CN113109874B - A kind of wave impedance inversion method and neural network system using neural network - Google Patents

A kind of wave impedance inversion method and neural network system using neural network Download PDF

Info

Publication number
CN113109874B
CN113109874B CN202110339626.5A CN202110339626A CN113109874B CN 113109874 B CN113109874 B CN 113109874B CN 202110339626 A CN202110339626 A CN 202110339626A CN 113109874 B CN113109874 B CN 113109874B
Authority
CN
China
Prior art keywords
data
layer
neural network
channel
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110339626.5A
Other languages
Chinese (zh)
Other versions
CN113109874A (en
Inventor
印兴耀
宋磊
宗兆云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202110339626.5A priority Critical patent/CN113109874B/en
Publication of CN113109874A publication Critical patent/CN113109874A/en
Application granted granted Critical
Publication of CN113109874B publication Critical patent/CN113109874B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/48Processing data
    • G01V1/50Analysing data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6169Data from specific type of measurement using well-logging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • Geophysics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本申请涉及一种使用神经网络的波阻抗反演方法和神经网络系统,该神经网络以由第i道地震数据及与其相邻的多道地震数据构成的N道地震数据、和第i道初始模型数据为输入,并确定第i道波阻抗数据为输出,其包括:并列的N个特征提取层,其中,每个特征提取层被配置为提取向其输入的一道地震数据的时序特征;合并层,被配置为自适应合并N个特征提取层输出的时序特征,得到N道地震数据的时空特征;回归层,被配置为将时空特征从特征域映射到目标域;输出层,被配置为根据回归层的输出和第i道初始模型数据确定第i道波阻抗数据。由此,波阻抗反演的精度更高,连续性更强,具有较好的抗噪性,并能够在初始模型不精确时仍保持好的反演效果。

Figure 202110339626

The present application relates to a wave impedance inversion method and a neural network system using a neural network. The neural network is based on the N-channel seismic data composed of the i-th seismic data and its adjacent multi-channel seismic data, and the i-th initial seismic data. The model data is input, and the i-th wave impedance data is determined as the output, which includes: parallel N feature extraction layers, wherein each feature extraction layer is configured to extract the time series feature of a seismic data input to it; merge The layer is configured to adaptively merge the time series features output by the N feature extraction layers to obtain the spatiotemporal features of the N-channel seismic data; the regression layer is configured to map the spatiotemporal features from the feature domain to the target domain; the output layer is configured as The i-th wave impedance data is determined according to the output of the regression layer and the i-th initial model data. As a result, the wave impedance inversion has higher accuracy, stronger continuity, better noise immunity, and can still maintain a good inversion effect when the initial model is inaccurate.

Figure 202110339626

Description

一种使用神经网络的波阻抗反演方法和神经网络系统A wave impedance inversion method using neural network and neural network system

技术领域technical field

本申请涉及油气勘探技术领域,尤其涉及一种使用神经网络的波阻抗反演方法和神经网络系统。The present application relates to the technical field of oil and gas exploration, in particular to a wave impedance inversion method using a neural network and a neural network system.

背景技术Background technique

地震波阻抗反演是在地震资料的引导下,综合利用已有的地质和测井资料从有限频带宽度的地震数据中恢复出宽频带的波阻抗数据的方法,目前已经广泛的应用于油气勘探阶段储层定性、定量预测和油气开发阶段井网部署、储量计算、油藏动态监测等方面。由于实际地球物理问题十分复杂,而我们对它的理解通常十分模糊,这使得在反演波阻抗时所建立的模型大多都是近似的。神经网络可以从大量已有的数据中学习到隐藏在其中的知识,从而建立起相应的数学模型,这使其十分适合对那些知识背景不够清楚、模型不够精确的问题进行求解。因此可以将深度学习算法应用于波阻抗反演中。Seismic wave impedance inversion is a method of recovering broadband wave impedance data from seismic data with limited frequency bandwidth by comprehensively utilizing existing geological and logging data under the guidance of seismic data. It has been widely used in oil and gas exploration. Reservoir qualitative and quantitative prediction, well pattern deployment, reserve calculation, reservoir dynamic monitoring, etc. in the oil and gas development stage. Because the actual geophysical problems are very complex, and our understanding of them is usually very vague, which makes most of the models established when inverting wave impedance are approximate. The neural network can learn the hidden knowledge from a large amount of existing data, so as to establish a corresponding mathematical model, which makes it very suitable for solving problems where the knowledge background is not clear enough and the model is not accurate enough. Therefore, deep learning algorithms can be applied to wave impedance inversion.

现有的基于深度神经网络的波阻抗反演方法有很多种,例如基于卷积神经网络的波阻抗反演方法和基于闭环卷积神经网络的波阻抗反演方法。这些网络都是直接从训练数据集中学习地震数据与反演参数之间的映射关系。当地下构造复杂时,地震数据与反演参数之间的关系十分复杂,网络一般无法准确的表达这种关系,尽管可以通过增加网络深度来提高网络的学习能力,但是由于数据量的限制,这会增加网络过拟合的风险。There are many existing wave impedance inversion methods based on deep neural networks, such as wave impedance inversion methods based on convolutional neural networks and wave impedance inversion methods based on closed-loop convolutional neural networks. These networks learn the mapping relationship between seismic data and inversion parameters directly from the training data set. When the underground structure is complex, the relationship between seismic data and inversion parameters is very complicated, and the network generally cannot express this relationship accurately. Although the learning ability of the network can be improved by increasing the depth of the network, due to the limitation of the amount of data, this It increases the risk of network overfitting.

发明内容Contents of the invention

为了解决上述技术问题或者至少部分地解决上述技术问题,本申请提供了一种使用神经网络的波阻抗反演方法和神经网络系统。In order to solve the above technical problems or at least partly solve the above technical problems, the present application provides an wave impedance inversion method using a neural network and a neural network system.

第一方面,本申请提供了一种使用神经网络的波阻抗反演方法,该方法包括:接收N道地震数据,其中,该N道地震数据包括第i道地震数据及与其相邻的多道地震数据;接收第i道初始模型数据;由神经网络的并列的N个特征提取层提取N道地震数据的时序特征;由神经网络的合并层自适应合并N个特征提取层输出的时序特征,得到N道地震数据的时空特征;由神经网络的回归层将时空特征从特征域映射到目标域;由神经网络的输出层根据回归层的输出和第i道初始模型数据确定第i道波阻抗数据。In a first aspect, the present application provides a wave impedance inversion method using a neural network, the method includes: receiving N channels of seismic data, wherein the N channels of seismic data include the i-th channel of seismic data and its adjacent multiple channels Seismic data; receiving the initial model data of the i-th channel; extracting the time series features of the N channel seismic data by parallel N feature extraction layers of the neural network; adaptively merging the time series features output by the N feature extraction layers by the merging layer of the neural network, Obtain the spatio-temporal features of the seismic data of N channels; the regression layer of the neural network maps the spatio-temporal features from the feature domain to the target domain; the output layer of the neural network determines the wave impedance of the i-th channel according to the output of the regression layer and the initial model data of the i-th channel data.

在某些实施例中,由神经网络的输出层根据回归层的输出和第i道初始模型数据确定第i道波阻抗数据之前,还包括:由神经网络的修正层对第i道初始模型数据进行自适应调整。In some embodiments, before the output layer of the neural network determines the wave impedance data of the i-th track according to the output of the regression layer and the initial model data of the i-th track, it also includes: the initial model data of the i-th track is determined by the correction layer of the neural network Make adaptive adjustments.

在某些实施例中,每个特征提取层,包括:全局特征提取层,被配置为提取输入地震道中的全局特征;局部特征提取层,被配置为提取输入地震道中的局部特征;和/或,合并层为偏置为零的线性连接层;和/或,回归层包括:一组串行的反卷积块,被配置为对合并层的输出进行上采样;门控循环单元和全连接层,被配置为将上采样的数据从特征域映射到目标域。In some embodiments, each feature extraction layer includes: a global feature extraction layer configured to extract global features in an input seismic trace; a local feature extraction layer configured to extract local features in an input seismic trace; and/or , the pooling layer is a linearly connected layer with a bias of zero; and/or, the regression layer includes: a set of serial deconvolution blocks configured to upsample the output of the pooling layer; a gated recurrent unit and a fully connected layer, configured to map the upsampled data from the feature domain to the target domain.

在某些实施例中,修正层为线性连接层和Tanh激活函数。In some embodiments, the correction layer is a linearly connected layer and a Tanh activation function.

第二方面,本申请提供了一种用于波阻抗反演的神经网络系统,该神经网络系统由一个或多个计算机实现,该神经网络系统被配置为以由第i道地震数据及与其相邻的多道地震数据构成的N道地震数据、和第i道初始模型数据为输入,并确定第i道波阻抗数据为输出,该神经网络系统,包括:并列的N个特征提取层,其中,每个特征提取层被配置为提取向其输入的一道地震数据的时序特征;合并层,该合并层被配置为自适应合并N个特征提取层输出的时序特征,得到N道地震数据的时空特征;回归层,该回归层被配置为将时空特征从特征域映射到目标域;输出层,该输出层被配置为根据回归层的输出和第i道初始模型数据确定第i道波阻抗数据。In a second aspect, the present application provides a neural network system for wave impedance inversion, the neural network system is implemented by one or more computers, and the neural network system is configured to use the i-th seismic data and its adjacent N channels of seismic data composed of multiple channels of seismic data and the i-th channel initial model data are input, and the i-th channel wave impedance data is determined as output. The neural network system includes: parallel N feature extraction layers, wherein, Each feature extraction layer is configured to extract the time-series features of a piece of seismic data input to it; the merging layer is configured to adaptively merge the time-series features output by N feature extraction layers to obtain the spatio-temporal features of N channels of seismic data a regression layer, the regression layer is configured to map the spatiotemporal features from the feature domain to the target domain; an output layer, the output layer is configured to determine the i-th channel wave impedance data according to the output of the regression layer and the i-th channel initial model data.

在某些实施例中,上述神经网络系统还包括:位于输出层之前的修正层,该修正层被配置为对第i道初始模型数据进行自适应调整。In some embodiments, the above-mentioned neural network system further includes: a correction layer located before the output layer, and the correction layer is configured to perform adaptive adjustment on the i-th channel initial model data.

在某些实施例中,每个特征提取层,包括:全局特征提取层,该全局特征提取层被配置为提取输入地震道中的全局特征;局部特征提取层,该局部特征提取层被配置为提取输入地震道中的局部特征;和/或,合并层为偏置为零的线性连接层;和/或,回归层包括:一组串行的反卷积块,被配置为对合并层的输出进行上采样;门控循环单元和全连接层,被配置为将上采样的数据从特征域映射到目标域。In some embodiments, each feature extraction layer includes: a global feature extraction layer configured to extract global features in input seismic traces; a local feature extraction layer configured to extract Local features in the input seismic traces; and/or, the merging layer is a linearly connected layer with a bias of zero; and/or, the regression layer includes: a set of serial deconvolution blocks configured to perform Upsampling; gated recurrent units and fully connected layers configured to map the upsampled data from the feature domain to the target domain.

在某些实施例中,修正层为线性连接层和Tanh激活函数。In some embodiments, the correction layer is a linearly connected layer and a Tanh activation function.

第三方面,本申请提供了一种训练用于波阻抗反演的神经网络的方法,包括:接收第一输入数据和第二输入数据,其中,第一输入数据包括:由第i道地震数据及与其相邻的多道地震数据构成的N道地震数据、和第i道初始模型数据;第二输入数据包括:井位处的地震数据和井位处的波阻抗数据;由反演神经网络根据第一输入数据确定第i道波阻抗数据,由正演神经网络根据反演神经网络输出的第i道波阻抗数据确定合成的第一地震数据,以及由正演神经网络根据输入的井位处第i道波阻抗数据确定合成的第二地震数据;确定输入的第i道地震数据与合成的第一地震数据之间的第一均方误差,确定井位处第i道由反演神经网络输出的波阻抗数据与输入的波阻抗数据之间的第二均方误差,以及确定井位处第i道合成的第二地震数据与输入的地震数据之间的第三均方误差;使用第一均方误差更新反演神经网络和正演神经网络的参数,使用第二均方误差更新反演神经网络的参数,以及使用第三均方误差更新正演神经网络的参数。In a third aspect, the present application provides a method for training a neural network for wave impedance inversion, including: receiving first input data and second input data, wherein the first input data includes: the ith channel seismic data and N channels of seismic data composed of adjacent multiple channels of seismic data, and the i-th channel initial model data; the second input data includes: seismic data at the well location and wave impedance data at the well location; the inversion neural network is based on The first input data determines the i-th channel wave impedance data, the first synthetic seismic data is determined by the forward modeling neural network based on the i-th channel wave impedance data output by the inversion neural network, and the synthetic first seismic data is determined by the forward modeling neural network according to the input well position The i-th channel wave impedance data determines the synthesized second seismic data; determines the first mean square error between the input i-th channel seismic data and the synthesized first seismic data, and determines the i-th channel at the well location by the inversion neural network The second mean square error between the output wave impedance data and the input wave impedance data, and the third mean square error between the second seismic data synthesized in the i-th track at the well location and the input seismic data; using the first The first mean square error is used to update the parameters of the inversion neural network and the forward modeling neural network, the second mean square error is used to update the parameters of the inversion neural network, and the third mean square error is used to update the parameters of the forward modeling neural network.

在某些实施例中,上述反演神经网络,包括:并列的N个特征提取层,其中,每个特征提取层被配置为提取向其输入的一道地震数据的时序特征;合并层,该合并层被配置为自适应合并N个特征提取层输出的时序特征,得到N道地震数据的时空特征;回归层,该回归层被配置为将时空特征从特征域映射到目标域;输出层,该输出层被配置为根据回归层的输出和第i道初始模型数据确定第i道波阻抗数据;和/或,上述正演神经网络,包括:一组串行的一维卷积层和激活函数。In some embodiments, the above-mentioned inversion neural network includes: N feature extraction layers juxtaposed, wherein each feature extraction layer is configured to extract the time series features of a piece of seismic data input to it; the merging layer, the merging The layer is configured to adaptively merge the time series features output by N feature extraction layers to obtain the temporal and spatial characteristics of N channels of seismic data; the regression layer is configured to map the temporal and spatial characteristics from the feature domain to the target domain; the output layer, the The output layer is configured to determine the i-th wave impedance data according to the output of the regression layer and the i-th initial model data; and/or, the above-mentioned forward neural network includes: a set of serial one-dimensional convolutional layers and activation functions .

本申请实施例提供的上述技术方案与现有技术相比具有如下优点:本申请实施例提供的该方法,波阻抗反演的精度更高,连续性更强,具有较好的抗噪性,并且能够在初始模型不精确的情况下仍保持较好的反演效果。Compared with the prior art, the above-mentioned technical solution provided by the embodiment of the present application has the following advantages: the method provided by the embodiment of the present application has higher accuracy of wave impedance inversion, stronger continuity, and better noise resistance. And it can still maintain a good inversion effect even when the initial model is not accurate.

附图说明Description of drawings

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and together with the description serve to explain the principles of the invention.

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, for those of ordinary skill in the art, In other words, other drawings can also be obtained from these drawings without paying creative labor.

图1为本申请实施例提供的波阻抗反演系统一种实施方式的结构框图;Fig. 1 is the structural block diagram of an embodiment of the wave impedance inversion system provided by the embodiment of the present application;

图2为本申请实施例提供的使用神经网络的波阻抗反演方法一种实施方式的流程图;Fig. 2 is a flow chart of an embodiment of an wave impedance inversion method using a neural network provided in an embodiment of the present application;

图3为本申请实施例提供的训练神经网络的系统一种实施方式的示意图;FIG. 3 is a schematic diagram of an embodiment of a system for training a neural network provided in an embodiment of the present application;

图4为本申请实施例提供的训练用于波阻抗反演的神经网络的方法一种实施方式的流程图;FIG. 4 is a flow chart of an embodiment of a method for training a neural network for wave impedance inversion provided in an embodiment of the present application;

图5为应用本申请实施例所提出的反演方法在Marmousi2模型上的波阻抗反演结果与真实波阻抗的对比图;Fig. 5 is the comparison diagram of the wave impedance inversion result and the real wave impedance on the Marmousi2 model by applying the inversion method proposed in the embodiment of the present application;

图6为一实际资料的波阻抗反演结果图;以及Fig. 6 is a wave impedance inversion result graph of actual data; and

图7为本申请实施例提供的计算机设备一种实施方式的硬件示意图。FIG. 7 is a schematic hardware diagram of an implementation manner of a computer device provided in an embodiment of the present application.

具体实施方式Detailed ways

应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身没有特定的意义。因此,“模块”、“部件”或“单元”可以混合地使用。In the following description, use of suffixes such as 'module', 'part' or 'unit' for denoting elements is only for facilitating description of the present invention and has no specific meaning by itself. Therefore, 'module', 'part' or 'unit' may be used in combination.

使用神经网络进行波阻抗反演Wave Impedance Inversion Using Neural Networks

本申请实施例提供了一种用于波阻抗反演的神经网络。由于在建立初始模型时一般都综合的利用了测井信息与地质构造信息,在一定程度上,初始模型可以反映地下的真实构造。且地下构造存在一定的相关性,这种相关性与距离有关,距离越近,相关性越强,反之,相关性越弱。由于地震剖面的深度通常表示为时间深度,所以在地震剖面上地下构造的空间相关性表现为地震道在纵向上的时间相关性和横向上中心道与相邻道之间的空间相关性。因此,在本申请实施例中用式(1)来表示地下真实波阻抗与初始模型和地震数据之间的关系:The embodiment of the present application provides a neural network for wave impedance inversion. Since the logging information and geological structure information are generally used comprehensively when establishing the initial model, the initial model can reflect the real structure of the underground to a certain extent. And there is a certain correlation in the underground structure, which is related to the distance, the closer the distance, the stronger the correlation, and vice versa, the weaker the correlation. Since the depth of the seismic section is usually expressed as time depth, the spatial correlation of the subterranean structure on the seismic section is the time correlation of the seismic traces in the vertical direction and the spatial correlation between the central trace and adjacent traces in the horizontal direction. Therefore, in the embodiment of the present application, formula (1) is used to represent the relationship between the underground real wave impedance and the initial model and seismic data:

Figure BDA0002999060770000051
Figure BDA0002999060770000051

式(1)中,mi,t为第i道上t时刻处的真实波阻抗值;

Figure BDA0002999060770000052
为初始模型中第i道上t时刻处的波阻抗值;{xi-k,t,…,xi-1,t,xi,t,…,xi+k,t}为第i道与相邻的2k道地震数据在t时刻的振幅序列,应当理解,在某些实施例中不限于与第i道相邻的2k道地震数据,任意多道也是可行的;g(·)为初始模型修正函数,它用于修正初始模型以减少初始模型与地下真实的波阻抗之间的差异,应当理解,在某些实施例中可不修正初始模型,本申请实施例对此不做限定;f(·)为残差函数,它用于表示真实波阻抗值与初始模型中的波阻抗值之间的误差值。In formula (1), m i,t is the real wave impedance value at time t on the i-th track;
Figure BDA0002999060770000052
is the wave impedance value at time t on the i-th track in the initial model; {xi ik,t ,…, xi-1,t , xi,t ,…, xi+k,t } is the The amplitude sequence of the adjacent 2k channels of seismic data at time t, it should be understood that in some embodiments, it is not limited to the 2k channels of seismic data adjacent to the i-th channel, and any number of channels is also feasible; g(·) is the initial model A correction function, which is used to correct the initial model to reduce the difference between the initial model and the real underground wave impedance. It should be understood that in some embodiments, the initial model may not be corrected, which is not limited in the embodiment of the present application; f( ) is the residual function, which is used to represent the error value between the real wave impedance value and the wave impedance value in the initial model.

基于式(1)中真实波阻抗与初始模型以及地震数据之间的关系,本申请构建了神经网络模型来学习这种映射关系。Based on the relationship between the real wave impedance and the initial model and seismic data in formula (1), the present application constructs a neural network model to learn this mapping relationship.

图1为本申请实施例提供的波阻抗反演系统一种实施方式的结构框图,如图1所示,波阻抗反演系统包括:神经网络输入110、反演神经网络系统120和神经网络输出130。Figure 1 is a structural block diagram of an embodiment of the wave impedance inversion system provided by the embodiment of the present application. As shown in Figure 1, the wave impedance inversion system includes: neural network input 110, inversion neural network system 120 and neural network output 130.

神经网络输入110包括:N道地震数据,该N道地震数据包括第i道地震数据及与其相邻的多道地震数据;以及第i道初始模型数据。如图1所示,N道地震数据为第i道地震数据,及与其相邻的2k道地震数据,其中,两侧各k道地震数据。应当理解,本申请实施例对此不做限定,与第i道地震数据相邻的多道地震数据都是可行的。神经网络输出130为第i道波阻抗数据,为第i道波阻抗的预测值。The neural network input 110 includes: N channels of seismic data, the N channels of seismic data including the i-th channel of seismic data and multiple channels of adjacent seismic data; and the i-th channel of initial model data. As shown in Fig. 1, the N channels of seismic data are the i-th channel of seismic data and 2k channels of seismic data adjacent to it, wherein there are k channels of seismic data on both sides. It should be understood that this embodiment of the present application does not limit this, and multiple channels of seismic data adjacent to the i-th channel of seismic data are all feasible. The neural network output 130 is the i-th channel wave impedance data, which is the predicted value of the i-th channel wave impedance.

反演神经网络系统120,如图1所示,反演神经网络系统120包括:并列的N个特征提取层121、合并层122、回归层123、修正层124和输出层125。The inversion neural network system 120 , as shown in FIG. 1 , the inversion neural network system 120 includes: N feature extraction layers 121 , merging layer 122 , regression layer 123 , correction layer 124 and output layer 125 arranged in parallel.

每个特征提取层121,被配置为提取向其输入的一道地震数据的时序特征。每个特征提取层121处理一道地震数据,并列的N个特征提取层121并行地处理N道地震数据,如图1所示,为2k+1道地震数据,神经网络系统120包括2k+1个特征提取层。该时序特征表示地震道在时间上的相关性。Each feature extraction layer 121 is configured to extract time series features of a piece of seismic data input thereto. Each feature extraction layer 121 processes one seismic data, and N feature extraction layers 121 parallel to process N seismic data in parallel, as shown in Figure 1, is 2k+1 seismic data, and the neural network system 120 includes 2k+1 feature extraction layer. The timing feature represents the correlation of seismic traces in time.

在某些实施例中,如图1所示,每个特征提取层121包括全局特征提取层1211和局部特征提取层1212,其中,全局特征提取层1211被配置为提取输入地震道的全局特征,局部特征提取层1212被配置为提取输入地震道中的局部特征。作为一个示例,全局特征提取层1211有一组串行的双向门控循环单元(GRU)组成;局部特征提取层1212包括:一组膨胀系数不同并行的卷积块,被配置为提取地震道中不同尺度的局部特征;全连接层和卷积块,被配置为组合提取出的局部特征。应当理解,本申请实施例中,能够提取地震道在时间上相关性的其他结构也是可以被构想的,本申请实施例对此不做限定。In some embodiments, as shown in FIG. 1 , each feature extraction layer 121 includes a global feature extraction layer 1211 and a local feature extraction layer 1212, wherein the global feature extraction layer 1211 is configured to extract global features of the input seismic trace, The local feature extraction layer 1212 is configured to extract local features in the input seismic traces. As an example, the global feature extraction layer 1211 is composed of a set of serial bidirectional gated recurrent units (GRU); the local feature extraction layer 1212 includes: a set of parallel convolution blocks with different expansion coefficients, configured to extract different scales in the seismic trace The local features of ; fully connected layers and convolutional blocks are configured to combine the extracted local features. It should be understood that in the embodiment of the present application, other structures capable of extracting temporal correlation of seismic traces may also be conceived, which is not limited in the embodiment of the present application.

参考图1所示,每个特征提取层121输出其输入地震道对应的时序特征,N个特征提取层121输出N个地震道对应的N个时序特征。合并层122,被配置为自适应合并N个特征提取层121输出的时序特征,得到N道地震数据的时空特征。时空特征不仅表示地震道在时间上的相关性,还表示地震道与相邻地震道之间的空间相关性。在某些实施例中,合并层122为偏置为零的线性连接层,但本申请实施例对此不做限定。Referring to FIG. 1 , each feature extraction layer 121 outputs time-series features corresponding to its input seismic traces, and N feature extraction layers 121 output N time-series features corresponding to N seismic traces. The merging layer 122 is configured to adaptively merge the time series features output by the N feature extraction layers 121 to obtain the spatiotemporal features of N channels of seismic data. Spatio-temporal features not only represent the correlation of seismic traces in time, but also represent the spatial correlation between seismic traces and adjacent seismic traces. In some embodiments, the merging layer 122 is a linearly connected layer with a bias of zero, but this is not limited in this embodiment of the present application.

神经网络输入110经N个特征提取层121提出时序特征后,经合并层122输出时空特征,时空特征作为回归层123的输入。回归层123,被配置为将时空特征从特征域映射到目标域。在某些实施例中,回归层123包括:一组串行的反卷积块,被配置为对合并层122的输出进行上采样使其具有预设采样率;一个GRU和一个全连接层,被配置为将上采样后的数据从特征域映射到目标域。After the neural network input 110 extracts temporal features through N feature extraction layers 121 , it outputs spatiotemporal features via merging layer 122 , and the spatiotemporal features are used as the input of regression layer 123 . The regression layer 123 is configured to map spatio-temporal features from the feature domain to the target domain. In some embodiments, the regression layer 123 includes: a set of serial deconvolution blocks configured to upsample the output of the merging layer 122 to have a preset sampling rate; a GRU and a fully connected layer, It is configured to map the upsampled data from the feature domain to the target domain.

并列的N个特征提取层121、合并层122和回归层123完成网络的时空序列残差建模,实现式(1)中的残差函数f(·)。回归层123的输出以及第i道初始模型数据共同输入到输出层125。输出层125,被配置为根据回归层123的输出和第i道初始模型数据确定第i道波阻抗数据。在某些实施例中,输出层125将i道初始模型数据与回归层123的输出相加得到第i道波阻抗数据,但本申请实施例并不限于此。The parallel N feature extraction layers 121 , merging layer 122 and regression layer 123 complete the residual modeling of the time-space sequence of the network and realize the residual function f(·) in formula (1). The output of the regression layer 123 and the i-th initial model data are jointly input to the output layer 125 . The output layer 125 is configured to determine the i-th channel wave impedance data according to the output of the regression layer 123 and the i-th channel initial model data. In some embodiments, the output layer 125 adds the i-th channel of initial model data to the output of the regression layer 123 to obtain the i-th channel of wave impedance data, but the embodiment of the present application is not limited thereto.

在某些实施例中,如图1所示,第i道初始模型数据输入输出层之前,还通过位于输出层125之前的修正层124进行修正。修正层124被配置为对第i道初始模型数据进行自适应调整,实现式(1)中的修正函数g(·)。在某些实施例中,修正层124包括线性连接层和Tanh激活函数。In some embodiments, as shown in FIG. 1 , before the i-th channel initial model data is input to the output layer, it is also corrected by the correction layer 124 located before the output layer 125 . The correction layer 124 is configured to perform adaptive adjustment on the i-th channel initial model data to realize the correction function g(·) in formula (1). In some embodiments, the revision layer 124 includes a linear connection layer and a Tanh activation function.

作为一个优选示例,全局特征提取层1211由一组串行的双向GRU组成,用以提取输入地震道中的全局特征。局部特征提取层1212首先利用一组膨胀系数不同并行的卷积块来提取输入地震道中不同尺度的局部特征,然后再使用全连接层和卷积块来组合这些局部特征。全局特征提取层1211和局部特征提取层1212构成网络的时序特征提取模块,该模块能够提取输入地震道的时序特征。应用2k+1个时序特征提取模块来提取第i道地震数据及其相邻的2k道地震数据的时序特征,然后再使用合并层122对提取的特征进行自适应合并,从而获取地震数据的时空特征,其中合并层122由一个偏置为零的线性连接层构成。回归层123首先使用一组串行的反卷积块对合并层的输出进行上采样使其具有预设采样率(例如,与训练时的标签数据相同的采样率),然后再使用一个GRU和一个全连接层将上采样后的数据从特征域映射到目标域。回归层123与时空特征提取模块构成了网络的时空序列残差建模模块。修正层124采用线性连接层和Tanh激活函数对第i道初始模型数据进行自适应调整。最后将时空序列残差建模模块的输出与修正层124的输出相加得到所预测的波阻抗数据。As a preferred example, the global feature extraction layer 1211 is composed of a set of serial bidirectional GRUs to extract global features in the input seismic trace. The local feature extraction layer 1212 first uses a set of parallel convolutional blocks with different expansion coefficients to extract local features of different scales in the input seismic trace, and then uses the fully connected layer and convolutional blocks to combine these local features. The global feature extraction layer 1211 and the local feature extraction layer 1212 constitute the time series feature extraction module of the network, which can extract the time series features of the input seismic trace. Apply 2k+1 time-series feature extraction modules to extract the time-series features of the i-th channel seismic data and its adjacent 2k channels of seismic data, and then use the merging layer 122 to adaptively merge the extracted features, thereby obtaining the temporal-spatial features of the seismic data feature, where the pooling layer 122 consists of a linearly connected layer with a bias of zero. The regression layer 123 first uses a set of serial deconvolution blocks to upsample the output of the merging layer so that it has a preset sampling rate (for example, the same sampling rate as the label data during training), and then uses a GRU and A fully connected layer maps the upsampled data from the feature domain to the target domain. The regression layer 123 and the spatiotemporal feature extraction module constitute the spatiotemporal sequence residual modeling module of the network. The correction layer 124 uses the linear connection layer and the Tanh activation function to adaptively adjust the initial model data of the i-th channel. Finally, the output of the time-space sequence residual modeling module is added to the output of the correction layer 124 to obtain the predicted wave impedance data.

本申请实施例提供了使用神经网络的波阻抗反演方法,如图2所示,该波阻抗反演方法包括步骤S202至步骤S212。An embodiment of the present application provides a wave impedance inversion method using a neural network. As shown in FIG. 2 , the wave impedance inversion method includes steps S202 to S212.

步骤S202,接收N道地震数据,其中,该N道地震数据包括第i道地震数据及与其相邻的多道地震数据;Step S202, receiving N channels of seismic data, wherein the N channels of seismic data include the i-th channel of seismic data and its adjacent multiple channels of seismic data;

步骤S204,接收第i道初始模型数据。Step S204, receiving the i-th track initial model data.

步骤S206,由神经网络的并列的N个特征提取层提取N道地震数据的时序特征。In step S206, the time-series features of the N channels of seismic data are extracted by the parallel N feature extraction layers of the neural network.

步骤S208,由神经网络的合并层自适应合并N个特征提取层输出的时序特征,得到N道地震数据的时空特征。In step S208, the merging layer of the neural network adaptively merges the time series features output by the N feature extraction layers to obtain the temporal and spatial features of the N channels of seismic data.

步骤S210,由神经网络的回归层将时空特征从特征域映射到目标域。In step S210, the regression layer of the neural network maps the spatio-temporal features from the feature domain to the target domain.

步骤S212,由神经网络的输出层根据回归层的输出和第i道初始模型数据确定第i道波阻抗数据。In step S212, the output layer of the neural network determines the i-th wave impedance data according to the output of the regression layer and the i-th initial model data.

应当理解,虽然图2中标记了步骤的序号,但这并不是对步骤执行顺序的限定。例如,步骤S204可在步骤S212之前的任意步骤执行。It should be understood that although the sequence numbers of the steps are marked in FIG. 2 , this is not a limitation on the execution sequence of the steps. For example, step S204 may be performed at any step before step S212.

在某些实施例中,上述步骤S212之前还包括:由神经网络的修正层对第i道初始模型数据进行自适应调整。在某些实施例中,修正层为线性连接层和Tanh激活函数。In some embodiments, before the above step S212, it also includes: adaptively adjusting the initial model data of the i-th track by the correction layer of the neural network. In some embodiments, the correction layer is a linearly connected layer and a Tanh activation function.

在某些实施例中,上述步骤S206包括:由特征提取层的全局特征提取层提取输入地震道中的全局特征,由特征提取层的局部特征提取层提取输入地震道中的局部特征。In some embodiments, the above step S206 includes: extracting global features in the input seismic trace by the global feature extraction layer of the feature extraction layer, and extracting local features in the input seismic trace by the local feature extraction layer of the feature extraction layer.

在某些实施例中,在上述步骤S208中使用的合并层为偏置为零的线性连接层。In some embodiments, the merging layer used in the above step S208 is a linearly connected layer with a bias of zero.

在某些实施例中,上述步骤S210中,先由回归层的一组串行的反卷积块对合并层的输出进行上采样,再由回归层的门控循环单元和全连接层将上采样的数据从特征域映射到目标域。In some embodiments, in the above step S210, the output of the combining layer is first up-sampled by a set of serial deconvolution blocks of the regression layer, and then the up-sampling is performed by the gated recurrent unit and the fully connected layer of the regression layer. The sampled data is mapped from the feature domain to the target domain.

在某些实施例中,步骤S212中,由神经网络的输出层将回归层的输出和第i道初始模型数据相加,得到第i道波阻抗数据。In some embodiments, in step S212, the output layer of the neural network adds the output of the regression layer and the i-th channel of initial model data to obtain the i-th channel of wave impedance data.

在本申请实施例中,神经网络可参见图1所示的网络结构,在此不做赘述。In the embodiment of the present application, the neural network may refer to the network structure shown in FIG. 1 , which will not be described in detail here.

作为一个优选示例,由一组串行的双向GRU提取输入地震道中的全局特征,利用一组膨胀系数不同并行的卷积块来提取输入地震道中不同尺度的局部特征,然后再使用全连接层和卷积块来组合这些局部特征,由此提取得到输入地震道的时序特征。提取第i道地震数据及其相邻的2k道地震数据的时序特征,然后再使用合并层对提取的特征进行自适应合并,从而获取地震数据的时空特征,其中合并层由一个偏置为零的线性连接层构成。使用一组串行的反卷积块对合并层的输出进行上采样使其具有预设采样率(例如,与训练时的标签数据相同的采样率),然后再使用一个GRU和一个全连接层将上采样后的数据从特征域映射到目标域。采用线性连接层和Tanh激活函数对第i道初始模型数据进行自适应调整。最后将回归层的输出与修正层的输出相加得到所预测的波阻抗数据。As a preferred example, a set of serial bidirectional GRUs extract the global features of the input seismic traces, use a set of parallel convolution blocks with different expansion coefficients to extract local features of different scales in the input seismic traces, and then use the fully connected layer and Convolution blocks are used to combine these local features, thereby extracting the time series features of the input seismic traces. Extract the time-series features of the i-th seismic data and its adjacent 2k seismic data, and then use the merge layer to adaptively merge the extracted features to obtain the spatial-temporal features of the seismic data, where the merge layer is offset by one to zero of linearly connected layers. Use a set of serial deconvolution blocks to upsample the output of the pooling layer to a preset sampling rate (e.g., the same sampling rate as the label data during training), and then use a GRU and a fully connected layer Map the upsampled data from feature domain to target domain. The initial model data of the i-th channel is adaptively adjusted by using a linear connection layer and a Tanh activation function. Finally, the output of the regression layer is added to the output of the correction layer to obtain the predicted wave impedance data.

神经网络的训练Neural Network Training

考虑到实际勘探中标签数据匮乏的问题,本申请实施例中采取半监督学习的方式对神经网络进行训练。图3为本申请实施例提供的训练神经网络的系统一种实施方式的示意图,如图3所示,该系统包括:第一输入310、第二输入320、反演神经网络330和正演神经网络340。Considering the lack of labeled data in actual exploration, the neural network is trained by semi-supervised learning in the embodiment of the present application. Fig. 3 is a schematic diagram of an embodiment of a system for training a neural network provided in an embodiment of the present application. As shown in Fig. 3, the system includes: a first input 310, a second input 320, an inversion neural network 330 and a forward neural network 340.

如图3所示,第一输入310用于输入第一输入数据,其中,第一输入数据包括由第i道地震数据及与其相邻的多道地震数据构成的N道地震数据、和第i道初始模型数据,图3中示出为第i道地震数据及以其为中心的两侧各k道地震数据,共计2k+1道地震数据。As shown in FIG. 3 , the first input 310 is used to input the first input data, wherein the first input data includes N channels of seismic data composed of the i-th channel of seismic data and multiple channels of seismic data adjacent to it, and the i-th channel of seismic data Figure 3 shows the seismic data of the i-th channel and the k channels of seismic data on both sides of the i-th channel, a total of 2k+1 seismic data.

如图3所示,第二输入320用于输入第二输入数据,其中,第二输入数据包括井位处的波阻抗数据321和井位处的地震数据322。井位处的波阻抗数据321为实际的波阻抗值(也称为输入的波阻抗数据),井位处的地震数据322为实际的地震数据(也称为输入的地震数据)。As shown in FIG. 3 , the second input 320 is used to input second input data, wherein the second input data includes acoustic impedance data 321 at the well location and seismic data 322 at the well location. The acoustic impedance data 321 at the well location is the actual acoustic impedance value (also called the input acoustic impedance data), and the seismic data 322 at the well location is the actual seismic data (also called the input seismic data).

如图3所示,反演神经网络330,被配置为根据第一输入数据确定第i道地震数据对应的第i道波阻抗数据331。正演神经网络340被配置为根据反演神经网络330的输出(第i道波阻抗数据331)确定合成的第i道地震数据341a,以及根据输入的第i道波阻抗数据321确定合成的第i道地震数据341b。As shown in FIG. 3 , the inversion neural network 330 is configured to determine the i-th channel of wave impedance data 331 corresponding to the i-th channel of seismic data according to the first input data. The forward modeling neural network 340 is configured to determine the synthesized i-th channel seismic data 341a according to the output of the inversion neural network 330 (i-th channel wave impedance data 331), and determine the synthesized i-th channel seismic data 341a according to the input i-th channel wave impedance data 321 i channel seismic data 341b.

如图3所示,该系统还包括:第一误差确定模块350,被配置为确定输入的第i道地震数据与合成的第i道地震数据341a之间的第一均方误差(lseismic);第二误差确定模块360,被配置为确定第i道在井位处的波阻抗数据331与波阻抗数据321之间的第二均方误差(lwell);第三误差确定模块370,被配置为确定第i道在井位处的地震数据341b与地震数据322之间的第三均方误差(l'well)。As shown in FIG. 3 , the system further includes: a first error determination module 350 configured to determine a first mean square error (l seismic ) between the input i-th channel seismic data and the synthesized i-th channel seismic data 341a The second error determination module 360 is configured to determine the second mean square error (l well ) between the wave impedance data 331 and the wave impedance data 321 of the i track at the well position; the third error determination module 370 is It is configured to determine a third mean square error (l' well ) between the seismic data 341b and the seismic data 322 at the well location for the ith track.

如图3所示,使用第一均方误差和第二均方误差更新反演神经网络330内部参数,以及使用第一均方误差和第三均方误差更新正演神经网络340内部参数。As shown in FIG. 3 , the internal parameters of the inversion neural network 330 are updated using the first mean square error and the second mean square error, and the internal parameters of the forward modeling neural network 340 are updated using the first mean square error and the third mean square error.

在本申请实施例中,反演神经网络330可参见图1所示的网络结构,在此不做赘述。正演神经网络340由一组串行的一维卷积层和激活函数来模拟褶积模型正演过程。In the embodiment of the present application, the inversion neural network 330 may refer to the network structure shown in FIG. 1 , which will not be described in detail here. The forward neural network 340 uses a set of serial one-dimensional convolution layers and activation functions to simulate the forward process of the convolution model.

本申请实施例提供了一种训练用于波阻抗反演的神经网络的方法,如图4所示,该方法包括步骤S402至步骤S416。An embodiment of the present application provides a method for training a neural network for wave impedance inversion. As shown in FIG. 4 , the method includes steps S402 to S416.

步骤S402,接收第一输入数据和第二输入数据。Step S402, receiving first input data and second input data.

其中,第一输入数据包括,由第i道地震数据及与其相邻的多道地震数据构成的N道地震数据、和第i道初始模型数据;第二输入数据包括:井位处的地震数据和井位处的波阻抗数据。Wherein, the first input data includes N-channel seismic data formed by the i-th channel seismic data and its adjacent multi-channel seismic data, and the i-th channel initial model data; the second input data includes: seismic data at the well position and wave impedance data at the well location.

步骤S404,由反演神经网络根据第一输入数据确定第i道波阻抗数据。In step S404, the i-th channel wave impedance data is determined by the inversion neural network according to the first input data.

步骤S406,由正演神经网络根据反演神经网络输出的第i道波阻抗数据确定合成的第一地震数据。In step S406, the synthetic first seismic data is determined by the forward neural network based on the i-th channel wave impedance data output by the inverse neural network.

步骤S408,由正演神经网络根据输入的井位处第i道波阻抗数据确定合成的第二地震数据。In step S408, the synthetic second seismic data is determined by the forward modeling neural network according to the input i-th channel wave impedance data at the well location.

步骤S410,确定输入的第i道地震数据与合成的第一地震数据之间的第一均方误差。Step S410, determining a first mean square error between the input i-th track of seismic data and the synthesized first seismic data.

步骤S412,确定井位处第i道由反演神经网络输出的波阻抗数据与输入的波阻抗数据之间的第二均方误差。Step S412, determining the second mean square error between the wave impedance data output by the inversion neural network and the input wave impedance data at the i-th channel at the well location.

步骤S414,确定井位处第i道合成的第二地震数据与输入的地震数据之间的第三均方误差。Step S414, determining the third mean square error between the i-th channel synthesized second seismic data and the input seismic data at the well location.

步骤S416,更新反演神经网络和正演神经网络的参数。Step S416, updating the parameters of the inversion neural network and the forward neural network.

其中,使用第一均方误差更新反演神经网络和正演神经网络的参数,使用第二均方误差更新反演神经网络的参数,以及使用第三均方误差更新正演神经网络的参数。Wherein, the first mean square error is used to update the parameters of the inversion neural network and the forward modeling neural network, the second mean square error is used to update the parameters of the inversion neural network, and the third mean square error is used to update the parameters of the forward modeling neural network.

在某些实施例中,上述反演神经网络,包括:并列的N个特征提取层,其中,每个特征提取层被配置为提取向其输入的一道地震数据的时序特征;合并层,该合并层被配置为自适应合并N个特征提取层输出的时序特征,得到N道地震数据的时空特征;回归层,该回归层被配置为将时空特征从特征域映射到目标域;输出层,该输出层被配置为根据回归层的输出和第i道初始模型数据确定第i道波阻抗数据。In some embodiments, the above-mentioned inversion neural network includes: N feature extraction layers juxtaposed, wherein each feature extraction layer is configured to extract the time series features of a piece of seismic data input to it; the merging layer, the merging The layer is configured to adaptively merge the time series features output by N feature extraction layers to obtain the temporal and spatial characteristics of N channels of seismic data; the regression layer is configured to map the temporal and spatial characteristics from the feature domain to the target domain; the output layer, the The output layer is configured to determine the i-th channel wave impedance data according to the output of the regression layer and the i-th channel initial model data.

在某些实施例中,反演神经网络还包括修正层,被配置为对第i道初始模型数据进行自适应调整。输出层,被配置为根据回归层的输出和修正后的第i道初始模型数据(修正层的输出)确定第i道波阻抗数据。In some embodiments, the inversion neural network further includes a correction layer configured to perform adaptive adjustment on the i-th channel initial model data. The output layer is configured to determine the i-th channel wave impedance data according to the output of the regression layer and the corrected i-th channel initial model data (the output of the correction layer).

在本申请实施例中,反演神经网络可参见图1所示的网络结构,在此不做赘述。In the embodiment of the present application, the inversion neural network may refer to the network structure shown in FIG. 1 , which will not be described in detail here.

在某些实施例中,上述正演神经网络包括一组串行的一维卷积层和激活函数,来模拟褶积模型正演过程。In some embodiments, the above-mentioned forward neural network includes a set of serial one-dimensional convolution layers and activation functions to simulate the forward process of the convolution model.

作为一个优选示例,反演神经网络的全局特征提取层由一组串行的双向GRU(门控循环单元)组成,用以提取输入地震道中的全局特征。反演神经网络的局部特征提取层首先利用一组膨胀系数不同并行的卷积块来提取输入地震道中不同尺度的局部特征,然后再使用全连接层和卷积块来组合这些局部特征。二者构成了反演神经网络的时序特征提取模块,该模块能够提取输入地震道的时序特征。应用2k+1个时序特征提取模块来提取第i道地震数据及其相邻的2k道地震数据的时序特征,然后再使用反演神经网络的合并层对提取的特征进行自适应合并,从而获取地震数据的时空特征,其中合并层由一个偏置为零的线性连接层构成。反演神经网络的回归层首先使用一组串行的反卷积块对合并层的输出进行上采样使其具有与标签数据相同的采样率,然后再使用一个GRU和一个全连接层将上采样后的数据从特征域映射到目标域。它与时空特征提取模块构成了反演神经网络的时空序列残差建模模块。反演神经网络的修正层采用线性连接层和Tanh激活函数对第i道初始模型数据进行自适应调整。最后将时空序列残差建模模块的输出与修正层的输出相加即为网络所预测的波阻抗数据。正演神经网络由一组串行的一维卷积层和激活函数来模拟褶积模型正演过程。训练时,反演神经网络和正演神经网络内部参数的更新受以下两个过程的综合影响:As a preferred example, the global feature extraction layer of the inversion neural network is composed of a group of serial bidirectional GRUs (Gated Recurrent Units) for extracting global features in the input seismic trace. The local feature extraction layer of the inversion neural network first uses a set of parallel convolutional blocks with different expansion coefficients to extract local features of different scales in the input seismic trace, and then uses the fully connected layer and convolutional blocks to combine these local features. The two constitute the time series feature extraction module of the inversion neural network, which can extract the time series features of the input seismic trace. Apply 2k+1 time-series feature extraction modules to extract the time-series features of the i-th channel seismic data and its adjacent 2k channel seismic data, and then use the merging layer of the inversion neural network to adaptively merge the extracted features to obtain Spatiotemporal characterization of seismic data, where the pooled layer consists of a linearly connected layer with a bias of zero. The regression layer of the inversion neural network first uses a set of serial deconvolution blocks to upsample the output of the pooling layer to have the same sampling rate as the label data, and then uses a GRU and a fully connected layer to upsample The final data is mapped from the feature domain to the target domain. It and the spatiotemporal feature extraction module constitute the spatiotemporal sequence residual modeling module of the inversion neural network. The correction layer of the inversion neural network adopts the linear connection layer and the Tanh activation function to adaptively adjust the i-th initial model data. Finally, adding the output of the time-space sequence residual modeling module and the output of the correction layer is the wave impedance data predicted by the network. The forward neural network consists of a set of serial one-dimensional convolutional layers and activation functions to simulate the forward process of the convolution model. During training, the update of the internal parameters of the inversion neural network and the forward neural network is affected by the combined effects of the following two processes:

1)反演神经网络根据输入的第i道地震数据及其相邻的2k道地震数据与第i道初始模型数据来预测第i道的波阻抗数据,再将预测的第i道的波阻抗数据输入到正演神经网络得到合成的地震数据。通过计算合成的第i道地震数据与输入的第i道地震数据的均方误差lseismic来更新反演神经网络和正演神经网络的内部参数。所有的地震道都会参与此过程。1) The inversion neural network predicts the wave impedance data of the i-th channel according to the input seismic data of the i-th channel and its adjacent 2k seismic data and the initial model data of the i-th channel, and then the predicted wave impedance of the i-th channel The data is fed into a forward neural network to obtain synthetic seismic data. The internal parameters of the inversion neural network and the forward modeling neural network are updated by calculating the mean square error l seismic between the synthetic i-th channel seismic data and the input i-th channel seismic data. All seismic traces participate in this process.

2)反演神经网络根据输入的井位处的地震数据以及与井位处相邻的2k道地震数据与井位处的初始模型数据来预测井位处的波阻抗,计算预测的井位处波阻抗数据与实际测井波阻抗数据的均方误差lwell来更新反演神经网络中的参数。正演神经网络根据实际测井中的波阻抗来预测相应的地震记录,通过计算井位处的地震数据与正演神经网络预测的地震数据的均方误差l'well来更新正演神经网络中的参数。仅有井位处的地震道会参与此过程。2) The inversion neural network predicts the wave impedance at the well location according to the input seismic data at the well location, the 2k channel seismic data adjacent to the well location, and the initial model data at the well location, and calculates the predicted well location. The mean square error l well between the wave impedance data and the actual logging wave impedance data is used to update the parameters in the inversion neural network. The forward modeling neural network predicts the corresponding seismic records according to the wave impedance in the actual logging, and updates the forward modeling neural network by calculating the mean square error l' well between the seismic data at the well location and the seismic data predicted by the forward modeling neural network. parameters. Only the seismic traces at the well site are involved in this process.

在该优选示例中,构建了公式(2)、(3)所示的损失函数并采取Adam优化器来更新反演神经网络与正演神经网络内的可学习参数:In this preferred example, the loss functions shown in formulas (2), (3) are constructed and the Adam optimizer is used to update the learnable parameters in the inversion neural network and the forward neural network:

Figure BDA0002999060770000131
Figure BDA0002999060770000131

Figure BDA0002999060770000132
Figure BDA0002999060770000132

Figure BDA0002999060770000133
Figure BDA0002999060770000133

其中xi,t是输入的第i道地震数据,

Figure BDA0002999060770000134
是正演模型输出的合成的第i道地震数据,
Figure BDA0002999060770000135
是井中的波阻抗数据,
Figure BDA0002999060770000136
是反演神经网络所预测的井位处的波阻抗数据,
Figure BDA0002999060770000137
是井位处的地震数据,
Figure BDA0002999060770000138
是正演神经网络所预测的井位处的地震数据,L(·)是均方误差函数,其定义如公式(4)所示,α、β是权重系数,它们的值可以根据地震数据与测井数据的质量进行调整。Where x i,t is the input i-th seismic data,
Figure BDA0002999060770000134
is the synthetic i-th channel seismic data output by the forward modeling model,
Figure BDA0002999060770000135
is the wave impedance data in the well,
Figure BDA0002999060770000136
is the wave impedance data at the well location predicted by the inversion neural network,
Figure BDA0002999060770000137
is the seismic data at the well location,
Figure BDA0002999060770000138
is the seismic data at the well location predicted by the forward modeling neural network, L( ) is the mean square error function, and its definition is shown in formula (4), α and β are weight coefficients, and their values can be calculated according to the seismic data and measured The quality of the well data is adjusted.

图5为应用本申请实施例所提出的反演方法在Marmousi2模型上的波阻抗反演结果与真实波阻抗的对比,其中,(a)真实波阻抗、(b)波阻抗反演结果,(c)真实波阻抗与预测的波阻抗之间的误差。图6是实际资料的波阻抗反演结果。可以看出在模型数据上基于本申请实施例所提出的方法的反演结果与真实波阻抗具有较小的误差,在实际资料中,反演结果具有较高的分辨率,且在测试井处,反演结果与测试井波阻抗的变化趋势基本一致。Fig. 5 is the comparison of the wave impedance inversion result and the real wave impedance on the Marmousi2 model using the inversion method proposed in the embodiment of the present application, wherein, (a) real wave impedance, (b) wave impedance inversion result, ( c) Error between true wave impedance and predicted wave impedance. Fig. 6 is the wave impedance inversion result of actual data. It can be seen that the inversion result based on the method proposed in the embodiment of the present application has a small error with the real wave impedance on the model data. In the actual data, the inversion result has a relatively high resolution, and at the test well , the inversion results are basically consistent with the change trend of the wave impedance of the test well.

通过本申请实施例,构建了一种时空序列残差建模网络,该网络以初始模型作为初值,在学习过程中不断修正初始模型并学习修正后的初始模型与反演参数之间的残差,且在残差学习过程中充分的考虑数据的时空特性。考虑到实际勘探中标签数据匮乏的问题,本申请实施例采取半监督学习的方式对网络模型进行训练。训练好的网络可根据初始模型数据与地震数据来预测波阻抗数据。Through the embodiment of this application, a space-time sequence residual modeling network is constructed. The network takes the initial model as the initial value, continuously corrects the initial model during the learning process, and learns the residual between the corrected initial model and the inversion parameters. Poor, and fully consider the spatiotemporal characteristics of the data in the residual learning process. Considering the lack of labeled data in actual exploration, the embodiment of the present application adopts a semi-supervised learning method to train the network model. The trained network predicts wave impedance data based on initial model data and seismic data.

相较而言,相关技术中的半监督学习地震反演能够很好的挖掘测井数据与地震数据中的信息,而对初始模型的利用率较差,一般仅是将初始模型作为一种标签来约束网络的反演,这使得网络并不能很好的利用初始模型内蕴含的构造信息和丰富的低频信息。In comparison, the semi-supervised learning seismic inversion in related technologies can well mine the information in logging data and seismic data, but the utilization rate of the initial model is poor, and the initial model is generally only used as a label To constrain the inversion of the network, which makes the network unable to make good use of the structural information and rich low-frequency information contained in the initial model.

此外,地下构造在空间上存在一定的相关性,这种相关性在地震剖面上体现为,横向上的空间相关性,以及纵向上的时间相关性。相关技术中的的深度学习反演神经网络对地震数据中这种纵向上的时间相关性挖掘的较为充分,却并未考虑地震数据在横向上的空间相关性,这就导致了网络预测结果的横向连续性较差。In addition, there is a certain correlation in the underground structure in space, which is reflected in the spatial correlation in the horizontal direction and the temporal correlation in the vertical direction on the seismic section. The deep learning inversion neural network in the related technology fully exploits the vertical time correlation in seismic data, but does not consider the horizontal spatial correlation of seismic data, which leads to the inconsistency of the network prediction results. Horizontal continuity is poor.

本申请实施例还提供一种计算机设备。本实施例的计算机设备20至少包括但不限于:可通过系统总线相互通信连接的存储器21、处理器22,如图7所示。需要指出的是,图7仅示出了具有组件21-22的计算机设备20,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。The embodiment of the present application also provides a computer device. The computer device 20 in this embodiment at least includes but is not limited to: a memory 21 and a processor 22 that can be communicated with each other through a system bus, as shown in FIG. 7 . It should be noted that FIG. 7 only shows computer device 20 having components 21-22, but it should be understood that implementing all of the illustrated components is not required and that more or fewer components may instead be implemented.

本实施例中,存储器21(即可读存储介质)包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,存储器21可以是计算机设备20的内部存储单元,例如该计算机设备20的硬盘或内存。在另一些实施例中,存储器21也可以是计算机设备20的外部存储设备,例如该计算机设备20上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,存储器21还可以既包括计算机设备20的内部存储单元也包括其外部存储设备。本实施例中,存储器21通常用于存储安装于计算机设备20的操作系统和各类应用软件,例如波阻抗反演的方法的程序代码等。此外,存储器21还可以用于暂时地存储已经输出或者将要输出的各类数据。In this embodiment, the memory 21 (that is, a readable storage medium) includes a flash memory, a hard disk, a multimedia card, a card-type memory (for example, SD or DX memory, etc.), a random access memory (RAM), a static random access memory (SRAM), Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Programmable Read Only Memory (PROM), Magnetic Memory, Magnetic Disk, Optical Disk, etc. In some embodiments, the memory 21 may be an internal storage unit of the computer device 20 , such as a hard disk or memory of the computer device 20 . In some other embodiments, the memory 21 can also be an external storage device of the computer device 20, such as a plug-in hard disk equipped on the computer device 20, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc. Of course, the storage 21 may also include both the internal storage unit of the computer device 20 and its external storage device. In this embodiment, the memory 21 is generally used to store the operating system installed in the computer device 20 and various application software, such as the program code of the wave impedance inversion method and the like. In addition, the memory 21 can also be used to temporarily store various types of data that have been output or will be output.

处理器22在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器22通常用于控制计算机设备20的总体操作。本实施例中,处理器22用于运行存储器21中存储的程序代码或者处理数据,例如波阻抗反演的方法的程序代码,以实现波阻抗反演的方法。The processor 22 may be a central processing unit (Central Processing Unit, CPU), a controller, a microcontroller, a microprocessor, or other data processing chips in some embodiments. The processor 22 is generally used to control the overall operation of the computer device 20 . In this embodiment, the processor 22 is configured to run the program codes stored in the memory 21 or process data, for example, the program codes of the wave impedance inversion method, so as to realize the wave impedance inversion method.

本实施例还提供一种计算机可读存储介质,如闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘、服务器、App应用商城等等,其上存储有计算机程序,程序被处理器执行时实现相应功能。本实施例的计算机可读存储介质用于存储波阻抗反演的程序,被处理器执行时实现波阻抗反演的方法的步骤。This embodiment also provides a computer-readable storage medium, such as flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static random access memory (SRAM), only Read memory (ROM), electrically erasable programmable read-only memory (EEPROM), programmable read-only memory (PROM), magnetic memory, magnetic disk, optical disk, server, App application store, etc., on which computer programs are stored, The corresponding functions are realized when the program is executed by the processor. The computer-readable storage medium in this embodiment is used to store the wave impedance inversion program, and when executed by the processor, implements the steps of the wave impedance inversion method.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the term "comprising", "comprising" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.

上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation. Based on this understanding, the technical solution of the present invention can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in various embodiments of the present invention.

上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。Embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific implementations, and the above-mentioned specific implementations are only illustrative, rather than restrictive, and those of ordinary skill in the art will Under the enlightenment of the present invention, many forms can also be made without departing from the gist of the present invention and the protection scope of the claims, and these all belong to the protection of the present invention.

Claims (7)

1.一种使用神经网络的波阻抗反演方法,其特征在于,所述波阻抗反演方法包括:1. A wave impedance inversion method using a neural network, characterized in that, the wave impedance inversion method comprises: 接收N道地震数据,其中,所述N道地震数据包括第i道地震数据及与其相邻的多道地震数据;Receive N channels of seismic data, wherein the N channels of seismic data include the i-th channel of seismic data and multiple channels of seismic data adjacent to it; 接收第i道初始模型数据;Receive the i-th channel initial model data; 由所述神经网络的并列的N个特征提取层提取所述N道地震数据的时序特征;Extracting the time-series features of the N channels of seismic data by the parallel N feature extraction layers of the neural network; 由所述神经网络的合并层自适应合并所述N个特征提取层输出的时序特征,得到所述N道地震数据的时空特征,所述时空特征不仅表示地震道在时间上的相关性,还表示地震道与相邻地震道之间的空间相关性;The time-series features output by the N feature extraction layers are adaptively merged by the merging layer of the neural network to obtain the temporal and spatial characteristics of the N channels of seismic data. The temporal and spatial characteristics not only represent the temporal correlation of the seismic channels, but also Indicates the spatial correlation between a seismic trace and adjacent seismic traces; 由所述神经网络的回归层将所述时空特征从特征域映射到目标域;Mapping the spatio-temporal features from the feature domain to the target domain by the regression layer of the neural network; 由所述神经网络的输出层根据所述回归层的输出和所述第i道初始模型数据确定第i道波阻抗数据;Determining the i-th channel wave impedance data according to the output of the regression layer and the i-th channel initial model data by the output layer of the neural network; 由所述神经网络的输出层根据所述回归层的输出和所述第i道初始模型数据确定第i道波阻抗数据之前,还包括:由所述神经网络的修正层对所述第i道初始模型数据进行自适应调整,以初始模型作为初值,在学习过程中不断修正初始模型并学习修正后的初始模型与反演参数之间的残差,且在残差学习过程中充分的考虑数据的所述时空特征。Before determining the wave impedance data of the i-th channel according to the output of the regression layer and the initial model data of the i-th channel by the output layer of the neural network, it also includes: correcting the i-th channel by the correction layer of the neural network The initial model data is adaptively adjusted, the initial model is used as the initial value, the initial model is continuously corrected during the learning process and the residual between the corrected initial model and the inversion parameters is learned, and the residual error is fully considered in the residual learning process The spatiotemporal characteristics of the data. 2.根据权利要求1所述的波阻抗反演方法,其特征在于,2. wave impedance inversion method according to claim 1, is characterized in that, 每个特征提取层,包括:全局特征提取层,被配置为提取输入地震道中的全局特征;局部特征提取层,被配置为提取输入地震道中的局部特征;和/或Each feature extraction layer includes: a global feature extraction layer configured to extract global features in an input seismic trace; a local feature extraction layer configured to extract local features in an input seismic trace; and/or 所述合并层为偏置为零的线性连接层;和/或The pooling layer is a linearly connected layer with a bias of zero; and/or 所述回归层包括:一组串行的反卷积块,被配置为对合并层的输出进行上采样;门控循环单元和全连接层,被配置为将上采样的数据从特征域映射到目标域。The regression layer includes: a set of serial deconvolution blocks configured to upsample the output of the pooling layer; a gated recurrent unit and a fully connected layer configured to map the upsampled data from the feature domain to target domain. 3.根据权利要求1所述的波阻抗反演方法,其特征在于,所述修正层为线性连接层和Tanh激活函数。3. The wave impedance inversion method according to claim 1, wherein the correction layer is a linear connection layer and a Tanh activation function. 4.一种用于波阻抗反演的神经网络系统,其特征在于,所述神经网络系统由一个或多个计算机实现,所述神经网络系统被配置为以由第i道地震数据及与其相邻的多道地震数据构成的N道地震数据、和第i道初始模型数据为输入,并确定第i道波阻抗数据为输出,其中,所述神经网络系统,包括:4. A neural network system for wave impedance inversion, characterized in that, the neural network system is implemented by one or more computers, and the neural network system is configured to use the i-th channel seismic data and its adjacent The N-channel seismic data formed by the multi-channel seismic data and the i-th channel initial model data are input, and the i-th channel wave impedance data is determined as an output, wherein the neural network system includes: 并列的N个特征提取层,其中,每个特征提取层被配置为提取向其输入的一道地震数据的时序特征;N feature extraction layers juxtaposed, wherein each feature extraction layer is configured to extract time series features of a piece of seismic data input thereto; 合并层,所述合并层被配置为自适应合并所述N个特征提取层输出的时序特征,得到所述N道地震数据的时空特征,所述时空特征不仅表示地震道在时间上的相关性,还表示地震道与相邻地震道之间的空间相关性;A merging layer, the merging layer is configured to adaptively merge the time-series features output by the N feature extraction layers to obtain the temporal and spatial features of the N channels of seismic data, and the temporal and spatial features not only represent the temporal correlation of the seismic channels , also represents the spatial correlation between a seismic trace and adjacent seismic traces; 回归层,所述回归层被配置为将所述时空特征从特征域映射到目标域;a regression layer configured to map the spatiotemporal features from a feature domain to a target domain; 输出层,所述输出层被配置为根据所述回归层的输出和所述第i道初始模型数据确定第i道波阻抗数据;an output layer, the output layer is configured to determine the i-th channel wave impedance data according to the output of the regression layer and the i-th channel initial model data; 所述神经网络系统还包括:位于所述输出层之前的修正层,所述修正层被配置为对所述第i道初始模型数据进行自适应调整,以初始模型作为初值,在学习过程中不断修正初始模型并学习修正后的初始模型与反演参数之间的残差,且在残差学习过程中充分的考虑数据的所述时空特征。The neural network system also includes: a correction layer located before the output layer, the correction layer is configured to adaptively adjust the i-th initial model data, with the initial model as the initial value, during the learning process Continuously modify the initial model and learn the residual between the modified initial model and the inversion parameters, and fully consider the spatiotemporal characteristics of the data in the process of residual learning. 5.根据权利要求4所述的神经网络系统,其特征在于,5. neural network system according to claim 4, is characterized in that, 每个特征提取层,包括:全局特征提取层,所述全局特征提取层被配置为提取输入地震道中的全局特征;局部特征提取层,所述局部特征提取层被配置为提取输入地震道中的局部特征;和/或Each feature extraction layer includes: a global feature extraction layer configured to extract global features in the input seismic trace; a local feature extraction layer configured to extract local features in the input seismic trace features; and/or 所述合并层为偏置为零的线性连接层;和/或The pooling layer is a linearly connected layer with a bias of zero; and/or 所述回归层包括:一组串行的反卷积块,被配置为对合并层的输出进行上采样;门控循环单元和全连接层,被配置为将上采样的数据从特征域映射到目标域。The regression layer includes: a set of serial deconvolution blocks configured to upsample the output of the pooling layer; a gated recurrent unit and a fully connected layer configured to map the upsampled data from the feature domain to target domain. 6.根据权利要求4所述的神经网络系统,其特征在于,所述修正层为线性连接层和Tanh激活函数。6. The neural network system according to claim 4, wherein the correction layer is a linear connection layer and a Tanh activation function. 7.一种训练用于波阻抗反演的神经网络的方法,其特征在于,包括:7. A method for training a neural network for wave impedance inversion, comprising: 接收第一输入数据和第二输入数据,其中,所述第一输入数据包括:由第i道地震数据及与其相邻的多道地震数据构成的N道地震数据、和第i道初始模型数据;所述第二输入数据包括:井位处的地震数据和井位处的波阻抗数据;Receive first input data and second input data, wherein the first input data includes: N channels of seismic data composed of the i-th channel of seismic data and multiple channels of seismic data adjacent to it, and the i-th channel of initial model data ; The second input data includes: seismic data at the well location and wave impedance data at the well location; 由反演神经网络根据所述第一输入数据确定第i道波阻抗数据,由正演神经网络根据所述反演神经网络输出的第i道波阻抗数据确定合成的第一地震数据,以及由正演神经网络根据输入的井位处第i道波阻抗数据确定合成的第二地震数据;Determining the i-th channel wave impedance data by the inversion neural network according to the first input data, determining the synthesized first seismic data by the forward modeling neural network according to the i-th channel wave impedance data output by the inversion neural network, and by The forward modeling neural network determines the synthetic second seismic data according to the i-th channel wave impedance data at the input well location; 确定输入的第i道地震数据与所述合成的第一地震数据之间的第一均方误差,确定井位处第i道由所述反演神经网络输出的波阻抗数据与输入的波阻抗数据之间的第二均方误差,以及确定井位处第i道所述合成的第二地震数据与所述井位处的地震数据之间的第三均方误差;Determine the first mean square error between the input i-th channel seismic data and the first synthetic seismic data, determine the i-th channel wave impedance data output by the inversion neural network at the well position and the input wave impedance a second mean square error between the data, and a third mean square error between the synthetic second seismic data of the i-th track at the well location and the seismic data at the well location; 使用所述第一均方误差更新所述反演神经网络和所述正演神经网络的参数,使用所述第二均方误差更新所述反演神经网络的参数,以及使用所述第三均方误差更新所述正演神经网络的参数;Using the first mean square error to update the parameters of the inversion neural network and the forward neural network, using the second mean square error to update the parameters of the inversion neural network, and using the third mean square error square error updates the parameters of the forward modeling neural network; 所述反演神经网络,包括:并列的N个特征提取层,其中,每个特征提取层被配置为提取向其输入的一道地震数据的时序特征;合并层,所述合并层被配置为自适应合并所述N个特征提取层输出的时序特征,得到所述N道地震数据的时空特征,所述时空特征不仅表示地震道在时间上的相关性,还表示地震道与相邻地震道之间的空间相关性;回归层,所述回归层被配置为将所述时空特征从特征域映射到目标域;输出层,所述输出层被配置为根据所述回归层的输出和所述第i道初始模型数据确定第i道波阻抗数据;位于所述输出层之前的修正层,所述修正层被配置为对所述第i道初始模型数据进行自适应调整,以初始模型作为初值,在学习过程中不断修正初始模型并学习修正后的初始模型与反演参数之间的残差,且在残差学习过程中充分的考虑数据的所述时空特征;和/或The inversion neural network includes: N feature extraction layers juxtaposed, wherein each feature extraction layer is configured to extract the time series features of a piece of seismic data input to it; a merging layer, the merging layer is configured to automatically Adapting to merging the time series features output by the N feature extraction layers to obtain the temporal and spatial characteristics of the N seismic data, the temporal and spatial characteristics not only represent the temporal correlation of seismic traces, but also represent the relationship between seismic traces and adjacent seismic traces. The spatial correlation between; the regression layer, the regression layer is configured to map the spatio-temporal features from the feature domain to the target domain; the output layer, the output layer is configured to be based on the output of the regression layer and the first The i-th channel of initial model data determines the i-th channel of wave impedance data; a correction layer located before the output layer, the correction layer is configured to perform adaptive adjustment on the i-th channel of initial model data, using the initial model as an initial value , continuously modifying the initial model during the learning process and learning the residual between the modified initial model and the inversion parameters, and fully considering the spatio-temporal characteristics of the data during the residual learning process; and/or 所述正演神经网络,包括:一组串行的一维卷积层和激活函数。The forward neural network includes: a set of serial one-dimensional convolutional layers and activation functions.
CN202110339626.5A 2021-03-30 2021-03-30 A kind of wave impedance inversion method and neural network system using neural network Active CN113109874B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110339626.5A CN113109874B (en) 2021-03-30 2021-03-30 A kind of wave impedance inversion method and neural network system using neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110339626.5A CN113109874B (en) 2021-03-30 2021-03-30 A kind of wave impedance inversion method and neural network system using neural network

Publications (2)

Publication Number Publication Date
CN113109874A CN113109874A (en) 2021-07-13
CN113109874B true CN113109874B (en) 2022-11-01

Family

ID=76712697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110339626.5A Active CN113109874B (en) 2021-03-30 2021-03-30 A kind of wave impedance inversion method and neural network system using neural network

Country Status (1)

Country Link
CN (1) CN113109874B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608264B (en) * 2021-07-30 2023-06-09 成都理工大学 Joint pre-stack elastic inversion parameter and depth network target inversion method
CN114063169B (en) * 2021-11-10 2023-03-14 中国石油大学(北京) Wave impedance inversion method, system, equipment and storage medium
CN114782744B (en) * 2022-04-18 2024-11-22 清华大学 Model processing method, device and equipment for reservoir prediction based on closed-loop network
CN116559949B (en) * 2023-05-19 2024-07-12 北京宸宇金源科技有限公司 Carbonate reservoir prediction method, system and equipment based on deep learning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231653A (en) * 2019-04-24 2019-09-13 北京阳光杰科科技股份有限公司 Construct the method and device of two-way constraint initial model

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802171B2 (en) * 2017-04-28 2020-10-13 Pioneer Natural Resources Usa, Inc. High resolution seismic data derived from pre-stack inversion and machine learning
US10996372B2 (en) * 2017-08-25 2021-05-04 Exxonmobil Upstream Research Company Geophysical inversion with convolutional neural networks
BR112020001110B1 (en) * 2017-08-25 2023-10-24 ExxonMobil Technology and Engineering Company METHOD FOR AUTOMATICALLY INTERPRETING A SUBSURFACE FEATURE WITHIN GEOPHYSICAL DATA
CN112213771B (en) * 2019-07-10 2023-10-27 中国石油天然气股份有限公司 Seismic wave impedance inversion method and device
CN111596366B (en) * 2020-06-24 2021-07-30 厦门大学 A Wave Impedance Inversion Method Based on Seismic Signal Optimal Processing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231653A (en) * 2019-04-24 2019-09-13 北京阳光杰科科技股份有限公司 Construct the method and device of two-way constraint initial model

Also Published As

Publication number Publication date
CN113109874A (en) 2021-07-13

Similar Documents

Publication Publication Date Title
CN113109874B (en) A kind of wave impedance inversion method and neural network system using neural network
CN109709603B (en) Seismic horizon identification and tracking method and system
Lorentzen et al. History matching channelized reservoirs using the ensemble Kalman filter
US7840394B2 (en) Method for generating a 3D earth model
US10909281B2 (en) History matching of hydrocarbon production from heterogenous reservoirs
US10908308B1 (en) System and method for building reservoir property models
AU2011356685A1 (en) Methods and systems regarding models of underground formations
Kumar et al. Ensemble-based assimilation of nonlinearly related dynamic data in reservoir models exhibiting non-Gaussian characteristics
CN112576244B (en) Porosity calculation method and device
Li et al. Simultaneous estimation of geologic and reservoir state variables within an ensemble-based multiple-point statistic framework
CN114609667A (en) Geophysical oil gas prediction method, equipment and storage medium
Kumar et al. Indicator-based data assimilation with multiple-point statistics for updating an ensemble of models with non-gaussian parameter distributions
CN114723155A (en) Transverse wave curve prediction method, device, computing equipment and storage medium
CN113406695B (en) Seismic inversion method and system based on interval velocity seismic geological model
US11249219B2 (en) Global surface paleo-temperature modeling tool
CN115598697A (en) Thin-layer structure high-resolution seismic inversion method, device, medium and equipment
CN113325480A (en) Seismic lithology identification method based on integrated deep learning
US20240045089A1 (en) Generating realistic synthetic seismic data items
CN115079257B (en) Q-value estimation and earthquake attenuation compensation method based on fusion network
EP4321905A1 (en) System and method for storage and retrieval of subsurface rock physical property prediction models using seismic interpretation
CN114021700A (en) Permeability calculation method and device based on petrophysical constraint neural network
WO2022039600A1 (en) Seismic data analysis method
CN114996625A (en) A logging data completion method based on Bayesian optimization and autoencoder
CN114966838B (en) Seismic intelligent inversion method and system driven by geological modeling and seismic forward modeling
CN114063169B (en) Wave impedance inversion method, system, equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant