CN113112078A - 一种列车实时调整与站台等待人数控制的联合优化方法 - Google Patents

一种列车实时调整与站台等待人数控制的联合优化方法 Download PDF

Info

Publication number
CN113112078A
CN113112078A CN202110407595.2A CN202110407595A CN113112078A CN 113112078 A CN113112078 A CN 113112078A CN 202110407595 A CN202110407595 A CN 202110407595A CN 113112078 A CN113112078 A CN 113112078A
Authority
CN
China
Prior art keywords
train
formula
station
time
waiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110407595.2A
Other languages
English (en)
Other versions
CN113112078B (zh
Inventor
田寅
王悉
王洪伟
朱力
周林彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
CRRC Industry Institute Co Ltd
Original Assignee
Beijing Jiaotong University
CRRC Industry Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University, CRRC Industry Institute Co Ltd filed Critical Beijing Jiaotong University
Priority to CN202110407595.2A priority Critical patent/CN113112078B/zh
Publication of CN113112078A publication Critical patent/CN113112078A/zh
Application granted granted Critical
Publication of CN113112078B publication Critical patent/CN113112078B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

本发明属于城市轨道交通列车调度优化控制技术领域,涉及一种列车实时调整与站台等待人数控制的联合优化方法,包括:S1:采集列车实时信息;S2:据列车实际到发时间与原计划时间对比,判断列车是否偏离;S3:如果列车偏离计划,则用列车实时调整与站台等待人数控制的联合优化方法控制;S4:重复步骤S1‑S3,直到控制结束。本发明通过实时获取列车信息,当列车受到干扰,当偏离既定运行时刻或乘车人数偏差过大时,启动本发明的列车自动调整控制方法,并结合已有ATO,保障列车在延误下正常运行,保证轨道交通系统的效率、准点率和乘车舒适性。与既有基于动态规划和MPC方法的列车调整方法相比,保证列车自动调整的实时性。

Description

一种列车实时调整与站台等待人数控制的联合优化方法
技术领域
本发明属于城市轨道交通列车调度优化控制技术领域,涉及一种列车实时调整与站台等待人数控制的联合优化方法。
背景技术
近年来,随着城市发展的不断加快,人口密度的不断加大,城市所面临的交通压力不断增加。为了减轻交通压力,城市轨道交通系统已经成为在现代大城市客运中最快速、清洁和有效的方式。与传统的客运铁路交通不同,城市轨道交通系统具有更大的运输能力、更高的准时性和更低的能耗,被认为是城市公共交通系统的支柱。
尽管城市轨道交通配备了自动列车控制(ATC)系统来提高线路容量和运输效率,但近年来地铁乘客人数的急剧增加以及基础设施资源的匮乏,意味着许多地铁系统都面临着高负载操作。在这种情况下,当列车受到干扰发生延迟时,若未能及时消除列车延迟,将会导致后续列车的运行情况对整个线路网络造成影响,等待人数大面积滞留,造成乘客在站台积压,无法快速有效进行疏散。在这里,干扰是指那些导致列车的延迟时间相对较短的事件,可以通过调整时刻表逐渐消除延迟的影响。因此对列车实时调整和站台等待人数进行优化控制显得十分重要。
在实际的地铁运营中,当发生延误时,调度员可以根据调度员的专业知识和经验手动进行调度,现有的列车调整控制具有以下三个缺点:
(1)主要根据调度员的专业知识和经验进行人工调整。
(2)缺乏对列车自动调整与站台等待人数联合优化的相关研究。
(3)以往的调度系统很难实时获取高质量的调度方案,不能保证实时性。
因此,本专利研究一种列车实时调整与站台等待人数控制的联合优化方法,能保证地铁系统能够通过控制策略自动调整停留时间和站台等待人数,以恢复列车的延误,采用集中式计算,能够对列车自动调整和站台等待人数进行联合研究。
发明内容
为了克服现有列车自动调整控制存在的缺点,本发明公开了一种列车实时调整与站台等待人数控制的联合优化方法,通过对列车运行状态和站台等待人数状态的监控,当列车出发时间与原计划时刻表产生误差时,触发在线自动调整算法,从而达到:提高算法实时性的目标。
为了解决上述问题,本发明提出一种列车实时调整与站台等待人数控制的联合优化方法,具体技术方案如下:
一种列车实时调整与站台等待人数控制的联合优化方法,包括以下步骤:
S1:采集列车实时信息;
所述列车实时信息包括:实际的到发时间、列车上的人数、计划到发时间、站台等待人数和乘客到达率等信息;
S2:根据列车的实际的到发时间与原有计划时刻表的计划到发时间进行对比,判断列车是否发生偏离;
S3:如果列车偏离原有计划时刻表,则使用列车实时调整与站台等待人数控制的联合优化方法进行控制,具体包括以下步骤:
S31:给定列车辆数、车站数、预测时域和控制时域;
S32:根据列车的出发时间和站台等待人数建立地铁列车自动调整动态模型,采用模型预测控制(MPC)算法进行滚动优化,预测得到预测时域的相关信息;
S33:以列车时间延时、车站等待人数和能耗的最小化目标函数式为优化控制目标,考虑地铁系统自动调整控制中的相关约束条件,在预测时域内建立列车实时调整与站台等待人数联合优化控制模型;
S34:实时求解列车实时调整与站台等待人数联合优化控制模型,得到实时的自动调整控制策略,并作用于地铁系统;
S4:重复步骤S1-S3,直到控制过程结束。
本专利所用到的变量及其代表的含义如表1所示:
表1列车自动调整模型变量及含义
Figure BDA0003022896140000031
Figure BDA0003022896140000041
在上述技术方案的基础上,步骤S32的具体步骤如下:
S321、建立列车实时调整动态模型:
列车到站的实际出发时间为列车在上一站的实际出发时间与列车的区间运行时间、列车的停站等待之间三者之和;列车的区间运行时间与列车运行等级相关,列车的区间运行时间用
Figure BDA0003022896140000042
表示,列车i在车站j+1的实际出发时间如式(1)所示,
Figure BDA0003022896140000043
其中,i是列车车次编号,j是车站站台编号,l是列车运行等级,ti,j表示:列车i在车站j的实际出发时间,
Figure BDA0003022896140000044
表示:在l运行等级下,列车i在车站j到j+1的区间运行时间,
Figure BDA0003022896140000045
是一个二进制数系数,用0或1表示,且满足
Figure BDA0003022896140000051
列车可以根据调整策略选择合适的运行等级,si,j+1为列车i在车站j+1的停站等待时间;
列车的停站等待时间与列车的最小等待时间相关,列车进站和出站的人数也在一定程度上影响列车的停站等待时间,当列车受到干扰,有晚点的情况发生时,根据列车停站等待时间控制策略进行实时调整,列车i在车站j+1的停站等待时间如式(2)所示,
si,j+1=α(mi,j+1+ni,j+1)+Di,j+1+ui,j+1+di,j+1 (2)
其中,mi,j+1为列车i在车站j+1的上车人数,ni,j+1为列车i在车站j+1的下车人数,Di,j+1为列车i在车站j+1的最小等待时间,ui,j+1为列车i在车站j+1的控制策略,di,j+1为列车i在车站j+1的不确定扰动,α是一个固定的值,为列车等待延迟率;
综合式(1)和式(2),并通过整理得到列车i在车站j+1的实际出发时间如式(3)所示,
Figure BDA0003022896140000052
列车的实际到达时间为列车的实际出发时间与区间运行时间之和,列车i在车站j+1的实际到达时间xi,j+1如式(4)所示,
Figure BDA0003022896140000053
式(1)-(4)为所述列车实时调整动态模型;
S322、建立站台等待人数动态模型和列车出发时间和站台等待人数的联合动态模型:
为了提高乘客出行效率以及满足乘客舒适度,对列车在站台的等待人数进行研究。列车在站台的等待人数与上一辆列车滞留的等待乘客数、两辆列车间隔时间内到站的等待乘客数和上车人数相关。
列车i在车站j+1的站台等待人数如式(5)所示,
wi,j+1=wi-1,j+1+oi,j+1-mi,j+1+pi,j+1 (5)
其中,wi,j+1为列车i在车站j+1的站台等待人数,wi-1,j+1为上一辆列车i-1滞留在车站j+1的等待乘客数,oi,j+1为列车i在车站j+1的到站的等待乘客数,mi,j+1为列车i在车站j+1的上车人数,pi,j+1为列车i在车站j+1的站台等待人数的控制策略;
两列车间隔时间内到站的等待人数如式(6)所示,
oi,j+1=βi,j+1(ti,j+1-ti-1,j+1) (6)
其中,βi,j+1为:列车i在车站j+1的乘客等待到达率,ti-1,j+1为:列车i-1在车站j+1的实际出发时间;
列车内的车内人数与上车人数和下车人数相关,列车i在车站j+1的车内人数如式(7)所示,
vi,j+1=vi,j+mi,j+1-ni,j+1 (7)
其中,vi,j+1为:列车i在车站j+1的车内人数,vi,j为:列车i在车站j的车内人数;
下车人数与车内的乘客数量相关,假设下车人数与车内人数成正比,下车人数表示为式(8),
ni,j+1=λi,j+1vi,j (8)
其中,ni,j+1为:列车i在车站j+1的下车人数,λi,j+1为列车i在车站j+1的下车率,所述λi,j+1可以通过技术实时监测得出;
列车的上车人数指在不超过最大承载量时能够上车的人数。分为两种情况,当站台等待人数过多时,列车只能达到最大承载量的饱和状态,上车人数即为与最大承载量的差值。当车内空余位置较多,车站内的所有等待乘客均可上车,因此,考虑列车最大承载量,列车上车人数用两种情况的最小值表示为式(9),
mi,j+1=min{(C-vi,j+1+ni,j+1),(oi,j+1+wi-1,j+1)} (9)
其中,mi,j+1为列车i在车站j+1的上车人数,C为列车最大承载量,
综合式(5)、式(6)和式(9),得到列车等待人数如式(10)所示,
wi,j+1=wi-1,j+1i,j+1(ti,j+1-ti-1,j+1)-min{(C-vi,j+1+ni,j+1),(oi,j+1+wi-1,j+1)}+pi,j+1 (10)
式(5)-(10)为所述站台等待人数动态模型;
由式(3)、式(8)、式(9)和式(10)得到列车出发时间和站台等待人数的联合动态模型,如式(11)所示:
Figure BDA0003022896140000071
S323、建立列车能耗模型:
节能减排是当今时代的主旋律,轨道交通的能源消耗主要是:列车在运行时牵引消耗的电能,以及列车照明和制暖等消耗的辅助电能。以下主要研究列车在运行区间内的牵引能耗,随着运行等级的提高,列车的牵引能耗不断增加。
假设给定固定的运行等级,列车的单位能耗固定,用
Figure BDA0003022896140000074
表示:在运行等级l下列车i在车站j+1的能源消耗,若想研究列车总能耗,需要对列车的总质量进行研究,总质量为空车质量与乘客总质量之和。列车总质量表达式如式(12)所示,
Ma=Mpvi,j+Mt (12)
其中,Mp为乘客人均质量,为60kg;Mt为列车空车质量,为19900kg。
列车i在车站j+1的能耗为列车在运行等级为l下的单位能耗
Figure BDA0003022896140000075
与总质量Ma的乘积,列车能耗表达式如式(13)所示,
Figure BDA0003022896140000072
S324、建立目标函数,具体步骤如下:
1)列车总延时时间如式(14)所示,
Figure BDA0003022896140000073
其中,Ti,j为:列车i在车站j的计划出发时间,Xi,j为:列车i在车站j的计划到达时间,xi,j为:列车i在车站j的实际到达时间,M为:地铁线路运行的列车总辆数,N为:地铁线路中列车运行经过的总站数;
2)列车总等待乘客数Pwaiting如式(15)所示,
Figure BDA0003022896140000081
其中,wi,j为:列车i在车站j的站台等待人数,Wi,j为:列车i在车站j的站台计划等待人数;
3)列车总能耗如式(16)所示,
Figure BDA0003022896140000082
其中,
Figure BDA0003022896140000083
表示:在运行等级l下列车i在车站j+1的能源消耗;
4)建立目标函数(即分析优化目标和约束条件):
本方案的主要目标是减少时间的延时,减少车站等待人数,提高乘客舒适度,并且能够节约能耗,保护能源。因此目标函数表示为式(17),
minJ=α1Tdelay2Pwaiting3Etotal (17)
其中,α123均为非负值系数,且α123=1,例α1=0.4,α2=0.3,α3=0.3。
目标函数(17)的约束条件如式(18)-(24)所示,
两辆列车追踪间隔限制约束如式(18)所示,
(ti,j-Ti,j)-(ti-1,j-Ti-1,j)≥tmin-H (18)
其中,ti-1,j为:列车i-1在车站j的实际出发时间,H为:两辆列车追踪的时间间隔,是固定常数,tmin为两辆列车之间的最小允许安全间隔时间,也是给定的固定常数;
区间运行时间限制约束如式(19)所示,
Figure BDA0003022896140000084
等待时间最大最小限制约束如式(20)所示,
Dmin≤ti,j-xi,j≤Dmax (20)
其中,Dmin为:列车在站台等待时间的最小值,Dmax为:列车在站台等待时间的最大值;
站台等待人数限制约束如式(21)所示,
0≤wi,j-Wi,j≤wmax-Wi,j (21)
其中,wmax为:在保证站台不造成拥挤的情况下的最大等待人数;
车上人数限制约束如式(22)所示,
0≤vi,j≤C (22)
其中,C为列车最大承载量(即列车上能够承载的最大乘客数);
控制策略限制约束如式(23)和式(24)所示,
umin≤ui,j≤umax (23)
pmin≤pi,j≤pmax (24)
其中,ui,j为列车i在车站j的控制策略,pi,j为列车i在车站j的站台等待人数的控制策略,umin为:控制列车出发时间的最小控制量,umax为:控制列车出发时间的最大控制量,pmin为:控制站台等待人数的最小控制量,pmax为控制站台等待人数的最大控制量,所述umin、umax、pmin和pmax均为固定常数。
因为出发时间、到达时间的参数与扰动等变量都是随着时间而不断变化的值,因此采用模型预测控制算法(MPC)来解决提出的最优控制问题。基于列车的出发时间、到达时间和站台等待人数的动态系统状态方程,在每个采样步骤k处,在线解决给定预测范围内的优化问题,给出实时的最优控制策略。
由此,在上述技术方案的基础上,根据地铁系统为k时刻的状态预测地铁系统在k+1时刻的状态,根据式(17),地铁调度的优化目标如式(25)所示,
Figure BDA0003022896140000101
其中,k=1,2,...,K;K为预测地铁系统的总时间;
式(25)为:步骤S33所述的最小化目标函数式;
两辆列车追踪间隔限制约束式(18)重新列写,如式(26)所示,
(ti,k+j-Ti,k+j)-(ti-1,k+j-Ti-1,k+j)≥tmin-H (26)
区间运行时间限制约束式(19)重新列写,如式(27)所示,
Figure BDA0003022896140000102
等待时间最大最小限制约束式(20)重新列写,如式(28)所示,
Dmin≤ti,k+j-xi,k+j≤Dmax (28)
站台等待人数限制约束式(21)重新列写,如式(29)所示,
0≤wi,k+j-Wi,k+j≤wmax-Wi,k+j (29)
车上人数限制约束式(22)重新列写,如式(30)所示,
0≤vi,k+j≤C (30)
控制策略限制约束式(23)和式(24)重新列写,分别如式(31)和式(32)所示,
umin≤ui,k+j≤umax (31)
pmin≤pi,k+j≤pmax (32)
式(25)-(32)为:所述列车实时调整与站台等待人数联合优化控制模型,即应用模型预测控制,转换为优化控制模型。
在上述MPC列车优化模型中,包括整数,二进制和连续变量。此模型中目标函数是线性的,约束是非线性的。为了使模型能够被有效求解,有必要将模型转换为混合整数线性规划(MILP)问题。
在上述技术方案的基础上,将非线性模型转化为混合整数线性规划模型的解决方法如下:
列车上车人数表示为式(33),
mi,j+1=min{b,a} (33)
其中,a如式(34)所示,b如式(35)所示,
a=oi,k+j+1+wi-1,k+j+1 (34)
b=C-vi,k+j+1+ni,k+j+1 (35)
令f=b-a,定义δ如式(36)所示,
Figure BDA0003022896140000111
则由式(33)得到式(37),
min(a,b)=a+(b-a)δ=a+fδ (37)
定义z如式(38)所示,
z=fδ (38)
将非线性的几个等式进行处理转换为线性表达式,
根据式(7)和(8)得到式(39),
vi,k+j+1=(1-λi,k+j+1)vi,k+j+a+z (39)
根据式(3)和(8)得到式(40),
Figure BDA0003022896140000112
根据式(9)和(10)得到式(41),
wi,k+j+1=wi-1,k+j+1i,k+j+1(ti,k+j+1-ti-1,k+j+1)-a-z+pi,k+j+1 (41)
根据等效变换特性,等式(37)和(38)等价于如式(42)-(47)所示的不等式约束,
f≤fmax(1-δ) (42)
f≥μ+(fmin-μ)δ (43)
其中,μ是精度;
z≤fmaxδ (44)
z≥fminδ (45)
z≤f-fmin(1-δ) (46)
z≥f-fmax(1-δ) (47)
fmax=C (48)
fmin=-Wmax (49)。
在上述技术方案的基础上,确定目标函数如式(25)所示,
Figure BDA0003022896140000121
确定式(25)的约束限制如(50)-(52)、(38)、(42)-(47)、(53)-(57)、(12)、(18)、(20)-(24)所示,
列车上车人数约束如式(50)-(52)、(38)、(42)-(47)所示,
根据式(6)和式(34)得到式(50),
a=βi,j+1(ti,j+1-ti-1,j+1)+wi-1,j+1 (50)
根据式(8)和式(35)得到式(51),
b=C-vi,j+1i,j+1vi,j (51)
f=b-a (52)
z=fδ (38)
f≤fmax(1-δ) (42)
f≥μ+(fmin-μ)δ (43)
z≤fmaxδ (44)
z≥fminδ (45)
z≤f-fmin(1-δ) (46)
z≥f-fmax(1-δ) (47)
列车实际出发时间约束如式(53)所示,
根据式(3)和(8)得到式(53),
Figure BDA0003022896140000131
车站站台人数约束如式(54)所示,
根据式(9)和(10)得到式(54),
wi,j+1=wi-1,j+1i,j+1(ti,j+1-ti-1,j+1)-a-z+pi,j+1 (54)
列车运行等级约束如式(55)所示,
Figure BDA0003022896140000132
列车实际到达时间约束如式(56)所示,
根据式(19)得到式(56),
Figure BDA0003022896140000133
车内人数约束如式(57)所示,
根据式(7)和(8)得到式(57),
vi,j+1=(1-λi,j+1)vi,j+a+z (57)
列车总质量约束如式(12)所示,
Ma=Mpvi,j+Mt (12)
两辆列车车头时距限制约束(即两辆列车追踪间隔限制约束)如式(18)所示,
(ti,j-Ti,j)-(ti-1,j-Ti-1,j)≥tmin-H (18)
列车在车站的停站时间约束(即等待时间最大最小限制约束)如式(20)所示,
Dmin≤ti,j-xi,j≤Dmax (20)
站台等待人数最大最小值约束(即站台等待人数限制约束)如式(21)所示,
0≤wi,j-Wi,j≤wmax-Wi,j (21)
车内人数最大最小值约束(即车上人数限制约束)如式(22)所示,
0≤vi,j≤C (22)
列车出发时间的控制策略最大最小值约束(即控制策略限制约束)如式(23)所示,
umin≤ui,j≤umax (23)
站台等待人数的控制策略最大最小值约束(即控制策略限制约束)如式(24)所示,
pmin≤pi,j≤pmax (24)
根据以上目标函数式(25)和相应的约束条件,通过求解得到实时的列车出发时间的控制量u和站台等待人数的控制量p。
本发明的有益技术效果如下:
本发明通过实时在线获取列车信息,当列车受到干扰时,列车实时调整模块会针对偏离既定运行时刻表的情况或乘车人数偏差过大的情况,触发启动本发明提出的列车自动调整控制方法,并结合已有的列车自动驾驶系统(ATO),保障列车在延误下能够正常运行,保证轨道交通系统的效率、准点率和乘车舒适性。本发明所述方法,与既有基于动态规划和MPC方法的列车调整方法相比,本发明可以保证列车自动调整的实时性。
附图说明
本发明有如下附图:
图1为本发明所述列车实时调整与站台等待人数控制的联合优化方法的流程示意图。
图2为本发明实施例的列车出发时间的延误变化曲线示意图。
图3为本发明实施例的站台等待人数偏差的变化曲线示意图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。如图1所示,为本发明所述列车实时调整与站台等待人数控制的联合优化方法的流程示意图。
以北京地铁昌平线为实施例验证本申请方法的有效性,北京地铁昌平线共包含12个车站,从昌平西山口站出发到西二旗站到达为上行方向,从西二旗站出发到昌平西山口站到达为下行方向,本发明只考虑地铁运行的上行方向。在一天的高峰时段,许多车站的客流非常大,这使得到达的火车通常超载,并在很大程度上影响运营效率,还对地铁线路系统造成安全隐患。当上下车人数过多或者列车发生一些故障时,也很容易造成列车延误,进而引发多辆列车延误,与计划时刻表不符。把上述提出的北京地铁昌平线的数据应用于列车实时调整与站台等待人数联合优化控制模型,观察模型的实时调整能力。根据北京昌平线的实际运行情况数据可知,北京昌平线列车运行等级分为5个运行等级,每个运行等级下所对应的列车自动驾驶系统(ATO)站间运行时间和列车牵引能耗,如表2所示:
表2北京昌平地铁线线路数据
Figure BDA0003022896140000151
Figure BDA0003022896140000161
本发明对车次和站名分别进行编号,一共研究了5辆车在12个站的运行情况。根据北京昌平线的实时监控信息统计可得,列车的乘客等待到达率βi,j和乘客下车率λi,j,如表3所示:
表3北京昌平地铁线乘客人数数据
Figure BDA0003022896140000162
在上述系统参数的条件下,给定五辆列车在第一个车站的出发时间为[200,250,280,310,340],在一个车站的等待人数为[0,120,150,320,350]。列车延迟率α=0.2,列车最大承载乘客人数为2000。当列车在第二个站发生扰动时,基于提出的列车实时调整与站台等待人数控制的联合优化控制模型,并应用于MPC模型,对列车的延误情况进行实时求解,计算出列车在每个站的优化控制策略和列车运行等级。假设列车在第二站受到干扰,第一辆车发生延误则会带动所有列车延误,并且延误时间越来越长。本模型采用控制策略进行调整,表4给出了每个控制阶段的控制量和运行等级,其中ui,j∈[-20,20],pi,j∈[-20,20],可以通过列车运行等级进行调整,当列车发生延误时,可以选择较高的运行等级,缩短ATO的站间运行时间,增加ATO的站间运行速度,从而达到列车在自动调整模块下能够迅速的减小延误时间,恢复为原有计划时刻表的过程。
表4每个控制阶段的控制量和运行等级
Figure BDA0003022896140000171
根据本发明提出的列车实时调整与站台等待人数控制联合优化控制算法,可以计算得出列车的实际出发时间、实际到达时间、列车实际站台等待人数与控制策略和运行等级。为了方便得出的数据图像清晰明了,对列车的实际出发时间与计划时刻表的出发时间进行做差,由此可以得到图2,对列车的站台等待人数与计划站台等待人数做差,可以得到图3。
如图2所示,我们可以看出当列车受到扰动后,会产生一个时间上的延误,但随着联合优化控制算法的实时调整,列车的延误时间会不断缩短,最终列车的实际出发时间与计划出发时间相等,差值为零。如图3所示,站台等待人数的实际值与计划值之间的差值也越来越小,不会造成大量的乘客滞留,大大增加了列车发车的准点性和乘客的出行效率,从根本上提高了乘客的出行舒适度和服务水平。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所做的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。
本说明书中未做详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (5)

1.一种列车实时调整与站台等待人数控制的联合优化方法,其特征在于,包括以下步骤:
S1:采集列车实时信息;
所述列车实时信息包括:实际的到发时间、列车上的人数、计划到发时间、站台等待人数和乘客到达率;
S2:根据列车的实际的到发时间与原有计划时刻表的计划到发时间进行对比,判断列车是否发生偏离;
S3:如果列车偏离原有计划时刻表,则使用列车实时调整与站台等待人数控制的联合优化方法进行控制,具体包括以下步骤:
S31:给定列车辆数、车站数、预测时域和控制时域;
S32:根据列车的出发时间和站台等待人数建立地铁列车自动调整动态模型,采用模型预测控制算法进行滚动优化,预测得到预测时域的相关信息;
S33:以列车时间延时、车站等待人数和能耗的最小化目标函数式为优化控制目标,考虑地铁系统自动调整控制中的相关约束条件,在预测时域内建立列车实时调整与站台等待人数联合优化控制模型;
S34:实时求解列车实时调整与站台等待人数联合优化控制模型,得到实时的自动调整控制策略,并作用于地铁系统;
S4:重复步骤S1-S3,直到控制过程结束。
2.如权利要求1所述的列车实时调整与站台等待人数控制的联合优化方法,其特征在于:步骤S32的具体步骤如下:
S321、建立列车实时调整动态模型:
列车i在车站j+1的实际出发时间如式(1)所示,
Figure FDA0003022896130000011
其中,i是列车车次编号,j是车站站台编号,l是列车运行等级,ti,j表示:列车i在车站j的实际出发时间,
Figure FDA0003022896130000012
表示:在l运行等级下,列车i在车站j到j+1的区间运行时间,
Figure FDA0003022896130000021
是一个二进制数系数,用0或1表示,且满足
Figure FDA0003022896130000022
si,j+1为列车i在车站j+1的停站等待时间;
列车i在车站j+1的停站等待时间如式(2)所示,
si,j+1=α(mi,j+1+ni,j+1)+Di,j+1+ui,j+1+di,j+1 (2)
其中,mi,j+1为列车i在车站j+1的上车人数,ni,j+1为列车i在车站j+1的下车人数,Di,j+1为列车i在车站j+1的最小等待时间,ui,j+1为列车i在车站j+1的控制策略,di,j+1为列车i在车站j+1的不确定扰动,α是一个固定的值,为列车等待延迟率;
综合式(1)和式(2),并通过整理得到列车i在车站j+1的实际出发时间如式(3)所示,
Figure FDA0003022896130000023
列车i在车站j+1的实际到达时间xi,j+1如式(4)所示,
Figure FDA0003022896130000024
式(1)-(4)为所述列车实时调整动态模型;
S322、建立站台等待人数动态模型和列车出发时间和站台等待人数的联合动态模型:
列车i在车站j+1的站台等待人数如式(5)所示,
wi,j+1=wi-1,j+1+oi,j+1-mi,j+1+pi,j+1 (5)
其中,wi,j+1为列车i在车站j+1的站台等待人数,wi-1,j+1为上一辆列车i-1滞留在车站j+1的等待乘客数,oi,j+1为列车i在车站j+1的到站的等待乘客数,mi,j+1为列车i在车站j+1的上车人数,pi,j+1为列车i在车站j+1的站台等待人数的控制策略;
两列车间隔时间内到站的等待人数如式(6)所示,
oi,j+1=βi,j+1(ti,j+1-ti-1,j+1) (6)
其中,βi,j+1为:列车i在车站j+1的乘客等待到达率,ti-1,j+1为:列车i-1在车站j+1的实际出发时间;
列车i在车站j+1的车内人数如式(7)所示,
vi,j+1=vi,j+mi,j+1-ni,j+1 (7)
其中,vi,j+1为:列车i在车站j+1的车内人数,vi,j为:列车i在车站j的车内人数;
假设下车人数与车内人数成正比,下车人数表示为式(8),
ni,j+1=λi,j+1vi,j (8)
其中,ni,j+1为:列车i在车站j+1的下车人数,λi,j+1为列车i在车站j+1的下车率;
考虑列车最大承载量,列车上车人数表示为式(9),
mi,j+1=min{(C-vi,j+1+ni,j+1),(oi,j+1+wi-1,j+1)} (9)
其中,mi,j+1为列车i在车站j+1的上车人数,C为列车最大承载量,
综合式(5)、式(6)和式(9),得到列车等待人数如式(10)所示,
wi,j+1=wi-1,j+1i,j+1(ti,j+1-ti-1,j+1)-min{(C-vi,j+1+ni,j+1),(oi,j+1+wi-1,j+1)}+pi,j+1 (10)
式(5)-(10)为所述站台等待人数动态模型;
由式(3)、式(8)、式(9)和式(10)得到列车出发时间和站台等待人数的联合动态模型,如式(11)所示:
Figure FDA0003022896130000031
S323、建立列车能耗模型:
列车总质量表达式如式(12)所示,
Ma=Mpvi,j+Mt (12)
其中,Mp为乘客人均质量;Mt为列车空车质量;
列车i在车站j+1的能耗为列车在运行等级为l下的单位能耗
Figure FDA0003022896130000041
与总质量Ma的乘积,列车能耗表达式如式(13)所示,
Figure FDA0003022896130000042
式(12)-(13)为所述列车能耗模型;
S324、建立目标函数,具体步骤如下:
1)列车总延时时间如式(14)所示,
Figure FDA0003022896130000043
其中,Ti,j为:列车i在车站j的计划出发时间,Xi,j为:列车i在车站j的计划到达时间,xi,j为:列车i在车站j的实际到达时间,M为:地铁线路运行的列车总辆数,N为:地铁线路中列车运行经过的总站数;
2)列车总等待乘客数Pwaiting如式(15)所示,
Figure FDA0003022896130000044
其中,wi,j为:列车i在车站j的站台等待人数,Wi,j为:列车i在车站j的站台计划等待人数;
3)列车总能耗如式(16)所示,
Figure FDA0003022896130000045
其中,
Figure FDA0003022896130000046
表示:在运行等级l下列车i在车站j+1的能源消耗;
4)建立目标函数:
目标函数表示为式(17),
minJ=α1Tdelay2Pwaiting3Etotal (17)
其中,α123均为非负值系数,且α123=1;
目标函数(17)的约束条件如式(18)-(24)所示,
两辆列车追踪间隔限制约束如式(18)所示,
(ti,j-Ti,j)-(ti-1,j-Ti-1,j)≥tmin-H (18)
其中,ti-1,j为:列车i-1在车站j的实际出发时间,H为:两辆列车追踪的时间间隔,是固定常数,tmin为两辆列车之间的最小允许安全间隔时间,也是固定常数;
区间运行时间限制约束如式(19)所示,
Figure FDA0003022896130000051
等待时间最大最小限制约束如式(20)所示,
Dmin≤ti,j-xi,j≤Dmax (20)
其中,Dmin为:列车在站台等待时间的最小值,Dmax为:列车在站台等待时间的最大值;
站台等待人数限制约束如式(21)所示,
0≤wi,j-Wi,j≤wmax-Wi,j (21)
其中,wmax为:在保证站台不造成拥挤的情况下的最大等待人数;
车上人数限制约束如式(22)所示,
0≤vi,j≤C (22)
其中,C为列车最大承载量(即列车上能够承载的最大乘客数);
控制策略限制约束如式(23)和式(24)所示,
umin≤ui,j≤umax (23)
pmin≤pi,j≤pmax (24)
其中,ui,j为列车i在车站j的控制策略,pi,j为列车i在车站j的站台等待人数的控制策略,umin为:控制列车出发时间的最小控制量,umax为:控制列车出发时间的最大控制量,pmin为:控制站台等待人数的最小控制量,pmax为控制站台等待人数的最大控制量,所述umin、umax、pmin和pmax均为固定常数。
3.如权利要求2所述的列车实时调整与站台等待人数控制的联合优化方法,其特征在于:根据地铁系统为k时刻的状态预测地铁系统在k+1时刻的状态,根据式(17),地铁调度的优化目标如式(25)所示,
Figure FDA0003022896130000061
其中,k=1,2,...,K;K为预测地铁系统的总时间;
式(25)为:步骤S33所述的最小化目标函数式;
两辆列车追踪间隔限制约束式(18)重新列写,如式(26)所示,
(ti,k+j-Ti,k+j)-(ti-1,k+j-Ti-1,k+j)≥tmin-H (26)
区间运行时间限制约束式(19)重新列写,如式(27)所示,
Figure FDA0003022896130000062
等待时间最大最小限制约束式(20)重新列写,如式(28)所示,
Dmin≤ti,k+j-xi,k+j≤Dmax (28)
站台等待人数限制约束式(21)重新列写,如式(29)所示,
0≤wi,k+j-Wi,k+j≤wmax-Wi,k+j (29)
车上人数限制约束式(22)重新列写,如式(30)所示,
0≤vi,k+j≤C (30)
控制策略限制约束式(23)和式(24)重新列写,分别如式(31)和式(32)所示,
umin≤ui,k+j≤umax (31)
pmin≤pi,k+j≤pmax (32)
式(25)-(32)为:所述列车实时调整与站台等待人数联合优化控制模型。
4.如权利要求3所述的列车实时调整与站台等待人数控制的联合优化方法,其特征在于:将非线性模型转化为混合整数线性规划模型的解决方法如下:
列车上车人数表示为式(33),
mi,j+1=min{b,a} (33)
其中,a如式(34)所示,b如式(35)所示,
a=oi,k+j+1+wi-1,k+j+1 (34)
b=C-vi,k+j+1+ni,k+j+1 (35)
令f=b-a,定义δ如式(36)所示,
Figure FDA0003022896130000071
则由式(33)得到式(37),
min(a,b)=a+(b-a)δ=a+fδ (37)
定义z如式(38)所示,
z=fδ (38)
根据式(7)和(8)得到式(39),
vi,k+j+1=(1-λi,k+j+1)vi,k+j+a+z (39)
根据式(3)和(8)得到式(40),
Figure FDA0003022896130000072
根据式(9)和(10)得到式(41),
wi,k+j+1=wi-1,k+j+1i,k+j+1(ti,k+j+1-ti-1,k+j+1)-a-z+pi,k+j+1 (41)
根据等效变换特性,等式(37)和(38)等价于如式(42)-(47)所示的不等式约束,
f≤fmax(1-δ) (42)
f≥μ+(fmin-μ)δ (43)
其中,μ是精度;
z≤fmaxδ (44)
z≥fminδ (45)
z≤f-fmin(1-δ) (46)
z≥f-fmax(1-δ) (47)
fmax=C (48)
fmin=-Wmax (49)。
5.如权利要求4所述的列车实时调整与站台等待人数控制的联合优化方法,其特征在于:确定目标函数如式(25)所示,
Figure FDA0003022896130000081
确定式(25)的约束限制如(50)-(52)、(38)、(42)-(47)、(53)-(57)、(12)、(18)、(20)-(24)所示,
列车上车人数约束如式(50)-(52)、(38)、(42)-(47)所示,
根据式(6)和式(34)得到式(50),
a=βi,j+1(ti,j+1-ti-1,j+1)+wi-1,j+1 (50)
根据式(8)和式(35)得到式(51),
b=C-vi,j+1i,j+1vi,j (51)
f=b-a (52)
z=fδ (38)
f≤fmax(1-δ) (42)
f≥μ+(fmin-μ)δ (43)
z≤fmaxδ (44)
z≥fminδ (45)
z≤f-fmin(1-δ) (46)
z≥f-fmax(1-δ) (47)
列车实际出发时间约束如式(53)所示,
根据式(3)和(8)得到式(53),
Figure FDA0003022896130000091
车站站台人数约束如式(54)所示,
根据式(9)和(10)得到式(54),
wi,j+1=wi-1,j+1i,j+1(ti,j+1-ti-1,j+1)-a-z+pi,j+1 (54)
列车运行等级约束如式(55)所示,
Figure FDA0003022896130000092
列车实际到达时间约束如式(56)所示,
根据式(19)得到式(56),
Figure FDA0003022896130000093
车内人数约束如式(57)所示,
根据式(7)和(8)得到式(57),
vi,j+1=(1-λi,j+1)vi,j+a+z (57)
列车总质量约束如式(12)所示,
Ma=Mpvi,j+Mt (12)
两辆列车车头时距限制约束如式(18)所示,
(ti,j-Ti,j)-(ti-1,j-Ti-1,j)≥tmin-H (18)
列车在车站的停站时间约束如式(20)所示,
Dmin≤ti,j-xi,j≤Dmax (20)
站台等待人数最大最小值约束如式(21)所示,
0≤wi,j-Wi,j≤wmax-Wi,j (21)
车内人数最大最小值约束如式(22)所示,
0≤vi,j≤C (22)
列车出发时间的控制策略最大最小值约束如式(23)所示,
umin≤ui,j≤umax (23)
站台等待人数的控制策略最大最小值约束如式(24)所示,
pmin≤pi,j≤pmax (24)
根据以上目标函数式(25)和相应的约束条件,通过求解得到实时的列车出发时间的控制量u和站台等待人数的控制量p。
CN202110407595.2A 2021-04-15 2021-04-15 一种列车实时调整与站台等待人数控制的联合优化方法 Active CN113112078B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110407595.2A CN113112078B (zh) 2021-04-15 2021-04-15 一种列车实时调整与站台等待人数控制的联合优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110407595.2A CN113112078B (zh) 2021-04-15 2021-04-15 一种列车实时调整与站台等待人数控制的联合优化方法

Publications (2)

Publication Number Publication Date
CN113112078A true CN113112078A (zh) 2021-07-13
CN113112078B CN113112078B (zh) 2024-03-26

Family

ID=76717460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110407595.2A Active CN113112078B (zh) 2021-04-15 2021-04-15 一种列车实时调整与站台等待人数控制的联合优化方法

Country Status (1)

Country Link
CN (1) CN113112078B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055145A (ja) * 1999-08-12 2001-02-27 Railway Technical Res Inst 動的環境下における列車乗客数の推定方法及びそれを用いた運転整理支援システム
CN102360401A (zh) * 2011-10-14 2012-02-22 南京理工大学 一种基于遗传算法的城市轨道交通节能运行图设计方法
CN104408313A (zh) * 2014-11-26 2015-03-11 上海工程技术大学 一种轨道交通能耗影响因素协同关联度建模方法
CN110228507A (zh) * 2019-05-10 2019-09-13 北京交通大学 一种基于事件触发的列车自动调整控制方法
CN112116207A (zh) * 2020-08-24 2020-12-22 北京交通大学 一种多约束条件的列车运行调整的计算方法和装置
CN112613797A (zh) * 2020-12-30 2021-04-06 南京理工大学 一种考虑能耗影响因素的城市轨道交通列车延误调整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055145A (ja) * 1999-08-12 2001-02-27 Railway Technical Res Inst 動的環境下における列車乗客数の推定方法及びそれを用いた運転整理支援システム
CN102360401A (zh) * 2011-10-14 2012-02-22 南京理工大学 一种基于遗传算法的城市轨道交通节能运行图设计方法
CN104408313A (zh) * 2014-11-26 2015-03-11 上海工程技术大学 一种轨道交通能耗影响因素协同关联度建模方法
CN110228507A (zh) * 2019-05-10 2019-09-13 北京交通大学 一种基于事件触发的列车自动调整控制方法
CN112116207A (zh) * 2020-08-24 2020-12-22 北京交通大学 一种多约束条件的列车运行调整的计算方法和装置
CN112613797A (zh) * 2020-12-30 2021-04-06 南京理工大学 一种考虑能耗影响因素的城市轨道交通列车延误调整方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴兴堂: "《轨道交通网络特性及时刻表协调优化》", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
周林彦: "《面向全自动运行系统的列车实时调整与客流量控制联合优化方法研究》", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Also Published As

Publication number Publication date
CN113112078B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
Su et al. Design of running grades for energy-efficient train regulation: a case study for beijing yizhuang line
CN109657845B (zh) 一种针对时变客流的城市轨道交通列车时刻表优化系统
Yin et al. Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: An approximate dynamic programming approach
CN109859459B (zh) 一种自动驾驶公交调度优化方法
CN110920700B (zh) 一种高铁调度优化方法、系统、及存储介质
CN112232552B (zh) 面向突发事件不确定性的列车运行计划调整风险控制方法
US7343314B2 (en) System and method for scheduling and train control
CN112319557B (zh) 一种晚点条件下地铁列车的运行调整方法及系统
RU2501695C2 (ru) Система и способ оптимизации движения поезда
US7539624B2 (en) Automatic train control system and method
Yin et al. Efficient real-time train operation algorithms with uncertain passenger demands
CN103955135B (zh) 一种基于双层模式曲线的机车优化操纵序列计算方法
CN101356089A (zh) 鉴于有轨车厢参数优化火车运行的系统、方法和计算机软件代码
CN112793631A (zh) 一种列车退出正线运营条件下的地铁行车调整方法及系统
CN112249099A (zh) 一种基于预测控制的高速列车节能运行曲线在线计算方法
CN111859718B (zh) 一种区域多制式轨道交通车站拥挤系数计算方法及系统
Xing et al. Rail train operation energy-saving optimization based on improved brute-force search
CN111401643B (zh) 一种城市轨道交通客流回路自适应的智能列车调度方法
CN114818349A (zh) 基于时空网络客流状态估计的节能运行图优化分析方法
Zhou et al. Metro scheduling to minimize travel time and operating cost considering spatial and temporal constraints on passenger boarding
CN112249101B (zh) 基于矩阵表征的高铁网络延误传播定量分析方法
CN113112078A (zh) 一种列车实时调整与站台等待人数控制的联合优化方法
CN112613797A (zh) 一种考虑能耗影响因素的城市轨道交通列车延误调整方法
Yin et al. A two-stage stochastic optimization model for passenger-oriented metro rescheduling with backup trains
CN114298385A (zh) 考虑客流影响和再生制动能利用的地铁列车延误调整方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant