CN113113155A - Infectious disease trend prediction method based on neural network and SEIR model - Google Patents
Infectious disease trend prediction method based on neural network and SEIR model Download PDFInfo
- Publication number
- CN113113155A CN113113155A CN202110658591.1A CN202110658591A CN113113155A CN 113113155 A CN113113155 A CN 113113155A CN 202110658591 A CN202110658591 A CN 202110658591A CN 113113155 A CN113113155 A CN 113113155A
- Authority
- CN
- China
- Prior art keywords
- patients
- trend prediction
- infection rate
- epidemic situation
- seir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 208000015181 infectious disease Diseases 0.000 title claims abstract description 22
- 208000035473 Communicable disease Diseases 0.000 title claims abstract description 20
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 15
- 238000012549 training Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 6
- 238000007781 pre-processing Methods 0.000 claims abstract description 4
- 230000009385 viral infection Effects 0.000 claims description 44
- 238000011534 incubation Methods 0.000 claims description 20
- 241000700605 Viruses Species 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 14
- 230000004913 activation Effects 0.000 claims description 5
- 230000002265 prevention Effects 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 238000003745 diagnosis Methods 0.000 claims description 2
- 208000036142 Viral infection Diseases 0.000 claims 7
- 230000001131 transforming effect Effects 0.000 claims 2
- 238000012886 linear function Methods 0.000 claims 1
- 238000013473 artificial intelligence Methods 0.000 abstract description 2
- 201000010099 disease Diseases 0.000 abstract 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract 1
- 238000010801 machine learning Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/80—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for detecting, monitoring or modelling epidemics or pandemics, e.g. flu
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Probability & Statistics with Applications (AREA)
- Databases & Information Systems (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及人工智能预测领域,具体是一种基于神经网络与SEIR模型的传染病趋势预测方法,包括如下步骤:步骤1、获取数据集;步骤2、数据预处理;步骤3、构建由病毒传染率预测模块和疫情趋势预测模块构成的疫情趋势预测模型;步骤4、使用步骤2预处理的数据对疫情趋势预测模型进行训练,同时设置疫情趋势预测模型的损失函数和模型参数更新方式;步骤5、利用步骤1~步骤4训练好的疫情趋势预测模型对疫情趋势进行预测;该方法可使用较少的训练数据,对传染病疫情趋势进行有效的自动动态实时预测,且预测过程无需人为干预。
The invention relates to the field of artificial intelligence prediction, in particular to a method for predicting an infectious disease trend based on a neural network and an SEIR model, comprising the following steps: step 1, acquiring a data set; step 2, data preprocessing; step 3, constructing a virus-infected disease The epidemic trend prediction model composed of the rate prediction module and the epidemic trend prediction module; Step 4, use the data preprocessed in Step 2 to train the epidemic trend prediction model, and set the loss function and model parameter update method of the epidemic trend prediction model at the same time; Step 5 . Use the epidemic trend prediction model trained in steps 1 to 4 to predict the epidemic trend; this method can use less training data to effectively predict the epidemic trend of infectious diseases automatically and dynamically in real time, and the prediction process does not require human intervention.
Description
技术领域technical field
本发明涉及人工智能预测领域,具体是指一种基于神经网络与SEIR模型的传染病趋势预测方法。The invention relates to the field of artificial intelligence prediction, in particular to an infectious disease trend prediction method based on a neural network and an SEIR model.
背景技术Background technique
对传染病疫情的预测,近年来随着机器学习的发展,预测方法可分为未使用机器学习方法的传统方法和使用了机器学习的方法,传统方法使用传统的静态传染病数学模型(如:SIR模型、SEIR模型等)对疫情传播情况进行建模和预测。With the development of machine learning in recent years, prediction methods for infectious disease outbreaks can be divided into traditional methods without machine learning methods and methods using machine learning. Traditional methods use traditional static infectious disease mathematical models (such as: SIR model, SEIR model, etc.) to model and predict the spread of the epidemic.
在传统的传染病疫情趋势预测方法中,预测模型中的参数无法自适应,从而无法实现动态预测,且模型参数凭借经验设置,人工干预的影响较大;在使用了机器学习的方法中,或是没有考虑到数据中的时序信息,或是没有对疫情中的各类人群进行总体把握,难以对疫情趋势情况进行全面预测。In the traditional epidemic trend prediction method of infectious diseases, the parameters in the prediction model cannot be adapted to achieve dynamic prediction, and the model parameters are set by experience, and the impact of manual intervention is greater; in the method using machine learning, or It is difficult to comprehensively predict the trend of the epidemic because the time series information in the data is not considered, or there is no overall grasp of the various groups of people in the epidemic.
发明内容SUMMARY OF THE INVENTION
基于以上问题,本发明提供了一种基于神经网络与SEIR模型的传染病趋势预测方法,该方法可使用较少的训练数据,对传染病疫情趋势进行有效的自动动态实时预测,且预测过程无需人为干预。Based on the above problems, the present invention provides a method for predicting the trend of infectious diseases based on neural network and SEIR model. The method can use less training data to perform effective automatic dynamic real-time prediction of the trend of infectious diseases, and the prediction process does not require Human intervention.
为解决以上技术问题,本发明采用的技术方案如下:For solving the above technical problems, the technical scheme adopted in the present invention is as follows:
一种基于神经网络与SEIR模型的传染病趋势预测方法,包括如下步骤:An infectious disease trend prediction method based on neural network and SEIR model, comprising the following steps:
步骤1、获取数据集;
步骤2、数据预处理;Step 2, data preprocessing;
步骤3、构建由病毒传染率预测模块和疫情趋势预测模块构成的疫情趋势预测模型;Step 3. Construct an epidemic trend prediction model composed of a virus infection rate prediction module and an epidemic trend prediction module;
步骤4、使用步骤2预处理的数据对疫情趋势预测模型进行训练,同时设置疫情趋势预测模型的损失函数和模型参数更新方式;Step 4. Use the data preprocessed in Step 2 to train the epidemic trend prediction model, and set the loss function and model parameter update method of the epidemic trend prediction model at the same time;
步骤5、利用步骤1~步骤4训练好的疫情趋势预测模型对疫情趋势进行预测。Step 5. Use the epidemic trend prediction model trained in
进一步,所述步骤3中,预处理后的数据输入病毒传染率预测模块,并先后经过一个LSTM层、一个全连接层和一个非线性变换层,LSTM层将含有时序信息的特征输出,随后全连接层对特征进行整合,使用SoftPlus作为激活函数,最后输出预测某时刻确诊患者和潜伏期患者的病毒传染率。Further, in the step 3, the preprocessed data is input into the virus infection rate prediction module, and successively passes through an LSTM layer, a fully connected layer and a nonlinear transformation layer. The LSTM layer outputs the features containing time series information, and then the full The connection layer integrates the features, uses SoftPlus as the activation function, and finally outputs the predicted virus infection rate of confirmed patients and incubation period patients at a certain time.
进一步,所述使用SoftPlus作为激活函数的公式为:,其中exp为非线性函数。Further, the formula for using SoftPlus as the activation function is: , where exp is a nonlinear function.
进一步,所述步骤3中,预测某时刻确诊患者和潜伏期患者的病毒传染率的公式为:Further, in the step 3, the formula for predicting the virus infection rate of a confirmed patient and an incubation period patient at a certain moment is:
, ,
其中,表示确诊患者的病毒传染率,表示潜伏期患者的病毒传染率,表示时刻确诊患者的病毒传染率,表示时刻潜伏期患者的病毒传染率,表示时刻病毒传染率的缩放比例,表示时刻疫情防控措施的强度,表示时刻潜伏期患者的病毒传染率相较于确诊患者的病毒传染率的倍数。in, represents the infection rate of the virus among confirmed patients, Indicates the virus infection rate of patients in the incubation period, express The virus infection rate of patients diagnosed at any time, express The virus infection rate of patients during the incubation period at any time, express The scaling ratio of the virus infection rate at the moment, express The intensity of epidemic prevention and control measures at any time, express The virus infection rate of patients in the incubation period at any time is the multiple of the virus infection rate of confirmed patients.
进一步,所述步骤3中,将病毒传染率预测模块的输出结果输入疫情趋势预测模块,并经过一个SEIR模型层,输出对疫情趋势的预测。Further, in the step 3, the output result of the virus infection rate prediction module is input into the epidemic trend prediction module, and a SEIR model layer is passed to output the prediction of the epidemic trend.
进一步,所述步骤3中,疫情趋势的预测公式如下:Further, in the step 3, the prediction formula of the epidemic trend is as follows:
, ,
其中,表示未被感染的人数,表示潜伏期患者人数,表示确诊患者人数,表示病毒移除者人数,表示在时刻时未被感染的人数,表示在时刻时潜伏期患者人数,表示在时刻时确诊患者人数,表示在时刻时病毒移除者人数,表示确诊患者的病毒传染率,表示潜伏期患者的病毒传染率,表示潜伏期患者转化为确诊患者的概率,表示确诊患者转化为病毒移除者的概率,、、、分别表示时刻、、、的预测值,,表示人口总数。in, represents the number of uninfected persons, represents the number of patients in the incubation period, represents the number of confirmed patients, represents the number of virus removers, expressed in the number of people who are not infected at any time, expressed in The number of patients in the incubation period at any time, expressed in The number of confirmed patients at any time, expressed in the number of virus removers at any time, represents the infection rate of the virus among confirmed patients, Indicates the virus infection rate of patients in the incubation period, represents the probability that a patient in the incubation period will be converted into a confirmed patient, represents the probability of converting a confirmed patient into a virus remover, , , , Respectively time , , , the predicted value, , representing the total population.
进一步,所述步骤4中,选择平均平方误差作为训练时的损失函数。Further, in the step 4, the average squared error is selected as the loss function during training.
进一步,所述步骤4中,模型参数更新方式设置为学习率为0.005,一个完整的训练集为一个学习批次,学习迭代总次数为5000,网络训练过程针对每一个学习批次进行一次参数更新,根据疫情趋势预测模块输出与真实标签计算学习误差,并采用BP算法利用误差对网络参数进行更新,每一次迭代学习完成后,疫情趋势预测模型都会计算当前的预测误差并与历史最小误差作比较,若当前预测误差小于历史最小误差,则保存当前疫情趋势预测模型,并将历史最小误差更新为当前误差,之后继续训练,直到达到学习迭代总次数。Further, in the step 4, the model parameter update method is set to a learning rate of 0.005, a complete training set is a learning batch, the total number of learning iterations is 5000, and the network training process performs a parameter update for each learning batch. , calculate the learning error according to the output of the epidemic trend prediction module and the real label, and use the BP algorithm to use the error to update the network parameters. After each iteration learning is completed, the epidemic trend prediction model will calculate the current prediction error and compare it with the historical minimum error , if the current prediction error is less than the historical minimum error, save the current epidemic trend prediction model, update the historical minimum error to the current error, and continue training until the total number of learning iterations is reached.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1.本发明对传染病病毒的传染率及疫情的趋势发展可实现自动动态预测,减少了人为操作,降低人工干预带来的影响;1. The present invention can realize automatic dynamic prediction to the infectious rate of infectious disease virus and the trend development of epidemic situation, reduce manual operation, and reduce the impact of manual intervention;
2.本发明使用了疫情数据中的时序信息,结合历史信息与当前信息综合预测;2. The present invention uses the time series information in the epidemic data, combined with historical information and current information for comprehensive prediction;
3.对疫情中的各类人群进行预测,把握疫情总体发展趋势。3. Predict various groups of people in the epidemic situation and grasp the overall development trend of the epidemic situation.
附图说明Description of drawings
图1为本实施例的流程图;Fig. 1 is the flow chart of this embodiment;
图2为本实施例中疫情趋势预测模型的框架图。FIG. 2 is a frame diagram of the epidemic trend prediction model in this embodiment.
具体实施方式Detailed ways
下面结合附图对本发明作进一步的说明。本发明的实施方式包括但不限于下列实施例。The present invention will be further described below in conjunction with the accompanying drawings. Embodiments of the present invention include, but are not limited to, the following examples.
如图1所示的一种基于神经网络与SEIR模型的传染病趋势预测方法,包括如下步骤:As shown in Figure 1, an infectious disease trend prediction method based on neural network and SEIR model includes the following steps:
步骤1、获取数据集;
步骤2、数据预处理;Step 2, data preprocessing;
步骤3、如图2所示,构建由病毒传染率预测模块和疫情趋势预测模块构成的疫情趋势预测模型;Step 3. As shown in Figure 2, construct an epidemic trend prediction model consisting of a virus infection rate prediction module and an epidemic trend prediction module;
步骤4、使用步骤2预处理的数据对疫情趋势预测模型进行训练,同时设置疫情趋势预测模型的损失函数和模型参数更新方式;Step 4. Use the data preprocessed in Step 2 to train the epidemic trend prediction model, and set the loss function and model parameter update method of the epidemic trend prediction model at the same time;
步骤5、利用步骤1~步骤4训练好的疫情趋势预测模型对疫情趋势进行预测。Step 5. Use the epidemic trend prediction model trained in
进一步的是,步骤1中,数据集包括疑似病例数据、确诊病例数据和移除病例数据。Further, in
进一步的是,步骤2中,将第至+2天的疑似病例数据、现存确诊病例数据、移除病例数据作为输入,第天的疑似病例数据、现存确诊病例数据、移除病例数据作为对应标签来进行数据整理,共得到62份数据,然后将这62份数据按训练集规模进一步整理出4个数据集:Data_10、Data_20、Data_30、Data_40;其中Data_10划分规则为: 前10份数据为训练集,第11份输入数据为测试集的初始输入数据,后52份数据的标签为测试集的标签;Data_20、Data_30、Data_40划分规则同理。Further, in step 2, the to +2 days of suspected case data, existing confirmed case data, removed case data as input, the first Data of suspected cases, existing confirmed case data, and removed case data are used as corresponding labels for data sorting, and a total of 62 pieces of data are obtained, and then these 62 pieces of data are further sorted into 4 data sets according to the size of the training set: Data_10, Data_20 , Data_30, Data_40; where the Data_10 division rule is: the first 10 pieces of data are the training set, the 11th input data is the initial input data of the test set, and the labels of the last 52 pieces of data are the labels of the test set; Data_20, Data_30, Data_40 are divided The rules are the same.
进一步的是,病毒传染率预测模块构建原理如下:Further, the construction principle of the virus infection rate prediction module is as follows:
本实施例中,对确诊患者和潜伏期患者各创建了病毒传染率和,同时,病毒传染率后期的变化情况与疫情前期的防控措施和诊治手段息息相关,预测病毒传染率需要根据历史信息与当前信息共同分析,因此病毒传染率的预测是一类时序预测问题,深度循环神经网络中的LSTM具有优秀的时序学习能力,能存储过往数据中的信息并将其与当前数据中的信息结合,因此基于LSTM与和的数学模型设计了病毒传染率预测模块;In this example, the virus infection rates were created for confirmed patients and incubation period patients respectively. and At the same time, the change of the virus infection rate in the later stage is closely related to the prevention and control measures and diagnosis and treatment methods in the early stage of the epidemic. Predicting the virus infection rate needs to be analyzed based on historical information and current information. Therefore, the prediction of the virus infection rate is a kind of time series prediction problem. The LSTM in the recurrent neural network has excellent time-series learning ability, can store the information in the past data and combine it with the information in the current data, so based on LSTM and and The mathematical model of the virus infection rate prediction module was designed;
本实施例中,病毒传染率预测模块包括一个LSTM层、一个全连接层和一个非线性变换层,预处理后的数据输入病毒传染率预测模块后,LSTM层将含有时序信息的特征输出,随后全连接层对特征进行整合,使用SoftPlus作为激活函数,公式为,其中exp为非线性函数。以此增强网络的非线性表达能力,最后输出预测某时刻确诊患者和潜伏期患者的病毒传染率;In this embodiment, the virus infection rate prediction module includes an LSTM layer, a fully connected layer, and a nonlinear transformation layer. After the preprocessed data is input into the virus infection rate prediction module, the LSTM layer will output features containing time series information, and then The fully connected layer integrates the features and uses SoftPlus as the activation function, the formula is , where exp is a nonlinear function. In this way, the nonlinear expression ability of the network is enhanced, and the final output predicts the virus infection rate of diagnosed patients and incubation period patients at a certain time;
本实施例中,预测某时刻确诊患者和潜伏期患者的病毒传染率的公式为:In this embodiment, the formula for predicting the virus infection rate of a confirmed patient and an incubation period patient at a certain time is:
, ,
其中,表示确诊患者的病毒传染率,表示潜伏期患者的病毒传染率,表示时刻确诊患者的病毒传染率,表示时刻潜伏期患者的病毒传染率,表示时刻病毒传染率的缩放比例,表示时刻疫情防控措施的强度,表示时刻潜伏期患者的病毒传染率相较于确诊患者的病毒传染率的倍数。in, represents the infection rate of the virus among confirmed patients, Indicates the virus infection rate of patients in the incubation period, express The virus infection rate of patients diagnosed at any time, express The virus infection rate of patients during the incubation period at any time, express The scaling ratio of the virus infection rate at the moment, express The intensity of epidemic prevention and control measures at any time, express The virus infection rate of patients in the incubation period at any time is the multiple of the virus infection rate of confirmed patients.
进一步的是,疫情趋势预测模块构建原理如下:Further, the construction principle of the epidemic trend prediction module is as follows:
将病毒传染率预测模块的输出结果和输入疫情趋势预测模块,并经过一个SEIR模型层,输出对疫情趋势的预测。The output of the virus infection rate prediction module and Input the epidemic trend prediction module, and go through a SEIR model layer to output the prediction of the epidemic trend.
本实施例中,疫情趋势的预测公式如下:In this embodiment, the prediction formula of the epidemic trend is as follows:
, ,
其中,表示未被感染的人数,表示潜伏期患者人数,表示确诊患者人数,表示病毒移除者人数,表示在时刻时未被感染的人数,表示在时刻时潜伏期患者人数,表示在时刻时确诊患者人数,表示在时刻时病毒移除者人数,表示确诊患者的病毒传染率,表示潜伏期患者的病毒传染率,表示潜伏期患者转化为确诊患者的概率,表示确诊患者转化为病毒移除者的概率,、、、分别表示时刻、、、的预测值,,表示人口总数。in, represents the number of uninfected persons, represents the number of patients in the incubation period, represents the number of confirmed patients, represents the number of virus removers, expressed in the number of people who are not infected at any time, expressed in The number of patients in the incubation period at any time, expressed in The number of confirmed patients at any time, expressed in the number of virus removers at any time, represents the infection rate of the virus among confirmed patients, Indicates the virus infection rate of patients in the incubation period, represents the probability that a patient in the incubation period will be converted into a confirmed patient, represents the probability of converting a confirmed patient into a virus remover, , , , Respectively time , , , the predicted value, , representing the total population.
进一步的是,所述步骤4中,损失函数用于衡量预测结果与真实情况的差异水平,因此,选择结果直接对模型训练的效果产生影响,本实施例中,选择平均平方误差作为训练时的损失函数,同时考虑到现实中各类数据收集的难易性、准确性以及重要性,对、、数据分别计算MSE,并将这三类MSE进行加权和作为网络的整体学习误差,网络的整体学习误差如下:Further, in the step 4, the loss function is used to measure the difference between the predicted result and the real situation. Therefore, the selection result directly affects the effect of model training. In this embodiment, the average squared error is selected as the training value. Loss function, taking into account the difficulty, accuracy and importance of various data collection in reality, , , The MSE is calculated separately for the data, and the weighted sum of these three types of MSE is used as the overall learning error of the network. The overall learning error of the network is as follows:
, ,
其中,、、分别由、、数据计算出的MSE,MSE的计算方法如下:in, , , respectively by , , The MSE calculated from the data, the calculation method of MSE is as follows:
, ,
其中,为时刻的真实值,为时刻的预测值,为总时长。in, for the true value of the moment, for the predicted value at the moment, for the total duration.
进一步的是,步骤4中,网络设置,,模型参数更新方式设置为学习率为0.005,一个完整的训练集为一个学习批次,学习迭代总次数为5000,网络训练过程针对每一个学习批次进行一次参数更新,根据疫情趋势预测模块输出与真实标签计算学习误差,并采用BP算法利用误差对网络参数进行更新,每一次迭代学习完成后,疫情趋势预测模型都会计算当前的预测误差并与历史最小误差作比较,若当前预测误差小于历史最小误差,则保存当前疫情趋势预测模型,并将历史最小误差更新为当前误差,之后继续训练,直到达到学习迭代总次数。Further, in step 4, network settings , , the model parameter update method is set to the learning rate of 0.005, a complete training set is a learning batch, and the total number of learning iterations is 5000. The network training process performs a parameter update for each learning batch, and predicts the module output according to the epidemic trend. Calculate the learning error with the real label, and use the BP algorithm to use the error to update the network parameters. After each iteration learning is completed, the epidemic trend prediction model will calculate the current prediction error and compare it with the historical minimum error. If the current prediction error is smaller than the historical If the minimum error is reached, the current epidemic trend prediction model is saved, and the historical minimum error is updated to the current error, and then the training continues until the total number of learning iterations is reached.
进一步的是,步骤5中,由于预测是对未来一段时间内的疫情趋势进行预测,所以当前没有任何未来的疫情数据,因而预测时输入疫情趋势预测模型的只有一组初始数据,其包含了连续三天的、、数据,一天为一个预测周期,疫情趋势预测模型对每一组输入预测出下一天的、、数据,并将预测结果与输入数据中的后两天数据结合,组成新的输入数据,以此继续预测后一天的疫情情况,直至达到预测的总周期。Further, in step 5, since the prediction is to predict the epidemic trend in the future, there is currently no future epidemic data, so only a set of initial data is input into the epidemic trend prediction model during prediction, which includes continuous data. three days , , Data, one day is a prediction cycle, and the epidemic trend prediction model predicts the next day's , , data, and combine the prediction results with the data of the next two days in the input data to form new input data, so as to continue to predict the epidemic situation of the next day until the total period of prediction is reached.
如上即为本发明的实施例。上述实施例以及实施例中的具体参数仅是为了清楚表述发明人的发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。The above is an embodiment of the present invention. The above examples and the specific parameters in the examples are only to clearly describe the inventor's invention verification process, not to limit the scope of the patent protection of the present invention. The scope of the patent protection of the present invention is still based on the claims. Equivalent structural changes made in the contents of the description and drawings of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110658591.1A CN113113155A (en) | 2021-06-15 | 2021-06-15 | Infectious disease trend prediction method based on neural network and SEIR model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110658591.1A CN113113155A (en) | 2021-06-15 | 2021-06-15 | Infectious disease trend prediction method based on neural network and SEIR model |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113113155A true CN113113155A (en) | 2021-07-13 |
Family
ID=76723702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110658591.1A Pending CN113113155A (en) | 2021-06-15 | 2021-06-15 | Infectious disease trend prediction method based on neural network and SEIR model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113113155A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112529329A (en) * | 2020-12-21 | 2021-03-19 | 广东珠江智联信息科技股份有限公司 | Infectious disease prediction method based on BP algorithm and SEIR model |
CN113345599A (en) * | 2021-08-04 | 2021-09-03 | 医渡云(北京)技术有限公司 | Epidemic situation prediction method, epidemic situation prediction device, storage medium and electronic equipment |
CN113539517A (en) * | 2021-08-05 | 2021-10-22 | 浙江大学 | Prediction method of time sequence intervention effect |
CN113593716A (en) * | 2021-07-30 | 2021-11-02 | 延安大学 | Infectious disease trend prediction method and device |
CN113744888A (en) * | 2021-09-02 | 2021-12-03 | 深圳万海思数字医疗有限公司 | Regional epidemic trend prediction early warning method and system |
CN114496296A (en) * | 2022-02-07 | 2022-05-13 | 华北理工大学 | SEIARN Propagation Prediction System Based on LSTM Trajectory Intersection |
CN117672544A (en) * | 2023-12-14 | 2024-03-08 | 广东省疾病预防控制中心 | Infectious disease transmission prediction method and system based on SEIR model |
CN117690601A (en) * | 2024-02-02 | 2024-03-12 | 江西省胸科医院(江西省第三人民医院) | Tuberculosis epidemic trend prediction system based on big data analysis |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170316324A1 (en) * | 2016-04-27 | 2017-11-02 | Virginia Polytechnic Institute And State University | Computerized Event-Forecasting System and User Interface |
CN111524611A (en) * | 2020-04-24 | 2020-08-11 | 腾讯科技(深圳)有限公司 | Method, device and equipment for constructing infectious disease trend prediction model |
CN111739658A (en) * | 2020-07-20 | 2020-10-02 | 医渡云(北京)技术有限公司 | Method and device for predicting infectious disease trend based on input case |
CN112163705A (en) * | 2020-09-29 | 2021-01-01 | 重庆邮电大学 | Epidemic prediction and early warning method based on CNN+SEIR and LSTM |
CN112529329A (en) * | 2020-12-21 | 2021-03-19 | 广东珠江智联信息科技股份有限公司 | Infectious disease prediction method based on BP algorithm and SEIR model |
CN112712903A (en) * | 2021-01-15 | 2021-04-27 | 杭州中科先进技术研究院有限公司 | Infectious disease monitoring method based on human-computer three-dimensional cooperative sensing |
-
2021
- 2021-06-15 CN CN202110658591.1A patent/CN113113155A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170316324A1 (en) * | 2016-04-27 | 2017-11-02 | Virginia Polytechnic Institute And State University | Computerized Event-Forecasting System and User Interface |
CN111524611A (en) * | 2020-04-24 | 2020-08-11 | 腾讯科技(深圳)有限公司 | Method, device and equipment for constructing infectious disease trend prediction model |
CN111739658A (en) * | 2020-07-20 | 2020-10-02 | 医渡云(北京)技术有限公司 | Method and device for predicting infectious disease trend based on input case |
CN112163705A (en) * | 2020-09-29 | 2021-01-01 | 重庆邮电大学 | Epidemic prediction and early warning method based on CNN+SEIR and LSTM |
CN112529329A (en) * | 2020-12-21 | 2021-03-19 | 广东珠江智联信息科技股份有限公司 | Infectious disease prediction method based on BP algorithm and SEIR model |
CN112712903A (en) * | 2021-01-15 | 2021-04-27 | 杭州中科先进技术研究院有限公司 | Infectious disease monitoring method based on human-computer three-dimensional cooperative sensing |
Non-Patent Citations (1)
Title |
---|
甘雨 等: "新冠肺炎疫情趋势预测模型", 《智能系统学报》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112529329A (en) * | 2020-12-21 | 2021-03-19 | 广东珠江智联信息科技股份有限公司 | Infectious disease prediction method based on BP algorithm and SEIR model |
CN113593716A (en) * | 2021-07-30 | 2021-11-02 | 延安大学 | Infectious disease trend prediction method and device |
CN113593716B (en) * | 2021-07-30 | 2024-02-09 | 延安大学 | Infectious disease trend prediction method and device |
CN113345599A (en) * | 2021-08-04 | 2021-09-03 | 医渡云(北京)技术有限公司 | Epidemic situation prediction method, epidemic situation prediction device, storage medium and electronic equipment |
CN113539517A (en) * | 2021-08-05 | 2021-10-22 | 浙江大学 | Prediction method of time sequence intervention effect |
CN113539517B (en) * | 2021-08-05 | 2024-04-16 | 浙江大学 | Prediction Methods of Time-Sequence Intervention Effects |
CN113744888A (en) * | 2021-09-02 | 2021-12-03 | 深圳万海思数字医疗有限公司 | Regional epidemic trend prediction early warning method and system |
CN113744888B (en) * | 2021-09-02 | 2023-09-22 | 深圳万海思数字医疗有限公司 | Regional epidemic trend prediction and early warning method and system |
CN114496296A (en) * | 2022-02-07 | 2022-05-13 | 华北理工大学 | SEIARN Propagation Prediction System Based on LSTM Trajectory Intersection |
CN117672544A (en) * | 2023-12-14 | 2024-03-08 | 广东省疾病预防控制中心 | Infectious disease transmission prediction method and system based on SEIR model |
CN117690601A (en) * | 2024-02-02 | 2024-03-12 | 江西省胸科医院(江西省第三人民医院) | Tuberculosis epidemic trend prediction system based on big data analysis |
CN117690601B (en) * | 2024-02-02 | 2024-05-24 | 江西省胸科医院(江西省第三人民医院) | Tuberculosis epidemic trend prediction system based on big data analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113113155A (en) | Infectious disease trend prediction method based on neural network and SEIR model | |
Zheng et al. | Predicting COVID-19 in China using hybrid AI model | |
CN110970099B (en) | A Drug Molecule Generation Method Based on Regularized Variational Autoencoder | |
CN111524611A (en) | Method, device and equipment for constructing infectious disease trend prediction model | |
CN111445997A (en) | Infectious disease dynamics model based on machine learning algorithm and analysis method | |
CN113593716B (en) | Infectious disease trend prediction method and device | |
CN115644823B (en) | Dynamic prediction of rehabilitation effect and individualized intervention system | |
CN110223785A (en) | A kind of infectious disease transmission network reconstruction method based on deep learning | |
CN114821204B (en) | Meta-learning-based embedded semi-supervised learning image classification method and system | |
CN113488165B (en) | Text matching method, device, equipment and storage medium based on knowledge graph | |
CN113241188A (en) | Cross-region transmission prediction method for new infectious disease under open system | |
CN107579816B (en) | Method for generating password dictionary based on recurrent neural network | |
CN106126607A (en) | A kind of customer relationship towards social networks analyzes method | |
CN117272040A (en) | A small-sample time series forecasting method based on meta-learning framework | |
CN110310199A (en) | Borrow or lend money construction method, system and the debt-credit Risk Forecast Method of risk forecast model | |
CN113192627A (en) | Patient and disease bipartite graph-based readmission prediction method and system | |
CN117809811A (en) | Artificial intelligence-based weight-reduction operation postoperative management method and system | |
CN114121212B (en) | Traditional Chinese medicine prescription generation method based on knowledge graph and group representation learning | |
CN117457230A (en) | A method for short-term rapid forecasting of infectious disease development trends | |
CN114496296B (en) | SEIARN propagation prediction system based on LSTM trajectory intersection | |
CN113450924B (en) | Novel coronavirus propagation model establishing method and system | |
CN114883001A (en) | Disease prediction system based on heterogeneous information network | |
CN117198555B (en) | Disease transmission prediction method based on viral load and neural network | |
Singh et al. | Machine learning approach for data analysis and predicting coronavirus using COVID-19 India dataset | |
You et al. | An improved method for pneumonia image classification based on coatnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210713 |
|
RJ01 | Rejection of invention patent application after publication |