CN113113931B - 风光水联合发电系统的规划调度方法 - Google Patents

风光水联合发电系统的规划调度方法 Download PDF

Info

Publication number
CN113113931B
CN113113931B CN202110418318.1A CN202110418318A CN113113931B CN 113113931 B CN113113931 B CN 113113931B CN 202110418318 A CN202110418318 A CN 202110418318A CN 113113931 B CN113113931 B CN 113113931B
Authority
CN
China
Prior art keywords
wind
output
power
light
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110418318.1A
Other languages
English (en)
Other versions
CN113113931A (zh
Inventor
李文英
文明
廖菁
谭玉东
姜飞
陈磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Hunan Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Hunan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Hunan Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Hunan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Hunan Electric Power Co Ltd, Economic and Technological Research Institute of State Grid Hunan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN202110418318.1A priority Critical patent/CN113113931B/zh
Publication of CN113113931A publication Critical patent/CN113113931A/zh
Application granted granted Critical
Publication of CN113113931B publication Critical patent/CN113113931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Wind Motors (AREA)

Abstract

本发明公开了一种风光水联合发电系统的规划调度方法,包括获取调度周期内各时段的电力负荷数据;计算各时段的风电理论出力值、光伏理论出力值和小水电理论出力值;构建基于风光水出力互补率、风光水总出力与电力负荷的匹配度和剩余负荷波动度的多目标优化模型;对多目标优化模型进行求解得到最优装机容量比例;根据最优装机容量比例进行风光水联合发电系统的规划调度。本发明兼顾发电侧和用电侧,建立考虑可再生能源出力互补特性、发用电曲线匹配程度及可再生能源消纳后剩余负荷平滑程度的多目标优化模型,能够缓解可再生能源弃电问题,为多源联合发电系统的调度与运行提供有效辅助,能够有效缓解可再生能源的弃电问题,可靠性高、实用性好。

Description

风光水联合发电系统的规划调度方法
技术领域
本发明属于电网规划及调度领域,具体涉及一种风光水联合发电系统的规划调度方法。
背景技术
随着经济技术的发展和人们生活水平的提高,电能已经成为了人们生产和生活中必不可少的二次能源,给人们的生产和生活带来了无尽的便利。而随着环境问题的日益凸显,人们对于环境问题也越来越关注。
可再生能源发电主要包括水力发电、风力发电和光伏发电;同时,可再生能源发电系统具有环境友好、污染排放少等优势,现在也开始逐步扩展应用,并且开始大规模并网运行。
大事,随着可再生能源发电系统的大规模并网发电运行,新能源天然的随机波动属性对其自身消纳、电力系统规划调度及安全稳定运行的影响日益显著。统计数据显示,2019年我国弃风、弃光电量分别为169、46亿kWh。因此,如何进行多类型可再生能源发电系统的调度,对于实现大规模可再生能源的全额消纳具有重要意义。
但是,目前针对多源联合系统的规划调度方法研究,往往仅考虑可再生能源消纳率、系统投资成本及碳排放量等目标,考虑因素不全面,而且方法单一,因此使得目前的针对多源联合系统的规划调度方法,其实际应用效果较差。
发明内容
本发明的目的在于提供一种可靠性高、实用性好且能够有效缓解可再生能源的弃电问题的风光水联合发电系统的规划调度方法。
本发明提供的这种风光水联合发电系统的规划调度方法,包括如下步骤:
S1.获取调度周期内各时段的电力负荷数据;
S2.计算各时段的风电理论出力值、光伏理论出力值和小水电理论出力值;
S3.构建基于风光水出力互补率、风光水总出力与电力负荷的匹配度和剩余负荷波动度的多目标优化模型;
S4.对步骤S3构建的多目标优化模型进行求解,得到最优装机容量比例;
S5.根据步骤S4得到的最优装机容量比例,进行风光水联合发电系统的规划调度。
步骤S2所述的风电理论出力值,具体为采用如下算式计算风电理论出力值:
Figure BDA0003026800920000021
式中PW,t为t时段的风机输出功率;PW,Rate为风机的额定输出功率;vt为t时段的风速;v1为风机的切入风速;vRate为风机的额定风速;v2为风机的切出风速。
步骤S2所述的光伏理论出力值,具体为采用如下算式计算光伏理论出力值:
Figure BDA0003026800920000022
式中PPV,t为t时段的光伏电池输出功率;PPV,Rate为光伏电池的额定输出功率;ηInv为光伏逆变器的效率;ηLoss为光伏电池的损耗率;ηRef为参考温度下光伏电池组件的效率;TAve为规划地区的平均太阳辐射强度小时;KT为光伏电池的功率温度参数;Tem,t为t时段光伏电池组件的运行温度;Tem,Ref为光伏电池组件的参考温度。
步骤S2所述的小水电理论出力值,具体为采用如下算式计算小水电理论出力值:
PHydro,t=9.81η1η2QtHC
式中PHydro,t为t时段小水电站的输出功率;η1为小水电站发电机的效率;η2为水轮机的效率;Qt为t时段小水电站的发电流量;HC为小水电站的净水头;所述的小水电的定义为装机容量在25000kW及以下的水电站。
步骤S3所述的构建基于风光水出力互补率、风光水总出力与电力负荷的匹配度和剩余负荷波动度的多目标优化模型,具体为采用如下步骤构建多目标优化模型:
A.采用如下算式建立第一目标函数:风光水出力互补率最大:
Figure BDA0003026800920000031
式中C为风光水出力互补率;T为调度周期的总时段数;
Figure BDA0003026800920000032
为归一化处理后t时段的风光水联合出力波动幅度,
Figure BDA0003026800920000033
为经归一化处理后t时段的风光水联合发电系统的理论总出力,同时
Figure BDA0003026800920000034
为经归一化处理后t时段的风电理论出力,
Figure BDA0003026800920000035
为经归一化处理后t时段的光伏理论出力,
Figure BDA0003026800920000036
为归一化处理后t时段的小水电理论出力,a1为风电的装机容量占比,a2为光伏的装机容量占比,a3为小水电的装机容量占比,且a1+a2+a3=1;
Figure BDA0003026800920000037
为归一化处理后t时段的风电单独出力波动幅度,且
Figure BDA0003026800920000038
为归一化处理后t时段的光伏单独出力波动幅度,且
Figure BDA0003026800920000039
为归一化处理后t时段的小水电单独出力波动幅度,且
Figure BDA0003026800920000041
归一化的计算公式为
Figure BDA0003026800920000042
为归一化后的变量值,Pt为归一化前的变量值,Pmin为归一化前的变量最小取值,Pmax为归一化前的变量最大取值;
B.采用如下算式建立第二目标函数:风光水总出力与电力负荷的匹配度最大:
Figure BDA0003026800920000043
式中D为风光水总出力与电力负荷的匹配度;PL,t为t时段的电力负荷;PU,t为t时段风光水联合发电系统的理论总出力,且PU,t=a1PW,t+a2PPV,t+a3PHydro,t,a1为风电的装机容量占比,a2为光伏的装机容量占比,a3为小水电的装机容量占比,且a1+a2+a3=1,PW,t为t时段的风电单独出力,PPV,t为t时段的光伏单独出力,PHydro,t为t时段的小水电单独出力,所述风电单独出力定义为目标区域仅开发风电时风电出力的大小,光伏单独出力定义为目标区域仅开发光伏发电时光伏出力的大小,小水电单独出力定义为目标区域仅开发小水电时小水电的大小;ΔPLPU为中间变量,且定义ΔPLPU的计算公式为ΔPLPU=max[min(PL,t-PU,t),min(PU,t-PL,t)];
C.采用如下算式建立第二目标函数:剩余负荷波动度最小:
Figure BDA0003026800920000044
式中F为剩余负荷波动度;PNet,t为t时段的剩余负荷,且PNet,t=PL,t-PU,t;PNet,Ave为剩余负荷的平均值,且
Figure BDA0003026800920000045
D.采用如下算式作为约束条件:
功率平衡约束:PU,t+PG,t=PL,t;PG,t为t时段常规电源的输出功率;
装机容量约束:PU,t≤PPlan,total;PPlan,total为可再生能源的总规划装机容量;
小水电站上游水库库容约束:VHydro,min≤VHydro,t≤VHydro,max;VHydro,t为t时段的小水电站上游水库的库容;VHydro,min为小水电站上游水库库容的最小值;VHydro,max为小水电站上游水库库容的最大值;
小水电站发电流量约束:Qmin≤Qt≤Qmax;Qt为t时段的小水电站发电流量;Qmin为小水电站发电流量的最小值;Qmax为小水电站发电流量的最大值;
小水电站出力约束:0≤PHydro,t≤PHydroCap,max;PHydroCap,max为小水电的最大装机容量;
风电出力约束:0≤PW,t≤PWCap,max;PWCap,max为风电的最大装机容量;
光伏出力约束:0≤PPV,t≤PPVCap,max;PPVCap,max为光伏的最大装机容量。
步骤S4所述的对步骤S3构建的多目标优化模型进行求解,具体为采用线性加权法,将多目标优化模型转化为单目标优化模型进行求解:
Figure BDA0003026800920000051
式中f为单目标优化模型;Cmin为仅考虑风光水出力互补率最大目标时的最优值;C为风光水出力互补率;Dmin为仅考虑风光水总出力与电力负荷的匹配度最大时的最优值;D为风光水总出力与电力负荷的匹配度;Fmax为仅考虑剩余负荷波动度最小时的最优值;F为剩余负荷波动度;λ1、λ2和λ3均为加权系数,且λ123=1。
本发明提供的这种风光水联合发电系统的规划调度方法,兼顾发电侧和用电侧,建立考虑可再生能源出力互补特性、发用电曲线的匹配程度及可再生能源消纳后剩余负荷的平滑程度的多目标优化模型,能够有效缓解可再生能源弃电问题,为多源联合发电系统的调度与运行提供有效辅助,能够有效缓解可再生能源的弃电问题,而且可靠性高、实用性好。
附图说明
图1为本发明方法的方法流程示意图。
具体实施方式
如图1所示为本发明方法的方法流程示意图:本发明提供的这种风光水联合发电系统的规划调度方法,包括如下步骤:
S1.获取调度周期内各时段的电力负荷数据;
S2.计算各时段的风电理论出力值、光伏理论出力值和小水电理论出力值;
在具体实施时,采用如下算式计算风电理论出力值:
Figure BDA0003026800920000061
式中PW,t为t时段的风机输出功率;PW,Rate为风机的额定输出功率;vt为t时段的风速;v1为风机的切入风速;vRate为风机的额定风速;v2为风机的切出风速;
采用如下算式计算光伏理论出力值:
Figure BDA0003026800920000062
式中PPV,t为t时段的光伏电池输出功率;PPV,Rate为光伏电池的额定输出功率;ηInv为光伏逆变器的效率;ηLoss为光伏电池的损耗率;ηRef为参考温度下光伏电池组件的效率;TAve为规划地区的平均太阳辐射强度小时;KT为光伏电池的功率温度参数;Tem,t为t时段光伏电池组件的运行温度;Tem,Ref为光伏电池组件的参考温度;
采用如下算式计算小水电理论出力值:
PHydro,t=9.81η1η2QtHC
式中PHydro,t为t时段小水电站的输出功率;η1为小水电站发电机的效率;η2为水轮机的效率;Qt为t时段小水电站的发电流量;HC为小水电站的净水头;所述的小水电的定义为装机容量在25000kW及以下的水电站;
S3.构建基于风光水出力互补率、风光水总出力与电力负荷的匹配度和剩余负荷波动度的多目标优化模型;具体为采用如下步骤构建多目标优化模型:
A.采用如下算式建立第一目标函数:风光水出力互补率最大:
Figure BDA0003026800920000071
式中C为风光水出力互补率;T为调度周期的总时段数;
Figure BDA0003026800920000072
为归一化处理后t时段的风光水联合出力波动幅度,
Figure BDA0003026800920000073
为经归一化处理后t时段的风光水联合发电系统的理论总出力,同时
Figure BDA0003026800920000074
为经归一化处理后t时段的风电理论出力,
Figure BDA0003026800920000075
为经归一化处理后t时段的光伏理论出力,
Figure BDA0003026800920000076
为归一化处理后t时段的小水电理论出力,a1为风电的装机容量占比,a2为光伏的装机容量占比,a3为小水电的装机容量占比,且a1+a2+a3=1;
Figure BDA0003026800920000077
为归一化处理后t时段的风电单独出力波动幅度,且
Figure BDA0003026800920000078
为归一化处理后t时段的光伏单独出力波动幅度,且
Figure BDA0003026800920000079
为归一化处理后t时段的小水电单独出力波动幅度,且
Figure BDA00030268009200000710
归一化的计算公式为
Figure BDA00030268009200000711
为归一化后的变量值,Pt为归一化前的变量值,Pmin为归一化前的变量最小取值,Pmax为归一化前的变量最大取值;
B.采用如下算式建立第二目标函数:风光水总出力与电力负荷的匹配度最大:
Figure BDA0003026800920000081
式中D为风光水总出力与电力负荷的匹配度;PL,t为t时段的电力负荷;PU,t为t时段风光水联合发电系统的理论总出力,且PU,t=a1PW,t+a2PPV,t+a3PHydro,t,a1为风电的装机容量占比,a2为光伏的装机容量占比,a3为小水电的装机容量占比,且a1+a2+a3=1,PW,t为t时段的风电单独出力,PPV,t为t时段的光伏单独出力,PHydro,t为t时段的小水电单独出力;所述风电单独出力定义为目标区域仅开发风电时风电出力的大小,光伏单独出力定义为目标区域仅开发光伏发电时光伏出力的大小,小水电单独出力定义为目标区域仅开发小水电时小水电的大小;;ΔPLPU为中间变量,且定义ΔPLPU的计算公式为ΔPLPU=max[min(PL,t-PU,t),min(PU,t-PL,t)];
C.采用如下算式建立第二目标函数:剩余负荷波动度最小:
Figure BDA0003026800920000082
式中F为剩余负荷波动度;PNet,t为t时段的剩余负荷,且PNet,t=PL,t-PU,t;PNet,Ave为剩余负荷的平均值,且
Figure BDA0003026800920000083
D.采用如下算式作为约束条件:
功率平衡约束:PU,t+PG,t=PL,t;PG,t为t时段常规电源的输出功率;
装机容量约束:PU,t≤PPlan,total;PPlan,total为可再生能源的总规划装机容量;
小水电站上游水库库容约束:VHydro,min≤VHydro,t≤VHydro,max;VHydro,t为t时段的小水电站上游水库的库容;VHydro,min为小水电站上游水库库容的最小值;VHydro,max为小水电站上游水库库容的最大值;
小水电站发电流量约束:Qmin≤Qt≤Qmax;Qt为t时段的小水电站发电流量;Qmin为小水电站发电流量的最小值;Qmax为小水电站发电流量的最大值;
小水电站出力约束:0≤PHydro,t≤PHydroCap,max;PHydroCap,max为小水电的最大装机容量;
风电出力约束:0≤PW,t≤PWCap,max;PWCap,max为风电的最大装机容量;
光伏出力约束:0≤PPV,t≤PPVCap,max;PPVCap,max为光伏的最大装机容量;
S4.对步骤S3构建的多目标优化模型进行求解,得到最优装机容量比例;具体为采用线性加权法,将多目标优化模型转化为单目标优化模型进行求解:
Figure BDA0003026800920000091
式中f为单目标优化模型;Cmin为仅考虑风光水出力互补率最大目标时的最优值;C为风光水出力互补率;Dmin为仅考虑风光水总出力与电力负荷的匹配度最大时的最优值;D为风光水总出力与电力负荷的匹配度;Fmax为仅考虑剩余负荷波动度最小时的最优值;F为剩余负荷波动度;λ1、λ2和λ3均为加权系数,且λ123=1;
S5.根据步骤S4得到的最优装机容量比例,进行风光水联合发电系统的规划调度。

Claims (5)

1.一种风光水联合发电系统的规划调度方法,包括如下步骤:
S1.获取调度周期内各时段的电力负荷数据;
S2.计算各时段的风电理论出力值、光伏理论出力值和小水电理论出力值;
S3.构建基于风光水出力互补率、风光水总出力与电力负荷的匹配度和剩余负荷波动度的多目标优化模型;具体为采用如下步骤构建多目标优化模型:
A.采用如下算式建立第一目标函数:风光水出力互补率最大:
Figure FDA0003641748670000011
式中C为风光水出力互补率;T为调度周期的总时段数;
Figure FDA0003641748670000012
为归一化处理后t时段的风光水联合出力波动幅度,
Figure FDA0003641748670000013
Figure FDA0003641748670000014
为经归一化处理后t时段的风光水联合发电系统的理论总出力,同时
Figure FDA0003641748670000015
Figure FDA0003641748670000016
为经归一化处理后t时段的风电理论出力,
Figure FDA0003641748670000017
为经归一化处理后t时段的光伏理论出力,
Figure FDA0003641748670000018
为归一化处理后t时段的小水电理论出力,a1为风电的装机容量占比,a2为光伏的装机容量占比,a3为小水电的装机容量占比,且a1+a2+a3=1;
Figure FDA0003641748670000019
为归一化处理后t时段的风电单独出力波动幅度,且
Figure FDA00036417486700000110
Figure FDA00036417486700000111
为归一化处理后t时段的光伏单独出力波动幅度,且
Figure FDA00036417486700000112
Figure FDA00036417486700000113
为归一化处理后t时段的小水电单独出力波动幅度,且
Figure FDA00036417486700000114
归一化的计算公式为
Figure FDA00036417486700000115
Figure FDA00036417486700000116
为归一化后的变量值,Pt为归一化前的变量值,Pmin为归一化前的变量最小取值,Pmax为归一化前的变量最大取值;
B.采用如下算式建立第二目标函数:风光水总出力与电力负荷的匹配度最大:
Figure FDA0003641748670000021
式中D为风光水总出力与电力负荷的匹配度;PL,t为t时段的电力负荷;PU,t为t时段风光水联合发电系统的理论总出力,且PU,t=a1PW,t+a2PPV,t+a3PHydro,t,a1为风电的装机容量占比,a2为光伏的装机容量占比,a3为小水电的装机容量占比,且a1+a2+a3=1,PW,t为t时段的风电单独出力,PPV,t为t时段的光伏单独出力,PHydro,t为t时段的小水电单独出力,所述风电单独出力定义为目标区域仅开发风电时风电出力的大小,光伏单独出力定义为目标区域仅开发光伏发电时光伏出力的大小,小水电单独出力定义为目标区域仅开发小水电时小水电的大小;ΔPLPU为中间变量,且定义ΔPLPU的计算公式为ΔPLPU=max[min(PL,t-PU,t),min(PU,t-PL,t)];
C.采用如下算式建立第三目标函数:剩余负荷波动度最小:
Figure FDA0003641748670000022
式中F为剩余负荷波动度;PNet,t为t时段的剩余负荷,且PNet,t=PL,t-PU,t;PNet,Ave为剩余负荷的平均值,且
Figure FDA0003641748670000023
D.采用如下算式作为约束条件:
功率平衡约束:PU,t+PG,t=PL,t;PG,t为t时段常规电源的输出功率;
装机容量约束:PU,t≤PPlan,total;PPlan,total为可再生能源的总规划装机容量;
小水电站上游水库库容约束:VHydro,min≤VHydro,t≤VHydro,max;VHydro,t为t时段的小水电站上游水库的库容;VHydro,min为小水电站上游水库库容的最小值;VHydro,max为小水电站上游水库库容的最大值;
小水电站发电流量约束:Qmin≤Qt≤Qmax;Qt为t时段的小水电站发电流量;Qmin为小水电站发电流量的最小值;Qmax为小水电站发电流量的最大值;
小水电站出力约束:0≤PHydro,t≤PHydroCap,max;PHydroCap,max为小水电的最大装机容量;
风电出力约束:0≤PW,t≤PWCap,max;PWCap,max为风电的最大装机容量;
光伏出力约束:0≤PPV,t≤PPVCap,max;PPVCap,max为光伏的最大装机容量;
S4.对步骤S3构建的多目标优化模型进行求解,得到最优装机容量比例;
S5.根据步骤S4得到的最优装机容量比例,进行风光水联合发电系统的规划调度。
2.根据权利要求1所述的风光水联合发电系统的规划调度方法,其特征在于步骤S2所述的风电理论出力值,具体为采用如下算式计算风电理论出力值:
Figure FDA0003641748670000031
式中PW,t为t时段的风机输出功率;PW,Rate为风机的额定输出功率;vt为t时段的风速;v1为风机的切入风速;vRate为风机的额定风速;v2为风机的切出风速。
3.根据权利要求2所述的风光水联合发电系统的规划调度方法,其特征在于步骤S2所述的光伏理论出力值,具体为采用如下算式计算光伏理论出力值:
Figure FDA0003641748670000032
式中PPV,t为t时段的光伏电池输出功率;PPV,Rate为光伏电池的额定输出功率;ηInv为光伏逆变器的效率;ηLoss为光伏电池的损耗率;ηRef为参考温度下光伏电池组件的效率;TAve为规划地区的平均太阳辐射强度小时;KT为光伏电池的功率温度参数;Tem,t为t时段光伏电池组件的运行温度;Tem,Ref为光伏电池组件的参考温度。
4.根据权利要求3所述的风光水联合发电系统的规划调度方法,其特征在于步骤S2所述的小水电理论出力值,具体为采用如下算式计算小水电理论出力值:
PHydro,t=9.81η1η2QtHC
式中PHydro,t为t时段小水电站的输出功率;η1为小水电站发电机的效率;η2为水轮机的效率;Qt为t时段小水电站的发电流量;HC为小水电站的净水头;所述的小水电的定义为装机容量在25000kW及以下的水电站。
5.根据权利要求4所述的风光水联合发电系统的规划调度方法,其特征在于步骤S4所述的对步骤S3构建的多目标优化模型进行求解,具体为采用线性加权法,将多目标优化模型转化为单目标优化模型进行求解:
Figure FDA0003641748670000041
式中f为单目标优化模型;Cmin为仅考虑风光水出力互补率最大目标时的最优值;C为风光水出力互补率;Dmin为仅考虑风光水总出力与电力负荷的匹配度最大时的最优值;D为风光水总出力与电力负荷的匹配度;Fmax为仅考虑剩余负荷波动度最小时的最优值;F为剩余负荷波动度;λ1、λ2和λ3均为加权系数,且λ123=1。
CN202110418318.1A 2021-04-19 2021-04-19 风光水联合发电系统的规划调度方法 Active CN113113931B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110418318.1A CN113113931B (zh) 2021-04-19 2021-04-19 风光水联合发电系统的规划调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110418318.1A CN113113931B (zh) 2021-04-19 2021-04-19 风光水联合发电系统的规划调度方法

Publications (2)

Publication Number Publication Date
CN113113931A CN113113931A (zh) 2021-07-13
CN113113931B true CN113113931B (zh) 2022-06-24

Family

ID=76718744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110418318.1A Active CN113113931B (zh) 2021-04-19 2021-04-19 风光水联合发电系统的规划调度方法

Country Status (1)

Country Link
CN (1) CN113113931B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113704972B (zh) * 2021-08-02 2024-02-20 大连理工大学 一种流域水风光清洁能源走廊支撑能力评估方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317355B (zh) * 2017-07-04 2020-11-06 中国矿业大学 一种抽蓄电站联合风光互补系统及其优化方法
CN109256799B (zh) * 2018-09-17 2021-07-16 大连理工大学 一种基于样本熵的新能源电力系统优化调度方法
CN109449971B (zh) * 2018-10-29 2022-09-20 国网甘肃省电力公司 一种新能源消纳的多目标电力系统源荷互动优化调度方法
CN109936164B (zh) * 2019-03-31 2022-02-01 东北电力大学 基于电源互补特性分析的多能源电力系统优化运行方法
CN109995090B (zh) * 2019-04-24 2022-09-13 长沙理工大学 考虑用户需求特征及能源利用成本的多能互补方法
CN110120685B (zh) * 2019-05-23 2023-04-07 国家电网公司西南分部 高水电比重系统中梯级水电群与风光电站协调调峰方法
CN110957717A (zh) * 2019-06-06 2020-04-03 国网辽宁省电力有限公司 一种多电源电力系统多目标日前优化调度方法
CN110401192B (zh) * 2019-08-09 2022-09-16 长沙理工大学 考虑负荷最优转移比例和风、光最优并网比例的电力系统动态经济调度方法
CN110838733B (zh) * 2019-11-18 2023-04-18 国网四川省电力公司电力科学研究院 一种适于梯级水光互补能源发电系统的光伏容量配置方法
CN111342486B (zh) * 2020-02-24 2022-10-14 河海大学 一种含梯级水电的风光水互补发电系统的优化调度方法
CN112186802A (zh) * 2020-09-28 2021-01-05 国网江苏省电力有限公司苏州供电分公司 一种动态经济调度的多时间尺度滚动调度方法及其系统
CN112290592B (zh) * 2020-10-28 2021-11-05 国网湖南省电力有限公司 一种风光储联合发电系统的容量优化规划方法、系统及可读存储介质

Also Published As

Publication number Publication date
CN113113931A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN109245169B (zh) 一种风光水储联合调度方法
CN102509175B (zh) 分布式供电系统可靠性优化方法
CN112600209A (zh) 一种含潮流能的海岛独立微电网容量多目标优化配置方法
CN113850474A (zh) 一种热电氢多能流综合能源系统及其优化调度方法
CN114069688A (zh) 一种基于时序生产模拟的多电源容量布局规划方法
CN113113931B (zh) 风光水联合发电系统的规划调度方法
CN111049179A (zh) 一种考虑不确定性的新能源发电系统多目标优化调度方法
Hadi et al. Economic assessment of the use of solar energy in Kuwait
Li et al. The capacity optimization of wind-photovoltaic-thermal energy storage hybrid power system
CN116231694A (zh) 一种风光互补制氢与冷热电多能互补的综合能源系统
Xu et al. Multi-objective optimization configuration of wind-solar coupling hydrogen production system
Ahammad et al. A hybrid of 30 KW Solar PV and 30 KW Biomass System for rural electrification in Bangladesh
CN116805192A (zh) 考虑最优弃能率的综合能源系统双层规划优化方法及应用
Yang et al. Research on the reliability and capacity allocation of wind power-solar power-pumped storage hybrid power system
Liang et al. Optimization model of Low-carbon dispatch of Virtual Power Plant considering flexible load response and electricity to gas
CN114330835A (zh) 一种综合能源微网中电/热混合储能系统的优化配置方法
Ma et al. Two-stage optimal dispatching based on wind-photovoltaic-pumped storage-thermal power combined power generation system
Fu et al. Research on capacity configuration optimization for island microgrid with PV-wind-diesel-battery and seawater desalination load
Achour et al. Modeling and Supervisory Control of Hybrid Renewable Energy Based on Wind-PV-Diesel-Battery
CN111932028B (zh) 基于碳自然循环消纳的清洁能源系统容量优化方法及系统
Nkwambe et al. Energy Storage Through a Regenerative Hydrogen Fuel Cell in a Hybrid System of Renewable Energy for Power Generation
CN112907147B (zh) 一种基于最佳工况点的分布式能源系统运行方法及系统
Chen et al. Analysis of wind-photovoltaic-thermal-pumped storage integration system considering carbon emission
Al-Mamun et al. Design and Analysis of a Solar-Wind Hybrid System
Wang et al. Research on operation strategy of new energy microgrid theory model containing biomass energy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant