to the second cracking catalyst bed layer and any subsequent catalyst bed layer in a plurality of hydrocracking catalyst bed layers, and preferably refers to any one of the 2 nd to 4 th cracking catalyst bed layers.
In step (6), the liquid product obtained by hydrocracking usually comprises at least one of light naphtha, aviation kerosene, diesel oil and tail oil fraction, preferably aviation kerosene or diesel oil, in addition to heavy naphtha. Further, the obtained tail oil or/and diesel oil can be taken out of the device as a product, and can also be recycled to the inlet of a hydrofining reactor or a hydrocracking reactor, so that the yield of the obtained heavy naphtha is increased.
The hydrocracking process of the present invention may be used in any hydrocracking field.
Compared with the prior art, the method has the following beneficial effects:
1. the inventor of the application researches and discovers that at a proper hydrofining temperature, the monocyclic aromatic hydrocarbon content in the refined oil has a highest value, and the monocyclic aromatic hydrocarbon content is only related to the refining temperature and is not related to conditions such as space velocity, pressure, hydrogen-oil ratio and the like. Moreover, the monocyclic aromatic components in the refined oil are mainly distributed among the light components. Based on the discovery, the invention provides the technical scheme. And determining the proper reaction temperature of the hydrofining device and the cutting scheme of the refined oil according to the aromatic saturation characteristics of the hydrofining reaction and the nitrogen content distribution of the refined oil. The refined oil is divided into light components and heavy components which are enriched in monocyclic aromatic hydrocarbon and then enter a hydrocracking reactor in a segmented mode, the monocyclic aromatic hydrocarbon components can be reserved to the maximum extent, and after the monocyclic aromatic hydrocarbon components are converted into heavy naphtha, the yield and the aromatic hydrocarbon potential of the heavy naphtha can be effectively improved. Meanwhile, the heavy component of the refined oil passes through a refined catalyst bed layer in a hydrocracking reaction zone, the nitrogen content of the heavy component is further reduced, the contained aromatic hydrocarbon with more than two rings can be further subjected to hydrogenation saturation and is continuously converted into monocyclic aromatic hydrocarbon, and the potential aromatic hydrocarbon content of the obtained heavy naphtha component is also improved after passing through a hydrocracking catalyst.
2. And (3) performing light-weight segmentation on refined oil liquid, and allowing light components obtained by hydrofining to enter 2 nd to 4 th catalyst beds of a middle cracking catalyst bed of a hydrocracking reaction zone, wherein the light components can also be used as cold oil to play a role in heat extraction and reduce the outlet temperature of the hydrocracking catalyst bed.
3. The invention separates the refined oil into light and heavy components, and the heavy component is further hydrofined at higher temperature in the cracking reaction zone, which is also beneficial to deeply removing nitrogen-containing compounds in the heavy component, and can inhibit the over-saturation of aromatic hydrocarbon and avoid the potential loss of heavy stone aromatic hydrocarbon.
Drawings
FIG. 1 is a schematic flow diagram of one embodiment of the process of the present invention.
Detailed Description
The process of the present invention will be further described with reference to the accompanying drawings, in which many of the equipment such as pumps, heat exchangers, compressors, furnaces, stripping section water wash and dehydration columns, etc., are omitted, but are well known to those skilled in the art.
The process of the method provided by the invention is described in detail as follows: raw oil 1 and mixed hydrogen 2 are mixed and then enter a hydrofining reactor 3, sequentially pass through a hydrofining catalyst bed layer from top to bottom, refined oil 4 enters a fractionating tower 5 to be divided into light components and heavy components, the light components 6 obtained at the upper part enter the middle part of a hydrocracking reactor 7, the heavy components 8 enter the inlet of the hydrocracking reactor to be supplemented and refined, hydrocracking generated oil 9 enters a separator 10, gas 11 discharged at the upper part passes through a desulfurizing tower 12, the obtained circulating hydrogen 13 is pressurized by a circulating hydrogen compressor 14 and then is mixed with new hydrogen 15, liquid phase 16 obtained at the middle lower part of the separator enters a subsequent fractionating tower 17, and fractionating tower top gas 18, light naphtha 19, heavy naphtha 20, aviation kerosene 21, diesel 22 and tail oil 23 are obtained.
The process of the present invention will be further illustrated with reference to the following examples, but the invention is not limited thereto.
TABLE 1 Properties of the stock oils
Figure 999386DEST_PATH_IMAGE001
TABLE 2 catalysts
Figure 916526DEST_PATH_IMAGE003
TABLE 3 reaction conditions
Figure DEST_PATH_IMAGE004
The feed oil used in the following examples and comparative examples was a sand light VGO, the properties of which are shown in Table 1. The hydrocracking reactor is exemplified by typical four cracking catalyst beds, with a hydrofinishing catalyst bed disposed upstream of the uppermost cracking catalyst bed. In the hydrocracking reactor, the filling volume ratio of the hydrofining catalyst to the hydrocracking catalyst is as follows. The process flow diagram is shown in figure 1. The hydrofinishing agent FF-66 and the hydrocracking agent FC-46 used in the examples and the comparative examples were industrial agents, and the properties of both are shown in Table 2. The process evaluation conditions for all examples and comparative examples are shown in Table 3. The distillation range of the heavy naphtha in the examples and the comparative examples is 65-177 ℃.
Example 1
The average temperature of the hydrofining reactor is 335 ℃, the cut point of the light and heavy components is 470 ℃, and the airspeed of the hydrofining agent of the hydrocracking reactor is 6.0 h-1The space velocity of the hydrocracking agent is 1.8h-1. The light component is subjected to hydrocracking reactionAnd the heavy component directly enters the inlet of the hydrocracking reactor at the inlet of the second reaction zone of the reactor. Other process conditions are shown in table 3.
Example 2
The average temperature of the hydrofining reactor is 335 ℃, the cutting point of the light and heavy components is 460 ℃, and the airspeed of the hydrofining agent of the hydrocracking reactor is 8.0 h-1The space velocity of the hydrocracking agent is 1.8h-1. And the light component enters the inlet of the second reaction zone of the hydrocracking reactor, and the heavy component directly enters the inlet of the hydrocracking reactor. Other process conditions are shown in table 3.
Example 3
The average temperature of the hydrofining reactor is 345 ℃, the cutting point of the light and heavy components is 470 ℃, and the space velocity of hydrofining agent of the hydrocracking reactor is 6.0 h-1The space velocity of the hydrocracking agent is 1.8h-1. And the light component enters the inlet of the second reaction zone of the hydrocracking reactor, and the heavy component directly enters the inlet of the hydrocracking reactor. Other process conditions are shown in table 3.
Example 4
The average temperature of the hydrofining reactor is 345 ℃, the cutting point of the light and heavy components is 460 ℃, and the space velocity of the hydrofining agent of the hydrocracking reactor is 8.0 h-1The space velocity of the hydrocracking agent is 1.8h-1. And the light component enters the inlet of the third reaction zone of the hydrocracking reactor, and the heavy component directly enters the inlet of the hydrocracking reactor. Other process conditions are shown in table 3.
Comparative example 1
By adopting the conventional hydrocracking process, the effluent of the hydrofining reaction is not cut, and only a hydrocracking catalyst is filled in a hydrocracking reactor. The average temperature of the hydrofining reactor is 375 ℃, and the space velocity of hydrofining agent of the hydrocracking reactor is 8.0 h-1The space velocity of the hydrocracking agent is 1.8h-1. The refined oil and hydrogen directly enter the inlet of the hydrocracking reactor. Other process conditions are shown in table 3.
Comparative example 2
The procedure is as in comparative example 1. The average temperature of the hydrofining reactor is 340 ℃, and the space velocity of hydrofining agent of the hydrocracking reactor is 8.0 h-1The space velocity of the hydrocracking agent is 1.8h-1. The refined oil and hydrogen directly enter the inlet of the hydrocracking reactor. Other process conditions are shown in table 3.
Table 4 example test results
Figure 40471DEST_PATH_IMAGE005
TABLE 5 comparative example test results
Figure DEST_PATH_IMAGE006
The experimental results of the comparative example and the example show that the hydrocracking process can effectively improve the yield and the aromatic hydrocarbon of the heavy naphtha. When the average hydrofining reactor is 345 ℃, the cutting point of the light and heavy components is 470 ℃, and the space velocity of hydrofining agent in the hydrocracking reactor is 6.0 h-1The space velocity of the hydrocracking agent is 1.8h-1When the light components enter the inlet of the second reaction zone of the hydrocracking reactor, the yield of the heavy naphtha is 47.9 percent at most, and the maximum arene potentiality is 58.0 percent at most.

Claims (10)

1. A hydrocracking process for producing a high quality reformate comprises the following steps:
(1) providing a hydrofining reaction zone, wherein the hydrofining reaction zone comprises a hydrofining catalyst; providing a hydrocracking reaction zone, wherein the hydrocracking reaction zone sequentially comprises a hydrofining catalyst bed layer and a plurality of hydrocracking catalyst bed layers which are connected in series;
(2) the method comprises the following steps of (1) enabling nitrogen-containing raw oil and hydrogen to enter a hydrofining reaction zone together, and enabling the nitrogen-containing raw oil and the hydrogen to contact and react with a hydrofining catalyst under the condition that the average reaction temperature is 330-350 ℃; the nitrogen content of the nitrogen-containing raw oil is less than 1200 mu g/g;
(3) carrying out gas-liquid separation on the hydrofining effluent obtained in the step (2), and enabling the obtained liquid phase to enter a fractionating tower to obtain a hydrofining light component and a hydrofining heavy component; the cutting temperature of the light component and the heavy component is 420-500 ℃;
(4) allowing the heavy components obtained in the step (3) and hydrogen to enter a hydrocracking reaction zone, and sequentially contacting and reacting with a hydrofining catalyst and a hydrocracking catalyst;
(5) the light component obtained in the step (3) and optional hydrogen enter a middle cracking catalyst bed layer of a hydrocracking reaction zone to contact and react with a hydrocracking catalyst;
(6) and separating and fractionating reaction effluent obtained by hydrocracking to obtain a gas product and a liquid product comprising a heavy naphtha component.
2. The hydrocracking process according to claim 1, wherein the nitrogen-containing feedstock has an initial boiling point of 260 to 320 ℃ and an end point of 400 to 530 ℃.
3. The hydrocracking process of claim 1, wherein a protecting agent is loaded before the hydrofining catalyst in the hydrofining reaction zone, the protecting agent comprising at least one of a demetallizing agent, a carbon residue removing agent and a silicon capturing agent.
4. The hydrocracking process according to claim 1, wherein the average reaction temperature in the hydrofinishing reaction zone in step (2) is 335 to 345 ℃.
5. The hydrocracking process according to claim 1, wherein the cut point of the light and heavy components in step (3) is 440 to 480 ℃.
6. The hydrocracking process according to claim 1 or 5, wherein the nitrogen content in the light components obtained is not more than 20 ppm.
7. The hydrocracking process according to claim 1, wherein in the hydrocracking reaction zone in the step (2), the volume space velocity of the fresh feed relative to the hydrofining catalyst is 4.0-16 h-1The volume space velocity of the fresh feed relative to the hydrocracking catalyst is 0.5-3 h-1
8. The hydrocracking process according to claim 1, wherein the intermediate cracking catalyst bed in the hydrocracking reaction zone is any one of the second cracking catalyst bed and the subsequent cracking catalyst bed.
9. The hydrocracking process according to claim 1, wherein the liquid product obtained by hydrocracking contains light naphtha, aviation kerosene, diesel oil and tail oil fractions in addition to heavy naphtha.
10. The hydrocracking process of claim 9, wherein the tail oil or/and diesel oil is discharged from the apparatus as a product or recycled to the hydrofinishing reactor or the hydrocracking reactor inlet.
CN201911418289.8A 2019-12-31 2019-12-31 Hydrocracking process for producing high-quality reforming raw material Active CN113122319B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911418289.8A CN113122319B (en) 2019-12-31 2019-12-31 Hydrocracking process for producing high-quality reforming raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911418289.8A CN113122319B (en) 2019-12-31 2019-12-31 Hydrocracking process for producing high-quality reforming raw material

Publications (2)

Publication Number Publication Date
CN113122319A true CN113122319A (en) 2021-07-16
CN113122319B CN113122319B (en) 2022-10-11

Family

ID=76769244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911418289.8A Active CN113122319B (en) 2019-12-31 2019-12-31 Hydrocracking process for producing high-quality reforming raw material

Country Status (1)

Country Link
CN (1) CN113122319B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747936A (en) * 2008-11-28 2010-06-23 中国石油化工股份有限公司 Hydrogenation method for producing high-quality low-sulfur diesel fraction
CN103102966A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 High nitrogen raw material hydrocracking method
CN104611046A (en) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 Low energy-consumption two-stage hydrocracking method
CN109777500A (en) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 A kind of two-segment hydrocracking method of gas-liquid counter current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101747936A (en) * 2008-11-28 2010-06-23 中国石油化工股份有限公司 Hydrogenation method for producing high-quality low-sulfur diesel fraction
CN103102966A (en) * 2011-11-10 2013-05-15 中国石油化工股份有限公司 High nitrogen raw material hydrocracking method
CN104611046A (en) * 2013-11-05 2015-05-13 中国石油化工股份有限公司 Low energy-consumption two-stage hydrocracking method
CN109777500A (en) * 2017-11-14 2019-05-21 中国石油化工股份有限公司 A kind of two-segment hydrocracking method of gas-liquid counter current

Also Published As

Publication number Publication date
CN113122319B (en) 2022-10-11

Similar Documents

Publication Publication Date Title
CN102311795B (en) Hydrogenation method for producing high-octane gasoline components by diesel oil raw material
CN101684417B (en) Optimized hydrogenation-catalytic cracking combination process
CN102453535B (en) Hydrocracking method for reforming material yield increase
CN101987971A (en) Method for producing high-octane petrol by inferior diesel
CN103059972A (en) Combined hydrogenation method of producing chemical materials
CN103059986B (en) Hydrocracking method for producing chemical materials
CN109988650B (en) Hydrogenation modification and hydrofining combined method for poor diesel oil
CN109988609B (en) Flexible shale oil hydrocracking process
CN103254936A (en) Combined process of hydrotreatment-catalytic cracking for residuum
CN102344826B (en) Combined hydrogenation method for producing catalytic raw material and high-quality diesel oil
CN109988643B (en) Hydrogenation modification and hydrofining combined process for poor diesel oil
CN109988645B (en) Hydrogenation modification and hydrofining combined process for inferior diesel oil
CN113122321B (en) Hydrocracking method for improving aromatic hydrocarbon potential of heavy naphtha
CN113122319B (en) Hydrocracking process for producing high-quality reforming raw material
CN114456842B (en) Production system and production method of high-quality distillate oil
CN111100697A (en) Hydrocracking method of paraffin-based diesel oil
CN106590744B (en) A kind of inferior raw material oil treatment process
CN109988625B (en) Hydrofining and hydrocracking combined process
CN111088072A (en) Hydrocracking method for reducing heavy naphtha bromine index and increasing aviation kerosene smoke point
CN110408429A (en) A kind of method of group technology processing heavy oil
CN114437804B (en) Hydrocracking method of high-nitrogen raw oil
CN115404101B (en) System and method for producing diesel oil and high-density jet fuel and by-producing BTX
CN114437798B (en) Shale oil hydrocracking method
CN114437799B (en) Hydrocracking method
CN109988599B (en) Flexible hydrogenation modification process for inferior diesel oil

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231103

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: Sinopec (Dalian) Petrochemical Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC Corp.