CN113111310A - Normalization processing method for testing data of fatigue life of welding spot under multi-stress working condition - Google Patents

Normalization processing method for testing data of fatigue life of welding spot under multi-stress working condition Download PDF

Info

Publication number
CN113111310A
CN113111310A CN202110330375.4A CN202110330375A CN113111310A CN 113111310 A CN113111310 A CN 113111310A CN 202110330375 A CN202110330375 A CN 202110330375A CN 113111310 A CN113111310 A CN 113111310A
Authority
CN
China
Prior art keywords
welding spot
data
test
fatigue life
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110330375.4A
Other languages
Chinese (zh)
Other versions
CN113111310B (en
Inventor
王腾腾
赵岩
姜发同
梁宾
范吉富
蒋松蔚
王扬卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Innovation Center of Beijing University of Technology
Original Assignee
Chongqing Innovation Center of Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Innovation Center of Beijing University of Technology filed Critical Chongqing Innovation Center of Beijing University of Technology
Priority to CN202110330375.4A priority Critical patent/CN113111310B/en
Publication of CN113111310A publication Critical patent/CN113111310A/en
Application granted granted Critical
Publication of CN113111310B publication Critical patent/CN113111310B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/02Reliability analysis or reliability optimisation; Failure analysis, e.g. worst case scenario performance, failure mode and effects analysis [FMEA]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Operations Research (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Computing Systems (AREA)
  • Probability & Statistics with Applications (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

The invention discloses a method for normalizing data of a welding spot fatigue life test under multiple stress working conditions, which relates to the technical field of a material mechanics curve normalization processing method and comprises 4 steps. After the initial values of the 9 parameters are obtained, the secondary values of the 9 parameters are obtained according to the calculation of the target function, the 9 parameters do not change after the initial values are obtained, but change according to subsequent calculation and change, so that the whole normalization process does not depend on the selection of the initial values of the 9 parameters completely, namely, the method has small dependence on the initial values of the 9 parameters, and in the parameter identification process, if the initial values of the 9 parameters are set unreasonably, the subsequent adjustment can be carried out, and the obtained result is closer to a global optimal solution rather than a local optimal solution. And the subsequent value change of the 9 parameters is determined according to calculation and fitting change, and does not depend on the experience of engineering personnel.

Description

Normalization processing method for testing data of fatigue life of welding spot under multi-stress working condition
Technical Field
The invention relates to the technical field of material mechanics curve normalization processing methods, in particular to a normalization processing method for welding spot fatigue life test data under multiple stress working conditions.
Background
Fatigue is a process of mechanical damage in which repeated changes in load will cause failure even if the nominal stress is below the yield strength of the material. The analysis of the fatigue of the welding spot aims to predict the fatigue life of the welding spot, so that related enterprises can reduce the development and test cost, shorten the time for putting on the market and improve the service life of products.
The problem of normalization of welding spot fatigue test data under the existing multi-stress working condition is solved by adopting a nonlinear GRG method. The method is an optimization method, converts the constraint problem into a nonlinear programming problem, adopts a steepest descent method, and has the advantage of high optimization speed.
However, the method has a large dependency on the initial parameter values, and in the parameter identification process, if the initial parameter values are set unreasonably, the method is easy to fall into a local optimal solution, and the method has a large dependency on the experience of engineering personnel.
Disclosure of Invention
The invention aims to: aiming at the existing problems, the normalization processing method for the test data of the fatigue life of the welding spot under the multi-stress working condition that the normalization result is not completely dependent on the initial value of the parameter and is possibly trapped in the local optimal solution is relatively reduced is provided.
The technical scheme adopted by the invention is as follows:
a normalization processing method for testing data of fatigue life of a welding spot under multiple stress working conditions comprises the following steps:
(1) using a structural stress formula for welding spot force and moment data obtained by a welding spot fatigue test, wherein 9 parameters are involved in the structural stress formula, and respectively taking initial values m for the 9 parameters1、m2、m3、m4、m5、m6、m7、m8、m9
(2) Taking the fitted curve function y as axbAnd calculating to obtain the values of a and b;
(3) calculating to obtain an objective function, calculating partial derivatives of the objective function, and taking negative values of partial derivatives to obtain 9 parameter values n1、n2、n3、n4、n5、n6、n7、n8、n9
(4) Judging whether the fitting curve function meets the convergence condition, if so, calculating the fitting degree of the fitting curve function, and judging whether the fitting curve equation meets the requirement; if not, adjusting the step size factor and returning to the step (1).
Preferably, the step (5) of determining whether the fitted curve equation meets the requirement specifically includes: if the fitting degree is larger than 0.7, updating a and b, updating the confidence interval of the independent variable, and returning to the step (1); if the fitting degree is larger than 0.65, updating the independent variable confidence interval, and returning to the step (1); and (5) if the fitting degree is less than or equal to 0.65, randomly selecting seeds, and returning to the step (1).
Preferably, step (1) is preceded by the steps of: taking a welding spot fatigue test standard part, and carrying out a welding spot fatigue test on the welding spot fatigue test standard part to obtain F-N test data, wherein F is a load range loaded by the fatigue test, and N is a fatigue life, namely a cycle number; carrying out finite element static analysis on the stress condition of the welding spot under the F-N test data to obtain the data of welding spot force and moment of the welding spot fatigue test standard component, wherein the data comprises forces in x, y and z directions in space: fx、Fy、FzX, y, in space,z three-directional moment Mx、My、Mz,FxAnd FyThe angle theta of the perpendicular vector.
Preferably, the structural stress formula in step (1) is as follows:
σstru=-σmax(Fx)cosθ-σmax(Fy)sinθ+σ(Fz)+σmax(Mx)sinθ-σmax(My)cosθ
Figure BDA0002996146230000021
Figure BDA0002996146230000022
Figure BDA0002996146230000023
wherein: d is the weld nugget diameter of the standard part for the welding spot fatigue test, and t is the thickness of the standard part for the welding spot fatigue test;
the 9 parameters are respectively 3 scaling coefficients in a structural stress formula: SFFXY, SFFZ, SFMXY; 3 thickness indices: DEFXY, DEFZ, DEFXY; 3 diameter indices: TEFXY, TEFZ, TEMXY.
Preferably, structural stress data are obtained after a structural stress formula is used for data of welding spot force and moment obtained in the welding spot fatigue test in the step (1); the method also comprises the following steps between the steps (1) and (2): and multiplying the structural stress data by the F-N test data to obtain S-N data, wherein S is the stress range, and N is the fatigue life, namely the cycle number.
Preferably, the objective function in step (3) is S-N data and the fitting curve function y ═ axbThe sum of the residuals of (a).
Preferably, after taking a negative value for the partial derivative result in step (3), the direction of change of the independent variable is determined.
Preferably, the values of a and b in step (2) are calculated by a least square method.
Preferably, m in step (1)1、m2、m3、m4、m5、m6、m7、m8、m9All within the range of 0-1.
In summary, due to the adoption of the technical scheme, the invention has the beneficial effects that: after the initial values of the 9 parameters are obtained, the secondary values of the 9 parameters are obtained according to the calculation of the target function, the 9 parameters do not change after the initial values are obtained, but change according to subsequent calculation and change, so that the whole normalization process does not depend on the selection of the initial values of the 9 parameters completely, namely, the method has small dependence on the initial values of the 9 parameters, and in the parameter identification process, if the initial values of the 9 parameters are set unreasonably, the subsequent adjustment can be carried out, and the obtained result is closer to a global optimal solution rather than a local optimal solution. And the subsequent value change of the 9 parameters is determined according to calculation and fitting change, and does not depend on the experience of engineering personnel.
Drawings
FIG. 1 is a flow chart of a normalization processing method of solder joint fatigue life test data under a multi-stress working condition.
FIG. 2 is a set of data points from a weld fatigue test standard test prior to normalization.
Fig. 3 is the result of the normalization process performed on fig. 1 using the nonlinear GRG method.
FIG. 4 is a result of normalization processing performed on FIG. 1 using a normalization processing method for solder joint fatigue life test data under multiple stress conditions.
Detailed Description
The present invention will be described in detail below with reference to the accompanying drawings.
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention is described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Referring to fig. 1, a method for normalizing data of a solder joint fatigue life test under multiple stress conditions includes the following steps:
s01: taking a welding spot fatigue test standard part, and carrying out a welding spot fatigue test on the welding spot fatigue test standard part to obtain F-N test data, wherein F is a load range loaded by the fatigue test, and N is a fatigue life, namely a cycle number;
s02: finite element static analysis is carried out on the stress condition of the welding spot under the F-N test data, and two finite element static analysis models are created: pulling and shearing the sample and stripping the sample to obtain the data of the welding spot force and the moment of the welding spot fatigue test standard part, wherein the data comprises the force F in the x direction, the y direction and the z direction in the spacex、Fy、FzMoments M in three directions x, y and z in spacex、My、Mz,FxAnd FyThe angle theta of the vertical vector; in the finite element static force analysis, the stress of the pulling and shearing sample and the peeling sample in a certain direction is set to be 1N respectively, and the numerical values of other forces, torque and theta are calculated to obtain the data of the welding spot force and torque of the welding spot fatigue test standard component.
S03: and obtaining structural stress data by using a structural stress formula for the data of the welding spot force and the moment. The structural stress formula is:
σstru=-σmax(Fx)cosθ-σmax(Fy)sinθ+σ(Fz)+σmax(Mx)sinθ-σmax(My)cosθ
Figure BDA0002996146230000041
Figure BDA0002996146230000051
Figure BDA0002996146230000052
wherein: d is the weld nugget diameter of the standard part for the welding spot fatigue test, and t is the thickness of the standard part for the welding spot fatigue test;
for the 9 parameters involved in the structural stress formula: 3 scaling factors: SFFXY, SFFZ, SFMXY; 3 thickness indices: DEFXY, DEFZ, DEFXY; 3 diameter indices: respectively taking initial values of m for TEFXY, TEFZ and TEMXY1、m2、m3、m4、m5、m6、m7、m8、m9The 9 initial values are all within the range of 0-1;
s04: multiplying the structural stress data by F-N test data to obtain S-N data, wherein S is a stress range, and N is fatigue life, namely cycle number;
s05: taking the fitted curve function y as axbAnd calculating the values of a and b by using a least square method;
s06: calculating the function y ═ ax of the S-N data and the fitting curvebObtaining the target function, calculating the partial derivative, taking the negative value of the partial derivative result, namely adding a negative sign on the partial derivative result, determining the change direction of the independent variable, namely a steepest descent method, and obtaining 9 parameter values n1、n2、n3、n4、n5、n6、n7、n8、n9
S07: judging whether the fitting curve function meets the convergence condition, if so, continuing to the step S08; if not, adjusting the step factor, and returning to the step S03;
s08: calculating the fitting degree of the fitting curve function, and if the fitting degree is greater than 0.75, judging that the fitting curve function meets the requirement and applying; if the fitting degree is more than 0.7 and more than 0.75, updating the values of a and b by using a least square method, updating the argument confidence interval by using a dichotomy method, and returning to the step S03; if the fitting degree is more than 0.65 and more than 0.7, updating the independent variable confidence interval by using a dichotomy, and returning to the step S03; and if the fitting degree is less than or equal to 0.65, randomly selecting seeds which are the values of the independent variables, namely randomly selecting a group of independent variables in the independent variable confidence interval, and returning to the step S03.
Further, the fitting degree in step S08 is calculated by: setting tolerance, taking the argument x1And independent variable x2Will bex1And x2Respectively substituting into the objective function, respectively calculating to obtain dependent variable y1And dependent variable y2Then, y is recalculated1And y2If the difference is less than the tolerance, increasing the step factor and taking the independent variable again; if the difference is greater than the tolerance, then the argument x is accepted1And independent variable x2. Wherein the step factor is an independent variable x1To the independent variable x2And increasing the increment, i.e., increasing the step factor.
Referring to fig. 2-4, the non-linear GRG method and method were used for normalization experiments:
1. the experimental method comprises the following steps:
the method comprises the following steps:
s1: performing steps S01-S05 to obtain S-N data points as shown in FIG. 2;
s2: normalizing the S-N data points by using a nonlinear GRG method to obtain a normalization processing result shown in FIG. 3;
s3: the S-N data points are normalized by using the method, and the normalization processing result shown in figure 4 is obtained;
2. the experimental results are as follows:
the normalization processing result obtained in the experiment step S2 contains local data points, and part of the data points are far away from the fitting curve to form a local optimal solution;
the result of the normalization process using the experimental step S3 contains almost all data points, forming a globally optimal solution. That is, the result of normalization processing by using the method almost contains all data points, and a global optimal solution is formed.
The principles and embodiments of the present invention are explained herein using specific examples, which are presented only to aid in understanding the method and its core concepts. It should be noted that, for those skilled in the art, it is possible to make various improvements and modifications to the present invention without departing from the principle of the present invention, and those improvements and modifications also fall within the scope of the claims of the present invention.

Claims (9)

1. A normalization processing method for testing data of fatigue life of a welding spot under multiple stress working conditions is characterized by comprising the following steps:
(1) using a structural stress formula for welding spot force and moment data obtained by a welding spot fatigue test, wherein 9 parameters are involved in the structural stress formula, and respectively taking initial values m for the 9 parameters1、m2、m3、m4、m5、m6、m7、m8、m9
(2) Taking the fitted curve function y as axbAnd calculating to obtain the values of a and b;
(3) calculating to obtain an objective function, calculating partial derivatives of the objective function, and taking negative values of partial derivatives to obtain 9 parameter values n1、n2、n3、n4、n5、n6、n7、n8、n9
(4) Judging whether the fitting curve function meets the convergence condition, if so, calculating the fitting degree of the fitting curve function, and judging whether the fitting curve equation meets the requirement; if not, adjusting the step size factor and returning to the step (1).
2. The method for normalizing the data of the fatigue life test of the welding spot under the multi-stress working condition according to claim 1, wherein the step (5) of determining whether the fitted curve equation meets the requirement specifically comprises the following steps: if the fitting degree is larger than 0.7, updating a and b, updating the confidence interval of the independent variable, and returning to the step (1); if the fitting degree is larger than 0.65, updating the independent variable confidence interval, and returning to the step (1); and (5) if the fitting degree is less than or equal to 0.65, randomly selecting seeds, and returning to the step (1).
3. The method for normalizing the data of the fatigue life test of the welding spot under the multiple stress working conditions according to claim 1, wherein the step (1) is preceded by the steps of: taking a welding spot fatigue test standard part, and carrying out a welding spot fatigue test on the welding spot fatigue test standard part to obtain F-N test data, wherein F is a load range loaded by the fatigue test, and N is a fatigue life, namely a cycle number; for F-N measurementAnd (3) carrying out finite element static analysis on the stress condition of the welding spot under the test data to obtain the data of welding spot force and moment of the welding spot fatigue test standard part, wherein the data comprises forces in x, y and z directions in space: fx、Fy、FzMoments M in three directions x, y and z in spacex、My、Mz,FxAnd FyThe angle theta of the perpendicular vector.
4. The method for normalizing the test data of the fatigue life of the welding spot under the multi-stress working condition according to claim 1, wherein the structural stress formula in the step (1) is as follows:
σstru=-σmax(Fx)cosθ-σmax(Fy)sinθ+σ(Fz)+σmax(Mx)sinθ-σmax(My)cosθ
Figure FDA0002996146220000021
Figure FDA0002996146220000022
Figure FDA0002996146220000023
wherein: d is the weld nugget diameter of the standard part for the welding spot fatigue test, and t is the thickness of the standard part for the welding spot fatigue test;
the 9 parameters are respectively 3 scaling coefficients in a structural stress formula: SFFXY, SFFZ, SFMXY; 3 thickness indices: DEFXY, DEFZ, DEFXY; 3 diameter indices: TEFXY, TEFZ, TEMXY.
5. The method for normalizing the test data of the fatigue life of the welding spot under the multi-stress working condition according to claim 1, wherein structural stress data is obtained after a structural stress formula is used for the data of the welding spot force and the moment obtained by the welding spot fatigue test in the step (1); the method also comprises the following steps between the steps (1) and (2): and multiplying the structural stress data by the F-N test data to obtain S-N data, wherein S is the stress range, and N is the fatigue life, namely the cycle number.
6. The method for normalizing the data of the fatigue life test of the welding spot under the multi-stress working condition according to claim 1, wherein the objective function in the step (3) is S-N data and a fitting curve function y ═ axbThe sum of the residuals of (a).
7. The method for normalizing the data of the fatigue life test of the welding spot under the multiple stress working conditions according to claim 1, wherein the variation direction of the independent variable is determined after taking a negative value for the partial derivative result in the step (3).
8. The method for normalizing the data of the fatigue life test of the welding spot under the multi-stress working condition according to claim 1, wherein the values of a and b in the step (2) are calculated by a least square method.
9. The method for normalizing the fatigue life test data of the welding spot under the multiple stress working conditions according to claim 1, wherein m in the step (1) is1、m2、m3、m4、m5、m6、m7、m8、m9All within the range of 0-1.
CN202110330375.4A 2021-03-29 2021-03-29 Normalization processing method for testing data of fatigue life of welding spot under multi-stress working condition Active CN113111310B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110330375.4A CN113111310B (en) 2021-03-29 2021-03-29 Normalization processing method for testing data of fatigue life of welding spot under multi-stress working condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110330375.4A CN113111310B (en) 2021-03-29 2021-03-29 Normalization processing method for testing data of fatigue life of welding spot under multi-stress working condition

Publications (2)

Publication Number Publication Date
CN113111310A true CN113111310A (en) 2021-07-13
CN113111310B CN113111310B (en) 2022-09-06

Family

ID=76712753

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110330375.4A Active CN113111310B (en) 2021-03-29 2021-03-29 Normalization processing method for testing data of fatigue life of welding spot under multi-stress working condition

Country Status (1)

Country Link
CN (1) CN113111310B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202515A (en) * 2004-01-13 2005-07-28 Toshiba Corp Reliability analysis device, reliability analysis method, and reliability analysis program
US20090276165A1 (en) * 2008-05-02 2009-11-05 Rockwell Automation Technologies, Inc. Power module life estimation fatigue function
CN102955881A (en) * 2012-10-30 2013-03-06 温州大学 Method for calculating thermal fatigue failure probability of welding point of integrated circuit chip
CN103714204A (en) * 2013-12-18 2014-04-09 大连理工大学 Welding structure multi-axial fatigue life evaluation method
CN104573392A (en) * 2015-01-27 2015-04-29 湖南大学 Spot-weld fatigue life predicting method
CN106096134A (en) * 2016-06-13 2016-11-09 北京航空航天大学 A kind of Structural Metallic Fatigue fail-safe analysis based on damage mechanics and Optimization Design
CN110287550A (en) * 2019-06-05 2019-09-27 南京理工大学 White body solder joint optimization method based on density variable method and analysis of Fatigue-life

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005202515A (en) * 2004-01-13 2005-07-28 Toshiba Corp Reliability analysis device, reliability analysis method, and reliability analysis program
US20090276165A1 (en) * 2008-05-02 2009-11-05 Rockwell Automation Technologies, Inc. Power module life estimation fatigue function
CN102955881A (en) * 2012-10-30 2013-03-06 温州大学 Method for calculating thermal fatigue failure probability of welding point of integrated circuit chip
CN103714204A (en) * 2013-12-18 2014-04-09 大连理工大学 Welding structure multi-axial fatigue life evaluation method
CN104573392A (en) * 2015-01-27 2015-04-29 湖南大学 Spot-weld fatigue life predicting method
CN106096134A (en) * 2016-06-13 2016-11-09 北京航空航天大学 A kind of Structural Metallic Fatigue fail-safe analysis based on damage mechanics and Optimization Design
CN110287550A (en) * 2019-06-05 2019-09-27 南京理工大学 White body solder joint optimization method based on density variable method and analysis of Fatigue-life

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
HONG-TAE KANG: "Data Processing Procedure for Fatigue Life Prediction of Spot-Welded Joints Using a Structural Stress Method", 《FATIGUE AND FRACTURE TEST PLANNING, TEST DATA ACQUISITIONS AND ANALYSIS》 *
HONGTAE KANG: "Fatigue Life Predictions of Adhesive Joint of Sheet Steels", 《SCIENCEDIRECT(PROCEDIA ENGINEERING)》 *
MAGDY M. ABDELHAMEED: "A Robust Methodology For Solder Joints Extraction", 《2013 8TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES)》 *
ONDREJ KOVAC: "Image processing of die attach"s X-ray images for automatic voids detection and evaluation", 《 2016 39TH INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY (ISSE)》 *
周佳: "复杂应力状态下车用高强钢断裂失效行为表征与应用研究", 《塑性工程学报》 *
孟凡亮: "焊点模拟方法对疲劳仿真寿命的影响", 《计算机辅助工程》 *
杨龙: "点焊接头疲劳研究综述", 《机械工程学报》 *
沈永华: "多孔SiC 陶瓷/Zr 基非晶合金复合材料", 《稀有金属材料与工程》 *
谢素明: "基于等效结构应力的不锈钢车体点焊接头疲劳寿命预测", 《大连交通大学学报》 *
赵大伟: "基于田口法的钛合金微电阻点焊焊接参数优化", 《焊接学报》 *
赵林: "金属材料疲劳规律的预测理论研究", 《理化检验一物理分册》 *

Also Published As

Publication number Publication date
CN113111310B (en) 2022-09-06

Similar Documents

Publication Publication Date Title
CN108645704B (en) Method for calibrating microstructure parameters of metal material based on nanoindentation and finite element simulation inversion
US20180361511A1 (en) Method for quality control on laser peening correction of aero-engine support
CN110987621A (en) Method for establishing three-dimensional fracture model of metal material in complex stress state
CN112180065A (en) J-C constitutive model building method of metal material
CN116305522A (en) Digital twin-based aircraft structure reliability simulation test model calibration method, device and medium
Chen et al. Material response, localization and failure of an aluminum alloy under combined shear and tension: Part II analysis
CN113420391B (en) Method for obtaining high-precision hardening model parameters of material under complex stress state
CN113111310B (en) Normalization processing method for testing data of fatigue life of welding spot under multi-stress working condition
CN110749510B (en) Method for detecting bending property of metal material based on finite element simulation
CN107180123B (en) A kind of high strength steel submersible pressurized spherical shell ultimate bearing capacity evaluation method
CN112464401B (en) Accurate modeling method for metal material welding spot
Ramesh et al. Analysis of optimization of blank holding force in deep drawing by using LS DYNA
Eckert et al. Local–global approach using experimental and/or simulated data to predict distortion caused by mechanical joining technologies
CN112231948B (en) Simulation method for regulating and controlling thermal-vibration composite residual stress of aluminum alloy ring piece
Li et al. Application of six sigma robust optimization in sheet metal forming
CN110749300A (en) Pit quality evaluation method for laser shock peening metal material surface
CN108776746B (en) Dynamic stiffness optimization method for improving dynamic characteristics of machine tool
CN113843326B (en) Metal plate stamping forming edge cracking prediction method considering trimming quality
Van de Velde et al. Towards best practice in numerical simulation of blind rivet nut installation
Said et al. Analysis of springback effects in deep drawing processes: simulation and experimental studies
Bauer et al. Investigation of a process simulation method for flexible clamping of sheet metal parts
CN115906270A (en) Rapid simulation evaluation method for automobile riveting strength
Mena et al. Reshaping of large aeronautical structural parts: A simplified simulation approach
CN110363759B (en) Three-dimensional die debugging parameter determination method and device
WO2022054336A1 (en) Steel pipe collapse strength prediction model generation method, steel pipe collapse strength prediction method, steel pipe manufacturing characteristics determination method, and steel pipe manufacturing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant