CN113095113A - 一种用于水下目标识别的小波线谱特征提取方法及系统 - Google Patents

一种用于水下目标识别的小波线谱特征提取方法及系统 Download PDF

Info

Publication number
CN113095113A
CN113095113A CN201911342527.1A CN201911342527A CN113095113A CN 113095113 A CN113095113 A CN 113095113A CN 201911342527 A CN201911342527 A CN 201911342527A CN 113095113 A CN113095113 A CN 113095113A
Authority
CN
China
Prior art keywords
frequency band
feature vector
signals
wavelet
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911342527.1A
Other languages
English (en)
Other versions
CN113095113B (zh
Inventor
徐及
任佳威
颜永红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Beijing Kexin Technology Co Ltd
Original Assignee
Institute of Acoustics CAS
Beijing Kexin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS, Beijing Kexin Technology Co Ltd filed Critical Institute of Acoustics CAS
Priority to CN201911342527.1A priority Critical patent/CN113095113B/zh
Publication of CN113095113A publication Critical patent/CN113095113A/zh
Application granted granted Critical
Publication of CN113095113B publication Critical patent/CN113095113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/08Feature extraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/049Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明属于水下目标识别和信号处理技术领域,具体涉及一种基于小波线谱特征提取的水下目标识别方法,该方法包括:对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息,作为分类结果。

Description

一种用于水下目标识别的小波线谱特征提取方法及系统
技术领域
本发明属于水下目标识别和信号处理技术领域,具体涉及一种用于水下目标识别的小波线谱特征提取方法及系统。
背景技术
水下目标信号的特征参数提取是一项备受关注的研究课题,无论在军事还是在民用领域都具有十分重要的理论意义和工程应用价值。过去较长一段时间,人们一直以传统的信号处理理论作为水声信号特征提取的基础,即以平稳性、随机性来刻画水声信号,以时域、频域参数作为特征参数。
目标识别中最为关键的技术是特征提取。特征参数是否有效,在于其中包含的类别信息是否足够多,而干扰信息是否足够少,如果不能采用有效的特征,即便有出色的分类器也无法得到理想的分类识别结果。几十年来,现有的目标识别特征提取方法,主要有以下几种:基于谱分析的特征提取、基于舰船噪声的非线性特征提取、基于小波变换的特征提取法、神经网络特征提取法以及基于人耳听觉特征的特征提取方法。
在水下目标识别任务中,特征提取方法与分类器彼此适应,将深度神经网络作为水下目标识别系统的分类器之后,传统特征提取方法在信噪比较低的情况下,分类结果较差,无法更好表达数据的特征提取。
发明内容
本发明的目的在于,为解决现有的水下目标识别的特征提取方法存在上述缺陷,本发明提出了一种用于水下目标识别的小波线谱特征提取方法,通过改变特征提取方法,提升基于深度学习的水下目标识别在低信噪比条件下的识别效果。
为了实现上述目的,本发明提供了一种用于水下目标识别的小波线谱特征提取方法,该方法包括:
对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;
基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;
将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;
将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息,作为分类结果。
作为上述技术方案的改进之一,所述对声呐阵列接收的信号进行频谱分析,获得每个频段内的频谱信息;具体包括:
对声呐阵列接收的信号进行波束形成,获得目标辐射噪声信号;
对获得的目标辐射噪声信号进行预处理;
对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;
基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;
利用快速傅里叶变换对得到的各个频段的小波系数对应的重构信号进行频谱分析,得到各个频段内的频谱信息。
作为上述技术方案的改进之一,所述对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;具体为:
利用小波包变换分解算法:
Figure RE-RE-GDA0002407265960000021
其中,f(t)是预处理的信号进行分帧后的每一帧信号;Ψ(t)是满足容许条件的小波函数;a是与伸缩尺度相关的尺度因子;b是与时间相关的平移因子;Wψf(a,b) 为各个频段的小波系数;
对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数。
作为上述技术方案的改进之一,所述基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;具体为:
根据公式(2),基于得到的每个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;
所述公式(2)具体为:
Figure RE-RE-GDA0002407265960000031
其中,
Figure RE-RE-GDA0002407265960000032
为第i层第j个频段的小波系数对应的重构信号;Cψ为进行信号重构的常系数;Ψa,b(t)为经过平移伸缩变换后的小波函数。
作为上述技术方案的改进之一,所述对得到的各个频段的小波系数对应的重构信号,利用快速傅里叶变换对其进行频谱分析,得到各个频段内的频谱信息;具体为:
根据公式(3),对得到的各个频段的小波系数对应的重构信号,利用快速傅里叶变换对其进行频谱分析,得到各个频段内的频谱信息
Figure RE-RE-GDA0002407265960000033
Figure RE-RE-GDA0002407265960000034
其中,Si j为第i层第j个频段内的频谱信息;FFT为快速傅里叶变换;N 为重构信号的长度。
作为上述技术方案的改进之一,所述基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;具体为:
基于获得的每个频段内的频谱信息
Figure RE-RE-GDA0002407265960000035
提取单个频段内线谱特征的最大值Pi j
Figure RE-RE-GDA0002407265960000036
将Pi j作为当前频段的特征向量,获得各个频段的特征向量
Figure RE-RE-GDA0002407265960000037
作为上述技术方案的改进之一,所述将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;具体为:
将各个频段的特征向量进行拼接,获得优化后的特征向量T'j=[T1T2...Tj];
其中,T'j表示第j个频段的特征向量经过特征拓展和拼接后得到的优化后的特征向量;
或者将各个频段的特征向量进行平均,获得优化后的特征向量 T'j=[T1+T2+...+Tj]/M;其中,M为频段数;
其中,T'j表示第j个频段的特征向量经过特征平均后得到的优化后的特征向量。
作为上述技术方案的改进之一,所述时延神经网络作为后端的分类器,所述时延神经网络共7层结构,其具体包括:
一个输入层、一个输出层和5个隐层;其中,每个隐层包括1024个节点;其中,第3层的隐层前、后各扩展2帧,第6层的隐层前、后各扩展4帧;
采用线性整流函数作为激活函数,输入层输入新的特征向量,输出层借助softmax函数,输出当前频段对应的目标类别信息,作为分类结果。
本发明还提供了一种基于小波线谱特征提取的水下目标识别系统,该系统包括:
频谱分析模块,用于对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;
特征向量获取模块,用于基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;
特征向量优化模块,用于将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;和
分类模块,用于将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息,作为分类结果。
作为上述技术方案的改进之一,所述预处理模块具体包括:
信号获取单元,用于对声呐阵列接收的信号进行波束形成,获得目标辐射噪声信号;
预处理单元,用于对获得的目标辐射噪声信号进行预处理;
分解单元,用于对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;
重构单元,用于基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;和
利用快速傅里叶变换对得到的各个频段的小波系数对应的重构信号进行频谱分析,得到各个频段内的频谱信息。
本发明与现有技术相比的有益效果是:
本发明的用于水下目标识别的小波线谱特征提取方法,可以使基于深度学习的水下目标识别在实际低信噪比环境下,实现更准确的分类效果。
附图说明
图1是本发明的一种用于水下目标识别的小波线谱特征提取方法的流程图;
图2是图1的本发明的一种用于水下目标识别的小波线谱特征提取方法中的利用小波包变换分解算法进行多尺度分解的一个具体实施例的示意图。
具体实施方式
现结合附图对本发明作进一步的描述。
本发明提供了一种用于水下目标识别的小波线谱特征提取方法,该方法在阵列波束形成信号的基础上,利用小波变换,对目标信号进行多分辨角度下的时频分解,之后利用目标频段的小波系数对信号进行重构,并进行线谱分析,可以有效的避免噪声干扰,使得目标的线谱特征被更好的表达,并提出相应的优化算法。
如图1所示,该方法包括:
对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;
具体地,对声呐阵列接收的信号进行波束形成,获得目标辐射噪声信号,降低噪声干扰;
其中,基于信号的短时平稳性,对获得的目标辐射噪声信号进行分帧,获得多帧数字信号,并依据目标辐射噪声频谱分布的先验信息,利用带通滤波器,对每一帧数字信号进行带通滤波,去除噪声干扰,再通过分层采样将数据集进行划分,获得测试集与训练集;其中,训练集用于训练时延神经网络,测试集作为预处理的信号。
对获得的目标辐射噪声信号进行预处理,获得预处理后的信号;
以16秒帧长,8秒帧移对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;
具体地,如图2所示,以小波包三层分解为例,来阐释小波包分解算法:若S表示预处理的信号,A表示低频部分,D表示高频部分,末尾的数字表示小波分解的层数,则分解具有关系:S=AAA3+AAD3+ADA3+ADD3+DAA3+DAD3+DDA3+DDD3。
利用小波包变换分解算法,对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解;其中,小波包变换分解算法具体为:
Figure RE-RE-GDA0002407265960000061
f(t)∈L2(R)
其中,f(t)是预处理的信号进行分帧后的每一帧信号作为待处理信号,该待处理信号进行小波分解的小波分解函数;Ψ(t)是满足容许条件的小波函数;a是与伸缩尺度相关的尺度因子;b是与时间相关的平移因子;Wψf(a,b)为各个频段的小波系数,即小波变换的结果。离散条件下可取a=2-j;b=2-j;k∈Z;j∈Z;k∈Z; L2(R)为平方可积空间;L2为线性平方可积;R为空间。
其中,f(t)∈L2(R)表明进行小波分解的函数需满足平方可积空间;其中,f(t) 为进行小波分解的函数,在这里表示预处理的信号进行分帧后的每一帧信号,即待处理信号进行小波分解的小波分解函数;L2(R)为平方可积空间;此处,需要强调的是待处理信号一定是平方可积。
基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;
依据目标辐射噪声频谱分布的先验信息,选择目标频段的小波系数,根据公式(2),对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;
所述公式(2)具体为:
Figure RE-RE-GDA0002407265960000062
其中,
Figure RE-RE-GDA0002407265960000063
为第i层第j个频段的小波系数对应的重构信号,即利用小波分解系数进行重构得到的重构信号;Cψ为进行信号重构的常系数;Ψa,b(t)为经过平移伸缩变换后的小波函数。
对得到的各个频段的小波系数对应的重构信号,利用快速傅里叶变换或短时傅里叶变换对其进行频谱分析,得到各个频段内的频谱信息。
具体地,根据公式(3),对得到的各个频段的小波系数对应的重构信号,利用快速傅里叶变换对其进行频谱分析,得到各个频段内的频谱信息
Figure RE-RE-GDA0002407265960000071
Figure RE-RE-GDA0002407265960000072
其中,
Figure RE-RE-GDA0002407265960000073
为第i层第j个频段内的频谱信息;FFT为快速傅里叶变换;N 为重构信号的长度。
基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;
具体地,根据公式(4),基于获得的每个频段内的频谱信息
Figure RE-RE-GDA0002407265960000074
提取单个频段内线谱特征的最大值Pi j,作为当前频段的特征向量,获得各个频段的特征向量
Figure RE-RE-GDA0002407265960000075
所述公式(4)具体为:
Figure RE-RE-GDA0002407265960000076
将各个频段的特征向量进行拼接或平均,以达到优化,获得优化后的特征向量,提高特征的表达能力;
具体地,将各个频段的特征向量进行拼接,获得优化后的特征向量 T'j=[T1 T2... Tj],可以反映目标辐射信号的时变信息,因此,使得优化后的特征的表达更为丰富;
例如,5个频段的特征向量的拼接可表示为:
T'j=[T(j-2) T(j-1) Tj T(j+1) T(j+2)]
其中,T'j表示第j个频段的特征向量经过特征拓展和拼接后得到的优化后的特征向量;
或者由于目标辐射噪声信号是稳定的而环境噪声是随机的,因此,将各个频段的特征向量进行平均,获得优化后的特征向量T'j=[T1+T2+...+Tj]/M;其中,M为频段数;可以使得目标辐射噪声信号的特征表达更为明显;
例如,5个频段的特征向量的平均可以表示为:
T'j=[T(j-2)+T(j-1)+Tj+T(j+1)+T(j+2)]/5
其中,T'j表示第j个频段的特征向量经过特征平均后得到的优化后的特征向量。
将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息。
所述时延神经网络具体地包括:一个输入层,一个输出层和5个隐层,每个隐层包括1024个节点,其中第3层前后各有2帧时延,第6层前后各有4帧时延,采用线性整流函数(ReLU)作为激活函数,输入层输入新的特征向量,输出层借助 softmax函数,输出当前频段对应的目标类别信息,作为分类输出,解决多分类问题;
其中,所述时延神经网络的训练具体为:
将原始特征及优化后的特征作为时延神经网络的输入。利用测试集对网络进行训练,该时延神经网络以最小化实际的分类输出与期望的分类输出之间的交叉熵为准则进行迭代,并通过随机梯度下降的反向传播算法,更新神经网络的权重。
分类器训练完成后,将测试集作为输入,分析其分类的准确率,比较所提出的特征提取方法的优越性及其优化方法的有效性。
通过不断迭代训练出一个多目标分类器,统计不同特征对应的识别正确率验证特征提取及其优化方法的有效性。
本发明还提供了一种基于小波线谱特征提取的水下目标识别系统,该系统包括:
频谱分析模块,用于对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;
特征向量获取模块,用于基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;
特征向量优化模块,用于将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;和
分类模块,用于将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息,作为分类结果。
所述预处理模块具体包括:
信号获取单元,用于对声呐阵列接收的信号进行波束形成,获得目标辐射噪声信号;
预处理单元,用于对获得的目标辐射噪声信号进行预处理;
分解单元,用于对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;
重构单元,用于基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;和
利用快速傅里叶变换或短时傅里叶变换对得到的各个频段的小波系数对应的重构信号进行频谱分析,得到各个频段内的频谱信息。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种基于小波线谱特征提取的水下目标识别方法,该方法包括:
对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;
基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;
将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;
将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息,作为分类结果。
2.根据权利要求1所述的方法,其特征在于,所述对声呐阵列接收的信号进行频谱分析,获得每个频段内的频谱信息;具体包括:
对声呐阵列接收的信号进行波束形成,获得目标辐射噪声信号;
对获得的目标辐射噪声信号进行预处理;
对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;
基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;
利用快速傅里叶变换对得到的各个频段的小波系数对应的重构信号进行频谱分析,得到各个频段内的频谱信息。
3.根据权利要求2所述的方法,其特征在于,所述对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;具体为:
利用小波包变换分解算法:
Figure FDA0002331819500000011
其中,f(t)是预处理的信号进行分帧后的每一帧信号;Ψ(t)是满足容许条件的小波函数;a是与伸缩尺度相关的尺度因子;b是与时间相关的平移因子;Wψf(a,b)为各个频段的小波系数;
对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数。
4.根据权利要求2所述的方法,其特征在于,所述基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;具体为:
根据公式(2),基于得到的每个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;
所述公式(2)具体为:
Figure FDA0002331819500000021
其中,
Figure FDA0002331819500000022
为第i层第j个频段的小波系数对应的重构信号;Cψ为进行信号重构的常系数;Ψa,b(t)为经过平移伸缩变换后的小波函数。
5.根据权利要求2所述的方法,其特征在于,所述对得到的各个频段的小波系数对应的重构信号,利用快速傅里叶变换对其进行频谱分析,得到各个频段内的频谱信息;具体为:
根据公式(3),对得到的各个频段的小波系数对应的重构信号,利用快速傅里叶变换对其进行频谱分析,得到各个频段内的频谱信息
Figure FDA0002331819500000028
Figure FDA0002331819500000023
其中,
Figure FDA0002331819500000024
为第i层第j个频段内的频谱信息;FFT为快速傅里叶变换;N为重构信号的长度。
6.根据权利要求1所述的方法,其特征在于,所述基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;具体为:
基于获得的每个频段内的频谱信息
Figure FDA0002331819500000025
提取单个频段内线谱特征的最大值Pi j
Figure FDA0002331819500000026
将Pi j作为当前频段的特征向量,获得各个频段的特征向量
Figure FDA0002331819500000027
7.根据权利要求1所述的方法,其特征在于,所述将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;具体为:
将各个频段的特征向量进行拼接,获得优化后的特征向量T'j=[T1 T2...Tj];
其中,T'j表示第j个频段的特征向量经过特征拓展和拼接后得到的优化后的特征向量;
或者将各个频段的特征向量进行平均,获得优化后的特征向量T'j=[T1+T2+...+Tj]/M;其中,M为频段数;
其中,T'j表示第j个频段的特征向量经过特征平均后得到的优化后的特征向量。
8.根据权利要求1所述的方法,其特征在于,所述时延神经网络作为后端的分类器,所述时延神经网络共7层结构,其具体包括:
一个输入层、一个输出层和5个隐层;其中,每个隐层包括1024个节点;其中,第3层的隐层前、后各扩展2帧,第6层的隐层前、后各扩展4帧;
采用线性整流函数作为激活函数,输入层输入新的特征向量,输出层借助softmax函数,输出当前频段对应的目标类别信息,作为分类结果。
9.一种基于小波线谱特征提取的水下目标识别系统,其特征在于,该系统包括:
频谱分析模块,用于对声呐阵列接收的信号进行频谱分析,获得各个频段内的频谱信息;
特征向量获取模块,用于基于获得的每个频段内的频谱信息,提取单个频段内线谱特征的最大值,作为当前频段的特征向量,获得各个频段的特征向量;
特征向量优化模块,用于将各个频段的特征向量进行拼接或平均,获得优化后的特征向量;和
分类模块,用于将当前频段的特征向量和优化后的特征向量一起作为新的特征向量,并将该新的特征向量输入至预先训练的时延神经网络,输出当前频段对应的目标类别信息,作为分类结果。
10.根据权利要求9所述的系统,其特征在于,所述预处理模块具体包括:
信号获取单元,用于对声呐阵列接收的信号进行波束形成,获得目标辐射噪声信号;
预处理单元,用于对获得的目标辐射噪声信号进行预处理;
分解单元,用于对预处理后的信号进行分帧,并对每一帧信号进行多尺度的分解,得到各个频段的小波系数;
重构单元,用于基于得到的各个频段的小波系数,对目标特征频段的信号进行重构,得到不同频段的小波系数对应的重构信号;和
利用快速傅里叶变换对得到的各个频段的小波系数对应的重构信号进行频谱分析,得到各个频段内的频谱信息。
CN201911342527.1A 2019-12-23 2019-12-23 一种用于水下目标识别的小波线谱特征提取方法及系统 Active CN113095113B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911342527.1A CN113095113B (zh) 2019-12-23 2019-12-23 一种用于水下目标识别的小波线谱特征提取方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911342527.1A CN113095113B (zh) 2019-12-23 2019-12-23 一种用于水下目标识别的小波线谱特征提取方法及系统

Publications (2)

Publication Number Publication Date
CN113095113A true CN113095113A (zh) 2021-07-09
CN113095113B CN113095113B (zh) 2024-04-09

Family

ID=76663266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911342527.1A Active CN113095113B (zh) 2019-12-23 2019-12-23 一种用于水下目标识别的小波线谱特征提取方法及系统

Country Status (1)

Country Link
CN (1) CN113095113B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460587A (zh) * 2022-04-11 2022-05-10 杭州应用声学研究所(中国船舶重工集团公司第七一五研究所) 一种主动声呐全景接触目标快速辨识方法
CN116973901A (zh) * 2023-09-14 2023-10-31 海底鹰深海科技股份有限公司 时频分析在声呐信号处理中的算法应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323853A (zh) * 2012-03-21 2013-09-25 中国科学院声学研究所 一种基于小波包和双谱的鱼类识别方法及系统
CN103439413A (zh) * 2013-08-07 2013-12-11 湘潭大学 一种热障涂层损伤模式自动识别的声发射信号分析方法
CN108921014A (zh) * 2018-05-21 2018-11-30 西北工业大学 一种基于改进噪声包络信号识别的螺旋桨轴频搜索方法
CN109977724A (zh) * 2017-12-27 2019-07-05 中国科学院声学研究所 一种水下目标分类方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323853A (zh) * 2012-03-21 2013-09-25 中国科学院声学研究所 一种基于小波包和双谱的鱼类识别方法及系统
CN103439413A (zh) * 2013-08-07 2013-12-11 湘潭大学 一种热障涂层损伤模式自动识别的声发射信号分析方法
CN109977724A (zh) * 2017-12-27 2019-07-05 中国科学院声学研究所 一种水下目标分类方法
CN108921014A (zh) * 2018-05-21 2018-11-30 西北工业大学 一种基于改进噪声包络信号识别的螺旋桨轴频搜索方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAWEI REN 等: "Feature Analysis of Passive Underwater Targets Recognition Based on Deep Neural Network", IEEE, pages 1 - 5 *
邱政 等: "一种基于频谱细化技术的水下目标识别方法", 电子科技, vol. 28, no. 7 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460587A (zh) * 2022-04-11 2022-05-10 杭州应用声学研究所(中国船舶重工集团公司第七一五研究所) 一种主动声呐全景接触目标快速辨识方法
CN114460587B (zh) * 2022-04-11 2022-07-19 杭州应用声学研究所(中国船舶重工集团公司第七一五研究所) 一种主动声呐全景接触目标快速辨识方法
CN116973901A (zh) * 2023-09-14 2023-10-31 海底鹰深海科技股份有限公司 时频分析在声呐信号处理中的算法应用

Also Published As

Publication number Publication date
CN113095113B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN110634502B (zh) 基于深度神经网络的单通道语音分离算法
CN109738887B (zh) 一种适用于微动干扰场景的目标人体运动状态识别方法
CN103117059A (zh) 一种基于张量分解的语音信号特征提取方法
CN113095113B (zh) 一种用于水下目标识别的小波线谱特征提取方法及系统
CN112183225B (zh) 一种基于概率潜在语义分析的水下目标信号特征提取方法
CN112580486A (zh) 一种基于雷达微多普勒信号分离的人体行为分类方法
CN116153329A (zh) 一种基于cwt-lbp的声音信号时频纹理特征提取方法
Chi-Durán et al. Automatic detection of P-and S-wave arrival times: new strategies based on the modified fractal method and basic matching pursuit
Do et al. Speech Separation in the Frequency Domain with Autoencoder.
CN116576956A (zh) 基于分布式光纤声波传感的多源振动信号分离方法
CN115166514A (zh) 一种基于自适应频谱分割去噪的电机故障识别方法及系统
Li et al. Automated classification of Tursiops aduncus whistles based on a depth-wise separable convolutional neural network and data augmentation
CN113238193B (zh) 一种多分量联合重构的sar回波宽带干扰抑制方法
CN112927723A (zh) 基于深度神经网络的高性能抗噪语音情感识别方法
Limin et al. Low probability of intercept radar signal recognition based on the improved AlexNet model
CN108280416A (zh) 一种小波跨尺度相关滤波的宽带水声信号处理方法
Chen et al. Whale vocalization classification using feature extraction with resonance sparse signal decomposition and ridge extraction
CN113940638B (zh) 基于频域双特征融合的脉搏波信号识别分类方法
CN110032968A (zh) 基于双树复小波和自适应半软阈值法的去噪方法
CN111785262B (zh) 一种基于残差网络及融合特征的说话人年龄性别分类方法
CN112434716B (zh) 一种基于条件对抗神经网络的水下目标数据扩增方法及系统
CN113066483B (zh) 一种基于稀疏连续约束的生成对抗网络语音增强方法
Xu et al. Research on Heart Sound Denoising Method Based on CEEMDAN and Optimal Wavelet
Ju et al. An adaptive sparsity estimation KSVD dictionary construction method for compressed sensing of transient signal
CN110659629A (zh) 一种基于双谱和深度卷积神经网络的微弱x射线脉冲星信号辨识方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant