CN113104885A - 非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用 - Google Patents

非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用 Download PDF

Info

Publication number
CN113104885A
CN113104885A CN202110261578.2A CN202110261578A CN113104885A CN 113104885 A CN113104885 A CN 113104885A CN 202110261578 A CN202110261578 A CN 202110261578A CN 113104885 A CN113104885 A CN 113104885A
Authority
CN
China
Prior art keywords
layered
nano
preparation
nanosheet
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110261578.2A
Other languages
English (en)
Other versions
CN113104885B (zh
Inventor
何军
马什特·盖泰·仙台
王枫梅
高宁
王振兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Nanosccience and Technology China
Original Assignee
National Center for Nanosccience and Technology China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Nanosccience and Technology China filed Critical National Center for Nanosccience and Technology China
Priority to CN202110261578.2A priority Critical patent/CN113104885B/zh
Publication of CN113104885A publication Critical patent/CN113104885A/zh
Application granted granted Critical
Publication of CN113104885B publication Critical patent/CN113104885B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用,所述制备方法包括将硫磷混合粉末与SnS2纳米晶进行化学气相沉积反应的步骤;其中,所述硫磷混合粉末位于反应器的上游,所述SnS2纳米晶位于下游,上游加热温度设为270~330℃,下游加热温度设为340~380℃。本发明的方法可以快速且低成本地在基底上生长大面积均匀分布的Sn2P2S6纳米片,所得Sn2P2S6纳米片结晶性好,化学性质稳定,在光催化析氢领域中有广阔的应用前景。该方法易操作、所需设备简单,并且可以高效率地应用到大规模工业生产方面。

Description

非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的 应用
技术领域
本发明涉及无机半导体纳米材料领域,尤其涉及一种非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用。
背景技术
二维金属磷硫化物(MPX,X=S、Se、Te等)因其独特的物理和化学性质近期在国际社会上受到广泛的关注,并在催化、清洁能源存储与转化等领域存在广泛应用。
根据其结晶结构的不同,二维金属磷硫化物(MPX)可以分为以下四类:磷原子与金属原子四面体配位(如CrPS4),磷原子与金属原子八面体配位(如Pd3P2S8),磷原子对与金属原子八面体配位(如NiPS3),以及磷原子对通过八面体配位而金属原子为三棱柱结构(如Sn2P2S6和Pb2P2S6)。不同于前三种金属磷硫化物的层状结构,第四类金属磷硫化物为非层状结构,结晶结构中P2X6单元沿P-P方向被略微拉长。
Sn2P2S6材料结晶结构中由于具有不对称中心而表现出独特的铁电、压电以及热电等物理性质受到研究人员的广泛关注。目前Sn2P2S6的制备主要通过化学气相传输先制备得到块状Sn2P2S6,再通过液相插层剥离的方法将Sn2P2S6块状材料层层剥离得到Sn2P2S6纳米片。该方法较为繁琐,通过化学气相传输的方法合成Sn2P2S6材料,其制备周期较长,一般需要数周甚至数月的时间,且通过该方法仅能得到块状Sn2P2S6材料,为得到Sn2P2S6纳米片需要对其进行液相插层剥离处理,但液相插层剥离的方法往往会在材料中引入溶剂杂质,并且该方法受限于材料本身的层状结构,只能得到层状Sn2P2S6纳米片。因此,研发一种高效可行的非层状Sn2P2S6纳米片的制备方法具有重要意义。
发明内容
针对现有技术存在的问题,本发明提供一种非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用。
本发明采用以下技术方案:
本发明提供一种非层状Sn2P2S6纳米片的制备方法,包括将硫磷混合粉末与SnS2纳米晶进行化学气相沉积反应的步骤;其中,所述硫磷混合粉末位于反应器的上游,所述SnS2纳米晶位于下游,上游加热温度设为270~330℃,下游加热温度设为340~380℃。
本发明采用化学气相沉积法,通过控制合适的加热温度使硫磷蒸气与SnS2纳米晶发生反应,从而快速且低成本地在基底上生长大面积均匀分布的Sn2P2S6纳米片。所得到的Sn2P2S6纳米片结晶性好,化学性质稳定。该方法易操作、所需设备简单,并且可以高效率地应用到大规模工业生产方面。
本发明中所述反应器优选为双温区管式炉。
在本发明的优选实施方式中,将负载于基底上的SnS2纳米晶与红磷/硫混合粉末分别置于双温区管式炉的下游和上游,加热进行化学气相反应。所述双温区管式炉的下游温度(Zone-Ⅱ)设置为340~380℃,可设置为340℃、350℃、380℃。所述双温区管式炉的上游炉温(Zone-Ⅰ)设置为270~330℃,可设置为270℃、300℃、320℃、330℃。
优选地,所述上游加热温度设为300℃,所述下游加热温度设为350℃。
优选地,所述化学气相沉积反应的持续时间为30~60分钟,具体可以为30分钟、40分钟、60分钟,更优选为40分钟。
优选地,所述反应器内通有高纯氩气(99.999%),所述氩气的流量为80~120sccm,可设置为80sccm、100sccm、120sccm,更优选为100sccm。
优选地,在通入高纯氩气之前,对反应器进行抽真空处理,并在反应过程中维持低压(50~200Pa)状态。
优选地,所述SnS2纳米晶通过溶剂热法制备得到。
在本发明的优选实施方式中,所述SnS2纳米晶的制备方法包括:将硫代乙酰胺和五水四氯化锡溶解在异丙醇中获得反应前驱体溶液,将所述反应前驱体溶液转移至反应釜中,将基底斜靠于反应釜中,于170~200℃进行溶剂热反应,反应完成后得到负载于基底上的SnS2纳米晶。
其中,所述基底主要起支撑作用负载样品,同时便于收集反应后生成的Sn2P2S6,可以为碳布纤维或FTO导电玻璃等,优选为碳布纤维,尺寸约为3cm×2cm。
所述硫代乙酰胺的质量为48.0mg,所述五水四氯化锡的质量为56.0mg,所述异丙醇的体积为40mL。
所述溶剂热反应在封闭的反应釜中进行,反应时间为18~30h,可为18h、24h或30h,优选为24h。
所述溶剂热反应温度优选为180℃。
反应结束后对所得产物进行多次洗涤,后于60~80℃条件下干燥。
通过上述制备方法制备得到的非层状Sn2P2S6纳米片,其厚度为7~12纳米,横向尺寸为1~5微米,纵向尺寸为4~8微米。
在具体优选实施方式中,所得Sn2P2S6纳米片的厚度约为9纳米,横向尺寸约为3微米,纵向尺寸约为6微米。根据XRD以及TEM谱图可知其为非层状结构。而且制备得到的Sn2P2S6纳米片中元素分布均匀,Sn:P:S三种元素原子比接近2:2:6,符合Sn2P2S6的各元素组成比例。
本发明还提供所述非层状Sn2P2S6纳米片在光催化析氢领域中的应用。
本发明提供了一种非层状Sn2P2S6纳米片的制备方法,采用化学气相沉积法,通过控制合适的加热温度使硫磷蒸气与SnS2纳米晶发生反应,从而快速且低成本地在基底上生长大面积均匀分布的Sn2P2S6纳米片,所得Sn2P2S6纳米片结晶性好,化学性质稳定,在光催化析氢领域中有广阔的应用前景。该方法易操作、所需设备简单,并且可以高效率地应用到大规模工业生产方面。
附图说明
图1为本发明实施例提供的用于制备大面积二维非层状Sn2P2S6纳米片的装置结构图;
图2为实施例1所得二维Sn2P2S6纳米片的扫描电子显微镜(SEM)照片;
图3为实施例1所得Sn2P2S6纳米片的X射线衍射图谱(XRD)、相应的标准PDF卡片以及基于Sn2P2S6纳米片的结晶结构得到的理论计算图谱;
图4为实施例1所得二维Sn2P2S6纳米片的拉曼光谱(Raman)分析图谱;
图5中a为实施例1所得Sn2P2S6纳米片的透射电子显微镜(TEM)照片;b为Sn2P2S6纳米片的高分辨透射电子显微镜(HRTEM)照片;c为Sn2P2S6纳米片的选区电子衍射图案(SAED);
图6中a为实施例1所得Sn2P2S6纳米片的元素分布面扫描图;b为Sn2P2S6纳米片的X射线能谱分析;
图7为实施例1所得Sn2P2S6纳米片的原子力显微镜(AFM)图及其厚度分析结果;
图8中a为模拟太阳光(AM 1.5G,100mW cm-2)条件下,实施例1所得Sn2P2S6纳米片在纯水中的光催化产氢性能测试结果;b为Sn2P2S6纳米片在进行光催化析氢性能测试时测得的电子自旋共振光谱;
图9为实施例2所得二维Sn2P2S6纳米片的扫描电子显微镜(SEM)照片;
图10为实施例3所得Sn2P2S6微米颗粒的扫描电子显微镜(SEM)照片。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
若未特别指明,本发明实施例中所用的实验试剂和材料等均可市售获得。
若未具体指明,本发明实施例中所用的技术手段均为本领域技术人员所熟知的常规手段。
实施例1
本实施例提供一种高质量大面积非层状Sn2P2S6纳米片的制备方法,具体步骤如下:
(1)将48.0mg硫代乙酰胺(C2H5NS)、56.0mg五水四氯化锡(SnCl4·5H2O)溶解在40mL异丙醇(C3H8O)中,超声5分钟后将溶液转移至50mL的聚四氟乙烯反应釜中,并将长宽比为3cm×2cm的碳布纤维斜靠于反应釜中,于180℃进行溶剂热反应,保温24小时,反应完成后得到负载于碳布纤维上的SnS2纳米晶。
(2)将负载于碳布纤维上的SnS2纳米晶和红磷/硫混合粉末分别置于两石英套管的封口端,并放于双温区管式炉的Zone-Ⅱ和Zone-Ⅰ加热区,相隔距离为25厘米,用机械泵对管式炉体系进行抽真空处理,随后通入高纯氩气100sccm,并保持该流量持续至反应结束,具体装置结构图如图1所示。将下游的炉温升至350℃,上游的炉温升至300℃,保持气相反应时长40分钟,然后自然冷却,得到均匀负载的Sn2P2S6纳米片。
以下部分简要阐明其性能指标:
图2为本实施例所得二维非层状Sn2P2S6纳米片的扫描电子显微镜(SEM)照片,可以看出Sn2P2S6纳米片良好的尺寸均匀性和高质量的结晶性。
图3为本实施例所得二维非层状Sn2P2S6纳米片的X射线衍射图谱(XRD)、相应的标准PDF卡片以及基于Sn2P2S6纳米片的结晶结构得到的理论计算图谱。通过将Sn2P2S6纳米片的X射线衍射图谱与相应的标准PDF卡片对比可以发现Sn2P2S6纳米片为纯相单斜晶体,并且Sn2P2S6纳米片的X射线衍射图谱与理论计算图谱结果一致。
图4为本实施例所得二维非层状Sn2P2S6纳米片的拉曼光谱(Raman)分析图谱,可以看出Sn2P2S6纳米片具有典型的一级拉曼振动峰,其中包括两个面内拉曼振动峰Eg(~247和~558cm-1)和两个层间拉曼振动峰A1g(~188和~380cm-1)。
图5中a为本实施例所得二维非层状Sn2P2S6纳米片的透射电子显微镜(TEM)照片,可以看出Sn2P2S6纳米片的横向尺寸约为3μm,纵向尺寸约为6μm;b为Sn2P2S6纳米片的高分辨透射电子显微镜(HRTEM)照片;c为Sn2P2S6纳米片的选区电子衍射图案(SAED)。从图中可以看出,实施例1所得到的Sn2P2S6纳米片具有较高的结晶度;高分辨透射电子显微镜图片中的晶格条纹表明其层间距为0.432nm;Sn2P2S6纳米片选区电子衍射图案中的衍射斑点分别与单斜非层状Sn2P2S6的(110),(12-2)和(23-2)晶面对应。
图6中a为本实施例所得二维非层状Sn2P2S6纳米片的元素分布面扫描图,可以看到Sn2P2S6纳米片中Sn、P、S各元素均匀分布;b为Sn2P2S6纳米片的X射线能谱分析,其结果表明Sn2P2S6纳米片中Sn、P、S三种元素的原子比为19.21:19.89:60.9,其原子比接近2:2:6,符合Sn2P2S6的各元素组成比例。
图7为本实施例所得二维非层状Sn2P2S6纳米片的原子力显微镜(AFM)图及其厚度分析结果,可以看出Sn2P2S6纳米片的厚度约为9纳米。
图8中a为模拟太阳光(AM 1.5G,100mW cm-2)条件下,Sn2P2S6纳米片在纯水中的光催化产氢性能测试结果,可以看出Sn2P2S6纳米片的光催化氢产量随时间表现出线性增长,其产氢速率为202.06μmol h-1g-1;b为Sn2P2S6纳米片在进行光催化析氢性能测试时测得的电子自旋共振光谱,可以看出,在暗场测试条件下,反应体系未检测到任何自由基信号,说明体系中无反应发生;而在模拟太阳光条件下,光照10分钟后,电子自旋共振光谱中出现四个强度比为1:2:2:1的峰,对应于羟基自由基的信号,表明在光照条件下,Sn2P2S6纳米片中导带中的电子用于析氢,价带中的空穴用于生成羟基自由基。
实施例2
本实施例提供一种非层状Sn2P2S6纳米片的制备方法,具体步骤如下:
(1)将48.0mg硫代乙酰胺(C2H5NS)、56.0mg五水四氯化锡(SnCl4·5H2O)溶解在40mL异丙醇(C3H8O)中,超声5分钟后将溶液转移至50mL的聚四氟乙烯反应釜中,并将长宽比为3cm×2cm的碳布纤维斜靠于反应釜中,于180℃进行溶剂热反应,保温24小时,反应完成后得到负载于碳布纤维上的SnS2纳米晶。
(2)将负载于碳布纤维上的SnS2纳米晶和红磷/硫混合粉末分别置于两石英套管的封口端,并放于双温区管式炉的Zone-Ⅱ和Zone-Ⅰ加热区,相隔距离为25厘米,用机械泵对管式炉体系进行抽真空处理,随后通入高纯氩气100sccm,并保持该流量持续至反应结束,具体装置结构图如图1所示。将下游的炉温升至350℃,上游的炉温升至320℃,保持气相反应时长35分钟,然后自然冷却,得到均匀负载的Sn2P2S6纳米片。
图9为本实施例所得二维Sn2P2S6纳米片的扫描电子显微镜(SEM)照片,可以看出Sn2P2S6纳米片良好的尺寸均匀性和高质量的结晶性。
实施例3
本实施例提供一种Sn2P2S6的制备方法,具体步骤如下:
(1)将48.0mg硫代乙酰胺(C2H5NS)、56.0mg五水四氯化锡(SnCl4·5H2O)溶解在40mL异丙醇(C3H8O)中,超声5分钟后将溶液转移至50mL的聚四氟乙烯反应釜中,并将长宽比为3cm×2cm的碳布纤维斜靠于反应釜中,于180℃进行溶剂热反应,保温24小时,反应完成后得到负载于碳布纤维上的SnS2纳米晶。
(2)将负载于碳布纤维上的SnS2纳米晶和红磷/硫混合粉末分别置于两石英套管的封口端,并放于双温区管式炉的Zone-Ⅱ和Zone-Ⅰ加热区,相隔距离为25厘米,用机械泵对管式炉体系进行抽真空处理,随后通入高纯氩气100sccm,并保持该流量持续至反应结束,具体装置结构图如图1所示。将下游的炉温升至390℃,上游的炉温升至300℃,保持气相反应时长40分钟,然后自然冷却,得到Sn2P2S6
图10为本实施例所得Sn2P2S6微米颗粒的扫描电子显微镜(SEM)照片,可以看出,在该反应温度和反应时间条件下仅能得到Sn2P2S6微米颗粒,无法得到Sn2P2S6纳米片。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种非层状Sn2P2S6纳米片的制备方法,其特征在于,包括将硫磷混合粉末与SnS2纳米晶进行化学气相沉积反应的步骤;
其中,所述硫磷混合粉末位于反应器的上游,所述SnS2纳米晶位于下游,上游加热温度设为270~330℃,下游加热温度设为340~380℃。
2.根据权利要求1所述的非层状Sn2P2S6纳米片的制备方法,其特征在于,所述上游加热温度设为300℃,所述下游加热温度设为350℃。
3.根据权利要求1或2所述的非层状Sn2P2S6纳米片的制备方法,其特征在于,所述化学气相沉积反应的持续时间为30~60分钟。
4.根据权利要求1~3任一项所述的非层状Sn2P2S6纳米片的制备方法,其特征在于,所述反应器内通有氩气,所述氩气的流量为80~120sccm,优选为100sccm。
5.根据权利要求4所述的非层状Sn2P2S6纳米片的制备方法,其特征在于,在通入氩气之前,对反应器进行抽真空处理,并在反应过程中维持压力为50~200Pa。
6.根据权利要求1~5任一项所述的非层状Sn2P2S6纳米片的制备方法,其特征在于,所述SnS2纳米晶通过溶剂热法制备得到。
7.根据权利要求6所述的非层状Sn2P2S6纳米片的制备方法,其特征在于,所述SnS2纳米晶的制备方法包括:
将硫代乙酰胺和五水四氯化锡溶解在异丙醇中获得反应前驱体溶液,将所述反应前驱体溶液转移至反应釜中,将基底斜靠于反应釜中,于170~200℃进行溶剂热反应,反应完成后得到负载于基底上的SnS2纳米晶。
8.权利要求1~7任一项所述制备方法制备得到的非层状Sn2P2S6纳米片。
9.根据权利要求8所述的非层状Sn2P2S6纳米片,其特征在于,所述非层状Sn2P2S6纳米片的厚度为7~12纳米,横向尺寸为1~5微米,纵向尺寸为4~8微米。
10.权利要求8或9所述的非层状Sn2P2S6纳米片在光催化析氢领域中的应用。
CN202110261578.2A 2021-03-10 2021-03-10 非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用 Active CN113104885B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110261578.2A CN113104885B (zh) 2021-03-10 2021-03-10 非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110261578.2A CN113104885B (zh) 2021-03-10 2021-03-10 非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用

Publications (2)

Publication Number Publication Date
CN113104885A true CN113104885A (zh) 2021-07-13
CN113104885B CN113104885B (zh) 2022-08-05

Family

ID=76712171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110261578.2A Active CN113104885B (zh) 2021-03-10 2021-03-10 非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用

Country Status (1)

Country Link
CN (1) CN113104885B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620343A (zh) * 2021-08-24 2021-11-09 昆明理工大学 一种硫化锑微纳米管的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA8144A1 (uk) * 1986-03-03 1995-12-26 Ужгородський Державний Університет П'єзоелектричний матеріал
RU2089492C1 (ru) * 1990-03-19 1997-09-10 Ростовский государственный университет Способ получения гипотиофосфата олова sn*002p*002s*006 или ортотиофосфата индия inps*004
CN102786935A (zh) * 2012-08-28 2012-11-21 昆山龙腾光电有限公司 蓝相液晶复合材料及其制作方法
US20180164447A1 (en) * 2015-06-03 2018-06-14 Northwestern University Chalco-phosphate-based hard radiation detectors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA8144A1 (uk) * 1986-03-03 1995-12-26 Ужгородський Державний Університет П'єзоелектричний матеріал
RU2089492C1 (ru) * 1990-03-19 1997-09-10 Ростовский государственный университет Способ получения гипотиофосфата олова sn*002p*002s*006 или ортотиофосфата индия inps*004
CN102786935A (zh) * 2012-08-28 2012-11-21 昆山龙腾光电有限公司 蓝相液晶复合材料及其制作方法
US20180164447A1 (en) * 2015-06-03 2018-06-14 Northwestern University Chalco-phosphate-based hard radiation detectors

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C.D.CARPENTIER ET AL.: ""VAPOUR GROWTH AND CRYSTAL DATA OF THE THIO(SELENO)-HYPODIPHOSPHATES Sn2P2S6 , Sn2P2Se6 , Pb2P2S6 , Pb2P2Se6 AND THEIR MIXED CRYSTALS"", 《MAT. RES. BULL.》 *
C.D.CARPENTIER ET AL.: ""VAPOUR GROWTH AND CRYSTAL DATA OF THE THIO(SELENO)-HYPODIPHOSPHATES Sn2P2S6 , Sn2P2Se6 , Pb2P2S6 , Pb2P2Se6 AND THEIR MIXED CRYSTALS"", 《MAT. RES. BULL.》, vol. 9, 31 December 1974 (1974-12-31), pages 401 - 410, XP024096670, DOI: 10.1016/0025-5408(74)90207-4 *
SHENG HUANG ET AL.: ""Pseudocapacitive Sodium Storage by Ferroelectric Sn2P2S6 with Layered Nanostructure"", 《SMALL》 *
SHENG HUANG ET AL.: ""Pseudocapacitive Sodium Storage by Ferroelectric Sn2P2S6 with Layered Nanostructure"", 《SMALL》, vol. 14, 19 April 2018 (2018-04-19), pages 1704367 *
郭忠平 等: ""Sn2P2S6和Pb2P2S6纳米微晶的室温固相合成与表征"", 《功能材料》 *
郭忠平 等: ""Sn2P2S6和Pb2P2S6纳米微晶的室温固相合成与表征"", 《功能材料》, 31 October 1998 (1998-10-31), pages 77 - 79 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620343A (zh) * 2021-08-24 2021-11-09 昆明理工大学 一种硫化锑微纳米管的制备方法
CN113620343B (zh) * 2021-08-24 2024-04-02 昆明理工大学 一种硫化锑微纳米管的制备方法

Also Published As

Publication number Publication date
CN113104885B (zh) 2022-08-05

Similar Documents

Publication Publication Date Title
Li et al. Hydrothermal synthesis and characterization of TiO2 nanorod arrays on glass substrates
Azam et al. Formation and characterization of ZnO nanopowder synthesized by sol–gel method
Lupan et al. Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique
Fang et al. Controllable size and photoluminescence of ZnO nanorod arrays on Si substrate prepared by microwave-assisted hydrothermal method
Tharsika et al. Tailoring ZnO nanostructures by spray pyrolysis and thermal annealing
Ma et al. Controlled synthesis and possible formation mechanism of leaf-shaped SnS2 nanocrystals
Sabry et al. Hydrothermal growth of ZnO nano rods without catalysts in a single step
Jiang et al. Preparation and characterization of CuInS2 nanorods and nanotubes from an elemental solvothermal reaction
Wang et al. Solution synthesis of ZnO nanotubes via a template-free hydrothermal route
Hu et al. Synthesis of NbSe 2 single-crystalline nanosheet arrays for UV photodetectors
CN113104885B (zh) 非层状Sn2P2S6纳米片的制备方法及其在光催化析氢领域的应用
Liu et al. Preparation of CdS nanorods on silicon nanopillars surface by hydrothermal method
Choudhury et al. Structural characterization of nanocrystalline PbS thin films synthesized by CBD method
Yuvasravan et al. Synthesis of WS 2 and WSe 2 nanowires on stainless steel coupon by reaction under autogenic pressure at elevated temperature method
Peng et al. Synthesis of morphologically controlled tin sulfide nanostructures
Yu et al. Multi-morphology PbS: frame–film structures, twin nanorods, and single-crystal films prepared by a polymer-assisted solvothermal method
Medina et al. Characterization of ZnO nanoparticles with short-bar shape produced by chemical precipitation
Cheng et al. Aligned ZnO nanorod arrays fabricated on Si substrate by solution deposition
Wang et al. The growth mechanism of PtS2 single crystal
Azeez et al. Synthesis and characteristics of screen printed ZnO thick films nanostructures grown using different methods
Zhang et al. Growth of submillimeter-scale single crystal 2D BiI3 by the cooling-induced growth method in a confined space
Hu et al. Controllable morphologies of ZnO nanocrystals: nanowire attracted nanosheets, nanocartridges and hexagonal nanotowers
Yuwono et al. Nanostructural growth investigation of Zno nanorods derived from chemical bath deposition for transparent heater application
Guo et al. Controlled growth of highly pure TiO 2 nanorod arrays/nanoflower clusters via one-step hydrothermal route
Wang et al. Growth and interconversion of ZnO nanostructure films on different substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant