CN113114335B - 一种基于人工智能的软件定义天基网络组网架构 - Google Patents

一种基于人工智能的软件定义天基网络组网架构 Download PDF

Info

Publication number
CN113114335B
CN113114335B CN202110289303.XA CN202110289303A CN113114335B CN 113114335 B CN113114335 B CN 113114335B CN 202110289303 A CN202110289303 A CN 202110289303A CN 113114335 B CN113114335 B CN 113114335B
Authority
CN
China
Prior art keywords
artificial intelligence
space
network
plane
based network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110289303.XA
Other languages
English (en)
Other versions
CN113114335A (zh
Inventor
张亚生
何辞
孙晨华
谷聚娟
董飞虎
王旭阳
马广龙
李新桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Original Assignee
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute filed Critical CETC 54 Research Institute
Priority to CN202110289303.XA priority Critical patent/CN113114335B/zh
Publication of CN113114335A publication Critical patent/CN113114335A/zh
Application granted granted Critical
Publication of CN113114335B publication Critical patent/CN113114335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开一种基于人工智能的软件定义天基网络组网架构,涉及卫星网络领域中的组网技术。在传统天基网络中,传统分布式路由只能提供“尽力而为”服务,无法很好从全局角度选路;面向服务的未来新一代智能天基网络需要服务于多类用户/多种业务,需要做到时变拓扑下全网流量的均衡调度。本发明设计了一种基于人工智能的软件定义天基网络组网架构,通过在组网领域引入人工智能,设计知识、控制和转发的“三面”组网架构,转发平面采集网络状态大数据,知识平台利用大数据对未来流量进行预测和判断,并由控制平面决策并下发至转发平面,实现网络流量的实时感知,且能自动完成全网流量的调度和配置,最终实现天基网络自主高效的运行。

Description

一种基于人工智能的软件定义天基网络组网架构
技术领域
本发明公开一种基于人工智能的软件定义天基网络组网架构,涉及卫星网络领域中的组网技术。
背景技术
天基网络星载节点资源受限,卫星的发射成本和运行成本较地面通信设备高很多,其通信能力、计算能力都是高成本的网络资源;另外,卫星节点一旦入轨,其资源是不可扩充的;然而,未来天基网络需要真正面向多业务和海量用户运营,卫星网络资源的合理调度对于网络效率的影响至关重要。
现有分布式路由优化方案缺乏对业务流量动态变化的感知、路由策略只能做到局部最优。另外随着网络规模的扩大,算法复杂度过高,对天基网络节点本身的计算能力不可扩展,不能满足其计算需求。而基于软件定义的天基网络组网架构可有效分离整个天基网络的转发层和控制层,转发层的卫星节点只需要实现最简单的转发和硬件配置功能;控制层用来完成复杂的路由计算、资源分配和配置生成功能,从而为卫星网络提供高效且细粒化的控制。
另外,随着人工智能技术的发展,人工智能在识别、指挥控制、机器视觉等领域均取得突破。大量实例证明,人工智能机器学习这种利用大量数据学习规则的方式给很多问题带来了全新的解决方案。同样,针对未来日益增加的用户规模、种类繁多的业务类型,未来天基网络组网复杂性会不断增加,通过传统方式对网络进行监控、建模、整体控制变得愈加困难。于是,将人工智能应用到网络领域的网络人工智能应运而生。
发明内容
本发明所要解决的技术问题在于基于星载处理能力受限的环境下,实现天基网络全网流量智能优化为目的,提出了一种基于人工智能的软件定义天基网络组网架构。
本发明采用的技术方案为:
一种基于人工智能的软件定义天基网络组网架构,包括转发平面、控制平面和自智平面,控制平面作为转发平面和自智平面的中间层;
转发平面由卫星节点中的星载交换机组成,星载交换机用于通过路由转发规则对业务数据进行路径转发,还用于采集各卫星节点测量信息,并将采集到的各卫星节点天基网络状态测量信息封装到网络测量包中,并将网络测量包上传至控制平面;其中,卫星节点天基网络状态测量信息包括网络流量和网络设备负载信息;
控制平面由天基网络控制器组成,天基网络控制器用于将转发平面上传的网络测量包发送至自智平面,还用于将自智平面路由决策的结果生成路由转发规则,并下发至转发平面的星载交换机;
自智平面用于基于海量天基网络状态测量信息,通过利用人工智能机器学习算法模型实现各种路由决策,并将路由决策的结果下发到控制平面的天基网络控制器。
其中,网络流量和网络设备信息包括星载交换机的入队列长度、出队列长度和排队时延信息。
其中,各种路由决策主要针对不同类型业务服务质量要求做出,包括针对时延和带宽的不同要求。
其中,利用人工智能机器学习算法模型实现各种路由决策前,通过自智平面在每个周期搜集到的各卫星节点天基网络状态测量信息,训练人工智能机器算法模型直至稳定,人工智能机器算法模型包括算法的各项步骤和参数,训练即通过选路策略优劣的反馈调节模型中的参数,训练过程中,通过自智平面在每个周期搜集到的天基网络状态测量信息,经过人工智能机器学习算法模型对天基网络星间链路上的最大负载进行归一化处理,若归一化后的数值为正数,则说明当前基于人工智能机器学习算法模型计算的路由策略较优,归一化后的数值为1时,则说明当前基于人工智能机器学习算法模型计算的路由策略为最优,当前训练出来的模型越趋近于正确,继续按此参数进行训练;若归一化后的数值为负数,则说明当前基于人工智能机器学习算法模型计算的路由策略较差,归一化后的数值为-1时,则说明当前基于人工智能机器学习算法模型计算的路由策略最差,当前训练出来的模型越趋近于错误,需调整参数进行纠偏训练。
本发明与现有技术相比具有以下优点:
本发明通过引入软件定义、人工智能技术,设计全新组网架构,实现全网流量的智能调度和优化,解决传统分布式路由架构及单一的选路方法(最短路径)无法满足全局流量均衡的问题,可从全局角度解决全网流量智能优化和调度的问题。
附图说明
图1是本发明实施例的架构示意图。
具体实施方式
为了实现本发明,下面结合附图1进行进一步说明。图1是本发明实施例的架构示意图。
参照图1,主要示意了一种基于人工智能的软件定义天基网络组网架构,是基于转发平面、控制平面和自智平面所构成的智能天基网络组网架构来实现的;
转发平面由卫星节点中的星载交换机组成,星载交换机用于通过路由转发规则对业务数据进行正确转发,还用于采集各卫星节点测量信息,并将采集到的各卫星节点天基网络状态测量信息封装到网络测量包中,并将网络测量包上传至控制平面;其中,卫星节点天基网络状态测量信息包括网络流量和网络设备负载信息;网络流量和网络设备负载信息包括星载交换机的入队列长度、出队列长度和排队时延信息;
控制平面由天基网络控制器组成,天基网络控制器用于将转发平面上传的网络测量包发送至自智平面,还用于将自智平面路由决策的结果生成路由转发规则,并下发至转发平面的星载交换机;
自智平面用于基于海量天基网络状态测量信息,通过利用人工智能机器学习算法模型实现各种路由决策,包括自主决策和人在回路的决策,并将路由决策的结果下发到控制平面的天基网络控制器。
利用人工智能机器学习算法模型实现各种路由决策前,通过自智平面在每个周期搜集到的各卫星节点天基网络状态测量信息,训练人工智能机器算法模型直至稳定,人工智能机器算法模型包括算法的各项步骤和参数,训练即通过选路策略优劣的反馈调节模型中的参数,训练过程中,通过自智平面在每个周期搜集到的天基网络状态测量信息,经过人工智能机器学习算法模型对天基网络星间链路上的最大负载进行归一化处理,若归一化后的数值为正数,则说明当前基于人工智能机器学习算法模型计算的路由策略较优,归一化后的数值为1时,则说明当前基于人工智能机器学习算法模型计算的路由策略为最优,当前训练出来的模型越趋近于正确,继续按此参数进行训练;若归一化后的数值为负数,则说明当前基于人工智能机器学习算法模型计算的路由策略较差,归一化后的数值为-1时,则说明当前基于人工智能机器学习算法模型计算的路由策略最差,当前训练出来的模型越趋近于错误,需调整参数进行纠偏训练。
本发明的上述各实施例,针对天基网络受限资源条件下全网流量的智能调度和优化问题,独创了一种基于人工智能的软件定义天基网络组网架构,该实施例在天基组网领域首次引入人工智能技术,新增自智平面,实现全网流量的智能均衡决策;引入软件定义网络思想,将现有网络设备中紧耦合的控制面和数据面分离,并利用控制面集中、且具有全局流量视图的优势,反馈至自智平面用于智能组网决策,从而实现全网流量高效的均衡调度和优化。
本领域的普通技术人员可以理解:实现一种基于人工智能的软件定义天基网络组网架构可以通过程序指令相关的硬件或软件来完成,该程序在执行时,执行包括上述架构实施例的过程。

Claims (4)

1.一种基于人工智能的软件定义天基网络组网架构,其特征在于:包括转发平面、控制平面和自智平面,控制平面作为转发平面和自智平面的中间层;
转发平面由卫星节点中的星载交换机组成,星载交换机用于通过路由转发规则对业务数据进行路径转发,还用于采集各卫星节点测量信息,并将采集到的各卫星节点天基网络状态测量信息封装到网络测量包中,并将网络测量包上传至控制平面;其中,卫星节点天基网络状态测量信息包括网络流量和网络设备负载信息;
控制平面由天基网络控制器组成,天基网络控制器用于将转发平面上传的网络测量包发送至自智平面,还用于将自智平面路由决策的结果生成路由转发规则,并下发至转发平面的星载交换机;
自智平面用于基于海量天基网络状态测量信息,通过利用人工智能机器学习算法模型实现各种路由决策,并将路由决策的结果下发到控制平面的天基网络控制器。
2.如权利要求1所述的一种基于人工智能的软件定义天基网络组网架构,其特征在于:网络流量和网络设备负载信息包括星载交换机的入队列长度、出队列长度和排队时延信息。
3.如权利要求1所述的一种基于人工智能的软件定义天基网络组网架构,其特征在于:各种路由决策主要针对不同类型业务服务质量要求做出,包括针对时延和带宽的不同要求。
4.如权利要求1所述的一种基于人工智能的软件定义天基网络组网架构,其特征在于:利用人工智能机器学习算法模型实现各种路由决策前,通过自智平面在每个周期搜集到的各卫星节点天基网络状态测量信息,训练人工智能机器算法模型直至稳定,人工智能机器算法模型包括算法的各项步骤和参数,训练即通过选路策略优劣的反馈调节模型中的参数,训练过程中,通过自智平面在每个周期搜集到的天基网络状态测量信息,经过人工智能机器学习算法模型对天基网络星间链路上的最大负载进行归一化处理,若归一化后的数值为正数,则说明当前基于人工智能机器学习算法模型计算的路由策略较优,归一化后的数值为1时,则说明当前基于人工智能机器学习算法模型计算的路由策略为最优,当前训练出来的模型越趋近于正确,继续按此参数进行训练;若归一化后的数值为负数,则说明当前基于人工智能机器学习算法模型计算的路由策略较差,归一化后的数值为-1时,则说明当前基于人工智能机器学习算法模型计算的路由策略最差,当前训练出来的模型越趋近于错误,需调整参数进行纠偏训练。
CN202110289303.XA 2021-03-18 2021-03-18 一种基于人工智能的软件定义天基网络组网架构 Active CN113114335B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110289303.XA CN113114335B (zh) 2021-03-18 2021-03-18 一种基于人工智能的软件定义天基网络组网架构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110289303.XA CN113114335B (zh) 2021-03-18 2021-03-18 一种基于人工智能的软件定义天基网络组网架构

Publications (2)

Publication Number Publication Date
CN113114335A CN113114335A (zh) 2021-07-13
CN113114335B true CN113114335B (zh) 2021-11-19

Family

ID=76711927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110289303.XA Active CN113114335B (zh) 2021-03-18 2021-03-18 一种基于人工智能的软件定义天基网络组网架构

Country Status (1)

Country Link
CN (1) CN113114335B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117813846A (zh) * 2021-08-10 2024-04-02 上海诺基亚贝尔股份有限公司 装置、方法和计算机程序
WO2023141847A1 (en) * 2022-01-27 2023-08-03 Huawei Technologies Co., Ltd. Apparatus and methods for reliability adaptation for artificial intelligence training

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221331A (ja) * 1985-07-19 1987-01-29 Nec Corp 通信方式および装置
CN109600400A (zh) * 2017-09-29 2019-04-09 索尼公司 无线通信系统中的电子设备、方法和无线通信系统
CN110730138A (zh) * 2019-10-21 2020-01-24 中国科学院空间应用工程与技术中心 天基云雾计算架构的动态资源配置方法、系统和存储介质
CN111404597A (zh) * 2020-03-30 2020-07-10 中国科学院微小卫星创新研究院 一种天基资源网络化智能微小卫星系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11501572B2 (en) * 2018-03-26 2022-11-15 Nvidia Corporation Object behavior anomaly detection using neural networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221331A (ja) * 1985-07-19 1987-01-29 Nec Corp 通信方式および装置
CN109600400A (zh) * 2017-09-29 2019-04-09 索尼公司 无线通信系统中的电子设备、方法和无线通信系统
CN110730138A (zh) * 2019-10-21 2020-01-24 中国科学院空间应用工程与技术中心 天基云雾计算架构的动态资源配置方法、系统和存储介质
CN111404597A (zh) * 2020-03-30 2020-07-10 中国科学院微小卫星创新研究院 一种天基资源网络化智能微小卫星系统

Also Published As

Publication number Publication date
CN113114335A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN109818865B (zh) 一种sdn增强路径装箱装置及方法
CN110012516B (zh) 一种基于深度强化学习架构的低轨卫星路由策略方法
CN108259367B (zh) 一种基于软件定义网络的服务感知的流策略定制方法
CN110557732B (zh) 一种车辆边缘计算网络任务卸载负载均衡系统及均衡方法
CN113114335B (zh) 一种基于人工智能的软件定义天基网络组网架构
CN108234169B (zh) 一种分布式仿真网络结构实时动态优化方法
Kaur et al. Demand-response management using a fleet of electric vehicles: An opportunistic-SDN-based edge-cloud framework for smart grids
CN109151077B (zh) 一种基于目标导向的计算卸载方法
Yin et al. Distributed adaptive model‐based event‐triggered predictive control for consensus of multiagent systems
CN114221691A (zh) 一种基于深度强化学习的软件定义空天地一体化网络路由优化方法
Ebrahim et al. A deep learning approach for task offloading in multi-UAV aided mobile edge computing
CN116599904A (zh) 并行传输负载均衡装置及方法
Chen et al. Time-varying resource graph based resource model for space-terrestrial integrated networks
CN115361048B (zh) 一种巨型低轨星座无服务器边缘计算任务编排方法及装置
CN113453255B (zh) 一种边设备容器的业务数据传输负载均衡优化方法及装置
CN114938374A (zh) 跨协议负载均衡方法及系统
Zhang et al. Optimal congestion-aware routing and offloading in collaborative edge computing
CN113852415B (zh) 一种适用于低轨卫星网络的全局流量调度方法
CN115297508A (zh) 一种巨型星座卫星网络路由负载均衡方法及系统
CN115665264A (zh) 一种基于时延感知的电力通信网自主业务编排方法和装置
CN109474908A (zh) 一种基于任务驱动的航空自组网方法
CN102158413A (zh) 基于邻域免疫克隆选择的多智能体组播路由方法
CN115664487A (zh) 一种基于大脑神经元聚合架构的智能空地集成网络
CN114500386B (zh) 一种基于强化学习和sdn的负载均衡系统
Iwai et al. Mobile network architectures and context-aware network control technology in the IoT era

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant