CN113094907A - 一种用于空调负荷和电动汽车充电负荷联合调度方法 - Google Patents

一种用于空调负荷和电动汽车充电负荷联合调度方法 Download PDF

Info

Publication number
CN113094907A
CN113094907A CN202110405965.9A CN202110405965A CN113094907A CN 113094907 A CN113094907 A CN 113094907A CN 202110405965 A CN202110405965 A CN 202110405965A CN 113094907 A CN113094907 A CN 113094907A
Authority
CN
China
Prior art keywords
load
time
charging
day
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110405965.9A
Other languages
English (en)
Inventor
丁研
鄢睿
王翘楚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110405965.9A priority Critical patent/CN113094907A/zh
Publication of CN113094907A publication Critical patent/CN113094907A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Abstract

本发明公开一种空调负荷和电动汽车充电负荷联合调度的日前优化方法。包括步骤1)建立考虑电动汽车充电负荷的建筑总用电负荷日前预测模型;步骤2)从系统运行经济性和电网友好性两方面对该建筑总用电负荷日前预测模型进行多目标优化;步骤3)建立综合评价计算方法,在帕累托前沿上确定综合性最佳的运行方案。本发明基于电动汽车充电负荷和空调负荷两种需求响应资源均可为电网运行提供灵活性,且在时间上具有互补的特点,建立了同时考虑两者的建筑总用电负荷日前预测模型,提出一种空调负荷和电动汽车充电负荷联合调度的日前优化方法。

Description

一种用于空调负荷和电动汽车充电负荷联合调度方法
技术领域
本发明涉及建筑节能领域,尤其涉及到一种用于空调负荷和电动汽车充电负荷联合调度方法
背景技术
在建筑柔性负荷中,空调负荷占比大且调节灵活,可通过夜间预冷转移部分白天的峰值负荷,而一定规模的电动汽车则可于白天工作地点停泊时进行充电负荷的调度,与空调负荷在时间上具有互补性,两种需求响应资源均可为电网运行提供可观的灵活性。
然而,目前多单独对空调负荷或电动汽车负荷进行管理,将两种需求响应资源进行联合优化的研究较少。在目前已有的联合优化研究中,大多数要么不考虑热力学过程,忽略了空调负荷的时变性特点,仅将空调负荷大致视为常数,要么对于电动汽车充电负荷的管理仅考虑其充电功率,而未在时间层面上对其充电进行有序优化。且在目前已有的联合运行优化策略研究中,同时从电网友好性、经济性以及热舒适性三方面进行评价的研究较少。因此要提出一种空调负荷和电动汽车充电负荷联合调度的日前优化方法,进而对未来建筑系统运行策略提供参考。
发明内容
本发明的目的在于克服上述现有技术中的不足,提出了一种空调负荷和电动汽车充电负荷联合调度的日前优化方法。本发明所采取的技术方案,包括以下步骤:
1)建立考虑电动汽车充电负荷的建筑总用电负荷日前预测模型:通过收集现场测试数据,建立基于ARX的空调负荷日前预测模型,并验证其预测准确性和多场景下的适用性;通过调研问卷回收数据,建立基于蒙特卡洛模拟和统计学方法的电动汽车充电负荷期望;在此基础上,得到建筑总用电负荷日前预测模型。
2)从系统运行经济性和电网友好性两方面对该建筑总用电负荷日前预测模型进行多目标优化:采用多目标遗传寻优算法,以系统的电网友好性和运行经济性为目标函数,以室内温度和电动汽车开始充电时刻为优化变量,根据实际情况确定约束条件,对上述日前预测模型进行优化计算。
3)建立综合评价计算方法,在帕累托前沿上确定综合性最佳的运行方案:建立方案优化效果的综合评价计算方法,找出帕累托前沿上的得分最优点,将其确定为综合性最佳的运行方案。
其中所述步骤1)建立考虑电动汽车充电负荷的建筑总用电负荷日前预测模型,具体为:
(1)建立基于ARX的空调负荷日前预测模型
首先建立基于ARX的冷负荷预测模型,该线性模型的数学表达式如下:
A(z)y(τ)=B(z)u(τ)+e(τ) (1)
A(z)=1+a1z-1+…+anaz-na (2)
B(z)=b0+b1z-1+…+bnbz-nb (3)
式中,A(z)和B(z)为关于时移算子z的多项式;y(τ)和u(τ)分别为模型的输出变量和输入变量;e(τ)为误差,a,b为回归系数。本发明中用于预测的ARX模型整理如下:
Figure BDA0003022344200000021
式中,
Figure BDA0003022344200000022
为τ时刻的预测冷负荷,ui(τ-nki),…,ui(τ-nki-NBi+1)为影响此刻冷负荷的若干历史时刻的外部输入变量,外部输入变量包括室外干球温度、相对湿度、太阳辐射、人员在室率和室内温度,故i={OUT,HUM,RAD,OCC,IN}。NA,NB分别为参与ARX建模的历史时刻冷负荷个数以及各历史时刻外部输入变量的个数。c为常数。
其次,通过调整空调系统运行时间及运行温度,制定多种不同的空调系统运行情景,在现场监测并采集不同运行情景下的上述外部输入变量和冷负荷值。进一步的,测量内容包括:(1)供回水逐时温差以及空调负荷侧水管的流量,通过计算得到逐时冷负荷;(2)室外气象参数,包括室外干球温度、室外空气相对湿度以及太阳辐射;(3)室内变量,包括内部逐时在室率、室内温度、照明设备以及办公设备的逐时使用率;(4)地源热泵机组的逐时功耗。
采用其中一种情景对ARX冷负荷预测模型进行参数辨识,其他情景均用于验证该模型在不同情境下的适用性。本发明采用最小二乘法对ARX模型中的各未知参数进行辨识,通过最小化误差的平方和寻找数据的最佳函数匹配。为了检测和评价辨识结果,引入相关系数(coefficient ofcorrelation,R2)来计算通过ARX模型预测的冷负荷与真实负荷之间的差异,以此来评价模型的预测准确程度,相关系数的表达式如下:
Figure BDA0003022344200000031
式中,y(τ)为各时刻冷负荷的真实值,
Figure BDA0003022344200000032
为各时刻冷负荷真实值的平均值,
Figure BDA0003022344200000033
为通过ARX模型计算的每时刻冷负荷的预测值。
接着,根据现场测试数据计算得到逐时的COP和PLR数据对,并通过拟合得到以下关系式:
COP=β1·PLR22·PLR+β3 (6)
式中,β1、β2和β3均为拟合系数。
最后,通过下式得到冷负荷产生的空调负荷:
Figure BDA0003022344200000034
式中,CL为逐时冷负荷,kW;PHVAC为逐时空调负荷,kW。
由此,即可得到基于ARX的空调负荷日前预测模型。
(2)建立电动汽车充电负荷日前预测模型
本发明针对出勤用电动汽车,其均在工作地点充电,且随到随充,则规定起始充电时间即为其上班到达时间,行驶里程定义为从家到工作地点的距离,离开时间为下班时间。假设充电开始时刻、日行驶里程、充电功率为相互独立的随机变量。
首先根据现场调研收集建筑内人员的驾车出行规律,其中调研问卷中的问题应包括:(1)到达工作地点的时刻;(2)下班时刻;(3)家离工作地点的距离。以到达工作地点的时刻为开始充电的时刻,以下班时刻为离开时刻。对其进行处理并用极大似然估计的方法得到电动汽车起始充电时刻的概率密度函数fs(x),距工作地点距离的概率密度函数fD(x),以及员工离开时间的概率密度函数fL(x):
Figure BDA0003022344200000035
Figure BDA0003022344200000036
Figure BDA0003022344200000037
式中,σ和μ均为常数。
其次,电动汽车充电所耗时间长度可估计为:
Figure BDA0003022344200000041
式中:tc为充电时间长度,h;S为日行驶里程,km;W100为百km的耗电量,kW·h/km;Pc为充电功率,kW。由于电动汽车的日行驶里程与其充电功率相互独立,则可求出充电时长的概率密度分布函数
Figure BDA0003022344200000042
Figure BDA0003022344200000043
电动汽车在1天中某时刻t0的充电状态,设定正在充电时,随机变量
Figure BDA0003022344200000044
为1;已经充好电或未开始充电时,
Figure BDA0003022344200000045
为0。其概率满足下式:
Figure BDA0003022344200000046
Figure BDA0003022344200000047
式中:
Figure BDA0003022344200000048
为充电开始时刻和充电时长的联合概率分布函数,由于根据假设2个随机变量相互独立,则
Figure BDA0003022344200000049
其中fs
Figure BDA00030223442000000410
分别为充电开始时刻和充电时长的概率分布函数;ts为开始充电时刻。则电动汽车在1天内某时刻t0的功率需求为
Figure BDA00030223442000000411
联立上式可求出1天中各时刻单台电动汽车充电需求的概率分布函数。再利用蒙特卡洛模拟方法,求出1天内24个时刻单台电动汽和N台相同电动汽车充电功率需求的期望。
(3)建立建筑总用电负荷模型
除了空调系统用电负荷和电动汽车充电负荷外,总用电负荷还应包括办公设备用电和照明用电,其计算式如下:
Plight=klight·M·Rlight (14)
Pequip=kequip·M·Requip (15)
式中:Plight和Pequip分别为照明和设备的用电负荷,kW;klight和kequip分别为照明和设备的负荷密度,kW/m2;M为建筑使用面积,m2;Rlight和Requip分别为照明和设备的逐时使用率。
则空调系统用电负荷,电动汽车充电负荷,照明用电负荷以及设备用电负荷共同构成建筑总用电负荷,最终得到建筑逐时用电总负荷日前预测模型:
Pt=PHVAC+PEV+Plight+Pequip (16)
其中,所述步骤2)从系统运行经济性和电网友好性两方面对该建筑总用电负荷日前预测模型进行多目标优化,具体为:
(1)确定目标函数
优化目标之一为系统的电网友好性,从负荷特性来讲,该目标有利于降低系统的负荷波动,实现移峰填谷的优化效果,有助于保障电网运行的稳定性和安全性。该目标可表示为:
Figure BDA0003022344200000051
Figure BDA0003022344200000052
式中,Pt为系统第t时刻的总负荷,kW;Paverage为一天内逐时负荷的平均值,kW。
优化目标之二为系统的运行经济性,以在分时电价下尽可能减少费用支出。该目标可表示为:
Figure BDA0003022344200000053
式中,Pt为t时刻的总用电负荷,kW;αt为t时刻的分时电价,kWh/元。
(2)确定优化变量
本发明提出的联合优化方法同时对空调负荷和电动汽车充电负荷进行管理,对于空调负荷,通过调整空调温度设定,利用建筑热质量的储热能力对建筑进行预冷,从而达到负荷转移的目的;对于电动汽车充电负荷,通过调整每辆车的开始充电时刻,使停泊在工作地点的车辆形成有序充电,也可到达负荷转移的目的。故优化变量为逐时空调温度和每台电动汽车的开始充电时刻。
(3)确定约束条件
首先是室温约束。工作时段为满足人体热舒适要求,室温调节最低不能低于24℃,最高不能超过28℃;非工作时段建筑内无人,故可放宽室温调节范围,最低为15℃,最高为30℃:
24≤Ton≤28 (20)
15≤Toff≤30 (21)
其次是电动汽车充电起始充电时刻约束。单台电动汽车最早开始充电时刻为各自到达的时刻,起始充电时刻加上各自的充电时长不能超过各自离开工作地点的时刻:
tarrive,i≤ts,i≤tleave,i-tc,i (22)
式中,tarrive,i为第i辆车的到达时刻,ts,i为第i辆车的起始充电时刻,tleave,i为第i辆车的离开时刻,tc,i为第i辆车的充电持续时长。
最后是冷水机组运行约束。冷水机组运行过程中可提供的最大冷量为其额定制冷量,即PLR最大不能超过1:
PLRt≤1 (23)
通过上述(1)-(3)构建好函数后,采用多目标遗传寻优算法对其进行计算。
其中,所述步骤3)在帕累托前沿上确定综合性最佳的运行方案,具体为:
通过步骤2中多目标遗传算法的计算,得到多组最优解,以电网友好性和运行经济性两个维度绘制其帕累托前沿曲线。为均衡考虑策略对电网友好性和运行费用的优化效果,针对各帕累托前沿,采用下式对前沿上的各点进行计算:
Figure BDA0003022344200000061
式中:OverallScorei为某策略的帕累托前沿上第i个方案的综合评分;operationfeei为第i个方案的运行费用,dollar;operationfeeMax为该帕累托前沿上所有方案中最大的运行费用,dollar;gridfriendlinessi为第i个方案的电网友好性,gridfriendlinessMax为该帕累托前沿上所有方案中最大的电网友好性。
取所有方案中得分最小的为综合性最佳方案。
此外,对选出的方案计算其逐时PMV,判断其是否符合热舒适性,表达式如下:
Figure BDA0003022344200000071
Figure BDA0003022344200000072
hc=8.3v0.5 (40)
fcl=1.0+0.25Icl (41)
式中:PMV为预计平均热感觉指数;M为代谢率,W/m2;W为外部做工消耗的热量(对大多数活动可忽略不计),W/m2;v为风速,m/s;Icl为服装热阻,m2·℃/W;fcl为着装时人的体表面积与裸露时人的体表面积之比;ta为空气温度,℃;
Figure BDA0003022344200000073
为平均辐射温度,℃;Pa为水蒸气分压力,Pa;hc为对流换热系数,W/(m2·℃);tcl为服装表面温度,℃。认为-1≤PMV≤1时室内温度满足工作人员的热舒适要求。
本发明的有益效果
1、提出了一种联合优化方法,同时对空调负荷和电动汽车充电负荷进行管理,综合考虑热力学过程,以及空调负荷的时变性特点,并在时间层面上对电动汽车的起始充电时刻进行有序优化,弥补了目前运行策略在这方面的不足,并可适应未来电动汽车及充电桩设施的广泛普及。
2、所提出的一种空调负荷和电动汽车充电负荷联合调度的日前优化方法,可在满足室内人员热舒适性要求的前提下,对系统的电网友好性和运行经济性进行综合、全面的改善。
附图说明
图1为本发明的技术流程图;
图2为某建筑的ARX冷负荷预测模型在不同情景下的预测值与实测值的对比图;
图3为某建筑人员开始充电时刻的概率密度分布拟合图;
图4为某建筑人员家距工作地点距离的概率密度分布拟合图;
图5为某建筑人员电动汽车充电时长的概率密度分布拟合图;
图6为单台电动汽车逐时充电需求的期望拟合图;
图7为某建筑建筑总用电负荷曲线图;
图8为某建筑联合优化方法的帕累托前沿图。
具体实施方法
下面通过具体实施例和附图对本发明做进一步说明。本发明的实施例是为了更好地使本领域的技术人员更好地理解本发明,并不对本发明做任何的限制。
如图1所示,本实施例提供一种空调和电动汽车充电负荷联合调度的日前优化方法,包括以下步骤:
步骤1:建立考虑电动汽车充电负荷的建筑总用电负荷日前预测模型。
实施例中制定了三种不同的空调运行情景,分别为:工作时间段(8:00-20:00)温度设定为26℃,非工作时间段(00:00-7:00,21:00-23:00)温度设定为为28℃;全天温度设定为26℃;工作时间段温度设定为26℃,非工作时间段关机。各运行15天,现场采集了室内温度、室外干球温度、室外相对湿度、太阳辐射强度、人员在室率以及设备使用率等数据。以其中一种情景的数据对ARX冷负荷预测模型进行辨识,其相关性系数为0.987,具有较高的预测准确性。其辨识结果为:
CL(τ)=7.6648×OUT(τ)-0.3319×OUT(τ-1)-74.93×HUM(τ)+74.08×HUM(τ-1)+0.0172×RAD(τ)+0.0095×RAD(τ-1)-40.8959×IN(τ)+7.0141×IN(τ-1)+18.7737×OCC(τ)+92.7645×OCC(τ-1)+0.2564×CL(τ-1)-0.0439×CL(τ-2)+770.5876
(42)
拟议的ARX预测模型在另外两种情况下的相关系数分别为0.9511和0.9890,均大于0.95,表明对于不同的温度设置情景下的预测均具有良好的准确性。上述预测对比结果见图2(a)-2(c)。
实施例中,选择天津市夏季典型气象日气象信息,根据现场测试数据计算得到逐时的COP和PLR数据对,并通过拟合得到以下关系式:
COP=-8.378×PLR2+10.846×PLR+1.6198 (43)
用上述方法预测冷负荷,并得到空调系统用电负荷。
实施例中,通过现场回收的调研问卷数据,得到电动汽车起始充电时刻的概率密度分布函数,如式(44)和图3所示;距工作地点距离的概率密度分布函数如式(45)和图4所示。联立式(44)、式(45)和式(12),可求得电动汽车所需的充电时长的概率密度分布函数如图5所示。
Figure BDA0003022344200000081
Figure BDA0003022344200000091
实施例中,采用蒙特卡洛随机方法,取10000个样本,重复模拟10次,得到一天24个时刻单台电动汽车充电需求的期望,如图6所示。以此类推,把每时刻各车辆的充电期望相加即可得到一定规模相同电动汽车的充电负荷。
最后,根据现场测量的人员在室率和设备使用率,得到逐时照明和设备用电负荷,将它们和空调负荷、电动汽车充电负荷相加,得到建筑总用电负荷日前预测模型,其负荷曲线如图7所示。
步骤2:从系统运行经济性和电网友好性两方面对该建筑总用电负荷日前预测模型进行多目标优化。采用多目标遗传寻优算法,以系统的电网友好性和运行经济性为目标函数,以室内温度和电动汽车开始充电时刻为优化变量,根据实际情况确定约束条件,对上述日前预测模型进行优化计算。
步骤3:在帕累托前沿上确定综合性最佳的运行方案。
根据多目标优化得到实施例的帕累托前沿曲线如图8所示,由于运行费用和电网友好性理论上均为越小优化效果越好,故选择帕累托前沿线上综合评分最小的点作为综合性最佳的运行方案,已在图8中标出。并经过热舒适性计算,其逐时PMV均在-1~+1区间内,满足室内人员热舒适性要求。图8中的一条原始运行费用线和一条原始系统电网友好性线将其分为4个象限,在该实例中,本发明所提出的联合优化方法的帕累托前沿均位于左下区域,对费用和电网友好性均有较大改善,其中对电网友好性的改善尤为显著
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种空调负荷和电动汽车充电负荷联合调度的日前优化方法,其特征是,包括下列步骤:
1)建立考虑电动汽车充电负荷的建筑总用电负荷日前预测模型:通过收集现场测试数据,建立基于ARX的空调负荷日前预测模型,并验证其预测准确性和多场景下的适用性;通过调研问卷回收数据,建立基于蒙特卡洛模拟和统计学方法的电动汽车充电负荷期望;在此基础上,得到建筑总用电负荷日前预测模型。
2)从系统运行经济性和电网友好性两方面对该建筑总用电负荷日前预测模型进行多目标优化:采用多目标遗传寻优算法,以系统的电网友好性和运行经济性为目标函数,以室内温度和电动汽车开始充电时刻为优化变量,根据实际情况确定约束条件,对上述日前预测模型进行优化计算。
3)建立综合评价计算方法,在帕累托前沿上确定综合性最佳的运行方案:建立方案优化效果的综合评价计算方法,找出帕累托前沿上的得分最优点,将其确定为综合性最佳的运行方案。
2.根据权利要求1所述的计算方法,其特征是:所述步骤1)建立考虑电动汽车充电负荷的建筑总用电负荷日前预测模型,具体为:
(1)建立基于ARX的空调负荷日前预测模型
首先建立基于ARX的冷负荷预测模型,该线性模型的数学表达式如下:
A(z)y(τ)=B(z)u(τ)+e(τ) (1)
A(z)=1+a1z-1+…+anaz-na (2)
B(z)=b0+b1z-1+…+bnbz-nb (3)
式中,A(z)和B(z)为关于时移算子z的多项式;y(τ)和u(τ)分别为模型的输出变量和输入变量;e(τ)为误差,a,b为回归系数。本发明中用于预测的ARX模型整理如下:
Figure FDA0003022344190000011
式中,
Figure FDA0003022344190000012
为τ时刻的预测冷负荷,ui(τ-nki),…,ui(τ-nki-NBi+1)为影响此刻冷负荷的若干历史时刻的外部输入变量,外部输入变量包括室外干球温度、相对湿度、太阳辐射、人员在室率和室内温度,故i={OUT,HUM,RAD,OCC,IN}。NA,NB分别为参与ARX建模的历史时刻冷负荷个数以及各历史时刻外部输入变量的个数。c为常数。
其次,通过调整空调系统运行时间及运行温度,制定多种不同的空调系统运行情景,在现场监测并采集不同运行情景下的上述外部输入变量和冷负荷值。
进一步的,测量内容包括:(1)供回水逐时温差以及空调负荷侧水管的流量,通过计算得到逐时冷负荷;(2)室外气象参数,包括室外干球温度、室外空气相对湿度以及太阳辐射;(3)室内变量,包括内部逐时在室率、室内温度、照明设备以及办公设备的逐时使用率;(4)地源热泵机组的逐时功耗
采用其中一种情景对ARX冷负荷预测模型进行参数辨识,其他情景均用于验证该模型在不同情境下的适用性。本发明采用最小二乘法对ARX模型中的各未知参数进行辨识,通过最小化误差的平方和寻找数据的最佳函数匹配。为了检测和评价辨识结果,引入相关系数(coefficient of correlation,R2)来计算通过ARX模型预测的冷负荷与真实负荷之间的差异,以此来评价模型的预测准确程度,相关系数的表达式如下:
Figure FDA0003022344190000021
式中,y(τ)为各时刻冷负荷的真实值,
Figure FDA0003022344190000022
为各时刻冷负荷真实值的平均值,
Figure FDA0003022344190000023
为通过ARX模型计算的每时刻冷负荷的预测值。
接着,根据现场测试数据计算得到逐时的COP和PLR数据对,并通过拟合得到以下关系式:
COP=β1·PLR22·PLR+β3 (6)
式中,β1、β2和β3均为拟合系数。
最后,通过下式得到冷负荷产生的空调负荷:
Figure FDA0003022344190000024
式中,CL为逐时冷负荷,kW;PHVAC为逐时空调负荷,kW。
由此,即可得到基于ARX的空调负荷日前预测模型。
(2)建立电动汽车充电负荷日前预测模型
本发明针对出勤用电动汽车,其均在工作地点充电,且随到随充,则规定起始充电时间即为其上班到达时间,行驶里程定义为从家到工作地点的距离,离开时间为下班时间。假设充电开始时刻、日行驶里程、充电功率为相互独立的随机变量。
首先根据现场调研收集建筑内人员的驾车出行规律,其中调研问卷中的问题应包括:(1)到达工作地点的时刻;(2)下班时刻;(3)家离工作地点的距离。以到达工作地点的时刻为开始充电的时刻,以下班时刻为离开时刻。对收集的数据进行处理,并用极大似然估计的方法得到电动汽车起始充电时刻的概率密度函数fs(x),距工作地点距离的概率密度函数fD(x),以及员工离开时刻的概率密度函数fL(x):
Figure FDA0003022344190000031
Figure FDA0003022344190000032
Figure FDA0003022344190000033
式中,σ和μ均为常数。
其次,电动汽车充电所耗时间长度可估计为:
Figure FDA0003022344190000034
式中:tc为充电时间长度,h;S为日行驶里程,km;W100为百km的耗电量,kW·h/km;Pc为充电功率,kW。由于电动汽车的日行驶里程与其充电功率相互独立,则可求出充电时长的概率密度分布函数
Figure FDA0003022344190000035
Figure FDA0003022344190000036
电动汽车在1天中某时刻t0的充电状态,设定正在充电时,随机变量
Figure FDA0003022344190000037
为1;已经充好电或未开始充电时,
Figure FDA0003022344190000038
为0。其概率满足下式:
Figure FDA0003022344190000039
Figure FDA00030223441900000310
式中:
Figure FDA00030223441900000311
为充电开始时刻和充电时长的联合概率分布函数,由于根据假设2个随机变量相互独立,则
Figure FDA00030223441900000312
其中fs
Figure FDA00030223441900000313
分别为充电开始时刻和充电时长的概率分布函数;ts为开始充电时刻。则电动汽车在1天内某时刻t0的功率需求为
Figure FDA0003022344190000041
联立上式可求出1天中各时刻单台电动汽车充电需求的概率分布函数。再利用蒙特卡洛模拟方法,求出1天内24个时刻单台电动汽和N台相同电动汽车充电功率需求的期望。
(3)建立建筑总用电负荷模型
除了空调系统用电负荷和电动汽车充电负荷外,总用电负荷还应包括办公设备用电和照明用电,其计算式如下:
Plight=klight·M·Rlight (14)
Pequip=kequip·M·Requip (15)
式中:Plight和Pequip分别为照明和设备的用电负荷,kW;klight和kequip分别为照明和设备的负荷密度,kW/m2;M为建筑使用面积,m2;Rlight和Requip分别为照明和设备的逐时使用率。
则空调系统用电负荷,电动汽车充电负荷,照明用电负荷以及设备用电负荷共同构成建筑总用电负荷,最终得到建筑逐时用电总负荷日前预测模型:
Pt=PHVAC+PEV+Plight+Pequip (16)
3.根据权利要求1所述的计算方法,其特征是:所述步骤2)从系统运行经济性和电网友好性两方面对该建筑总用电负荷日前预测模型进行多目标优化,具体为:
(1)确定目标函数
优化目标之一为系统的电网友好性,从负荷特性来讲,该目标有利于降低系统的负荷波动,实现移峰填谷的优化效果,有助于保障电网运行的稳定性和安全性。该目标可表示为:
Figure FDA0003022344190000042
Figure FDA0003022344190000043
式中,Pt为系统第t时刻的总负荷,kW;Paverage为一天内逐时负荷的平均值,kW。
优化目标之二为系统的运行经济性,以在分时电价下尽可能减少费用支出。该目标可表
Figure FDA0003022344190000051
式中,Pt为t时刻的总用电负荷,kW;αt为t时刻的分时电价,kWh/元。
(2)确定优化变量
本发明提出的联合优化方法同时对空调负荷和电动汽车充电负荷进行管理,对于空调负荷,通过调整空调温度设定,利用建筑热质量的储热能力对建筑进行预冷,从而达到负荷转移的目的;对于电动汽车充电负荷,通过调整每辆车的开始充电时刻,使停泊在工作地点的车辆形成有序充电,也可到达负荷转移的目的。故优化变量为逐时空调温度和每台电动汽车的开始充电时刻。
(3)确定约束条件
首先是室温约束。工作时段为满足人体热舒适要求,室温调节最低不能低于24℃,最高不能超过28℃;非工作时段建筑内无人,故可放宽室温调节范围,最低为15℃,最高为30℃:
24≤Ton≤28 (20)
15≤Toff≤30 (21)
其次是电动汽车充电起始充电时刻约束。单台电动汽车最早开始充电时刻为各自到达的时刻,起始充电时刻加上各自的充电时长不能超过各自离开工作地点的时刻:
tarrive,i≤ts,i≤tleave,i-tc,i (22)
式中,tarrive,i为第i辆车的到达时刻,ts,i为第i辆车的起始充电时刻,tleave,i为第i辆车的离开时刻,tc,i为第i辆车的充电持续时长。
最后是冷水机组运行约束。冷水机组运行过程中可提供的最大冷量为其额定制冷量,即PLR最大不能超过1:
PLRt≤1 (23)
通过上述步骤构建好函数后,采用多目标遗传寻优算法对其进行计算。
4.根据权利要求1所述的计算方法,其特征是:所述步骤3)建立综合评价计算方法,在帕累托前沿上确定综合性最佳的运行方案,具体为:
通过步骤2中多目标遗传算法的计算,得到多组最优解,以电网友好性和运行经济性两个维度绘制其帕累托前沿曲线。为均衡考虑策略对电网友好性和运行费用的优化效果,针对各帕累托前沿,采用下式对前沿上的各点进行计算:
Figure FDA0003022344190000061
式中:OverallScorei为某策略的帕累托前沿上第i个方案的综合评分;operationfeei为第i个方案的运行费用,元;operationfeeMax为该帕累托前沿上所有方案中最大的运行费用,元;gridfriendlinessi为第i个方案的电网友好性,kW;gridfriendlinessMax为该帕累托前沿上所有方案中最大的电网友好性,kW。
由于本方法旨在确定一种能兼顾运行经济性和电网友好性的方案,故两个指标的数值都最好能是帕累托前沿上最小的,式(37)的值越小,代表费用越低、电网友好性越好,故取得分最小的为综合性最佳方案。
此外,对选出的方案计算其逐时PMV,判断其是否符合热舒适性,表达式如下:
Figure FDA0003022344190000062
hc=8.3v0.5 (40)
fcl=1.0+0.25Icl (41)
式中:PMV为预计平均热感觉指数;M为代谢率,W/m2;W为外部做工消耗的热量(对大多数活动可忽略不计),W/m2;v为风速,m/s;Icl为服装热阻,m2·℃/W;fcl为着装时人的体表面积与裸露时人的体表面积之比;ta为空气温度,℃;
Figure FDA0003022344190000063
为平均辐射温度,℃;Pa为水蒸气分压力,Pa;hc为对流换热系数,W/(m2·℃);tcl为服装表面温度,℃。认为-1≤PMV≤1时室内温度满足工作人员的热舒适要求。
CN202110405965.9A 2021-04-15 2021-04-15 一种用于空调负荷和电动汽车充电负荷联合调度方法 Pending CN113094907A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110405965.9A CN113094907A (zh) 2021-04-15 2021-04-15 一种用于空调负荷和电动汽车充电负荷联合调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110405965.9A CN113094907A (zh) 2021-04-15 2021-04-15 一种用于空调负荷和电动汽车充电负荷联合调度方法

Publications (1)

Publication Number Publication Date
CN113094907A true CN113094907A (zh) 2021-07-09

Family

ID=76677884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110405965.9A Pending CN113094907A (zh) 2021-04-15 2021-04-15 一种用于空调负荷和电动汽车充电负荷联合调度方法

Country Status (1)

Country Link
CN (1) CN113094907A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904331A (zh) * 2021-11-03 2022-01-07 国网四川省电力公司电力科学研究院 变频空调集群参与电力系统辅助调控方法、装置和系统
CN114565167A (zh) * 2022-03-03 2022-05-31 天津大学 一种新型热力入口负荷动态预测及调控方法
CN115018184A (zh) * 2022-06-28 2022-09-06 天津大学 一种基于需求响应的空调系统双层优化调度方法
CN117172516A (zh) * 2023-11-03 2023-12-05 深圳航天科创泛在电气有限公司 充电桩动态调度决策方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100256958A1 (en) * 2007-11-12 2010-10-07 The Industry & Academic Cooperation In Chungnam National University Method for predicting cooling load
CN106022597A (zh) * 2016-05-17 2016-10-12 西南交通大学 含光伏智能小区电动汽车与可控负荷两阶段优化调度方法
CN108269008A (zh) * 2017-12-29 2018-07-10 天津大学 考虑用户满意度和配网可靠性的充电设施优化规划方法
CN108876052A (zh) * 2018-06-28 2018-11-23 中国南方电网有限责任公司 电动汽车充电负荷预测方法、装置和计算机设备
CN108944531A (zh) * 2018-07-24 2018-12-07 河海大学常州校区 一种电动汽车有序充电控制方法
CN110458340A (zh) * 2019-07-25 2019-11-15 天津大学 基于模式分类的建筑空调冷负荷自回归预测方法
CN112016728A (zh) * 2019-05-30 2020-12-01 天津大学 一种基于混合储能技术的建筑需求侧能源供给技术方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100256958A1 (en) * 2007-11-12 2010-10-07 The Industry & Academic Cooperation In Chungnam National University Method for predicting cooling load
CN106022597A (zh) * 2016-05-17 2016-10-12 西南交通大学 含光伏智能小区电动汽车与可控负荷两阶段优化调度方法
CN108269008A (zh) * 2017-12-29 2018-07-10 天津大学 考虑用户满意度和配网可靠性的充电设施优化规划方法
CN108876052A (zh) * 2018-06-28 2018-11-23 中国南方电网有限责任公司 电动汽车充电负荷预测方法、装置和计算机设备
CN108944531A (zh) * 2018-07-24 2018-12-07 河海大学常州校区 一种电动汽车有序充电控制方法
CN112016728A (zh) * 2019-05-30 2020-12-01 天津大学 一种基于混合储能技术的建筑需求侧能源供给技术方法
CN110458340A (zh) * 2019-07-25 2019-11-15 天津大学 基于模式分类的建筑空调冷负荷自回归预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王浩林 等: "《基于时刻充电概率的电动汽车充电负荷预测方法》", 《电力自动化设备》 *
贾艳芳 等: "《基于多目标分子动理论的楼宇负荷用电调度优化》", 《电网技术》 *
陈丹丹 等: "《多台冷水机组联合运行空调系统的负荷优化分配》", 《上海交通大学学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904331A (zh) * 2021-11-03 2022-01-07 国网四川省电力公司电力科学研究院 变频空调集群参与电力系统辅助调控方法、装置和系统
CN113904331B (zh) * 2021-11-03 2024-03-08 国网四川省电力公司电力科学研究院 变频空调集群参与电力系统辅助调控方法、装置和系统
CN114565167A (zh) * 2022-03-03 2022-05-31 天津大学 一种新型热力入口负荷动态预测及调控方法
CN114565167B (zh) * 2022-03-03 2022-11-18 天津大学 一种热力入口负荷动态预测及调控方法
CN115018184A (zh) * 2022-06-28 2022-09-06 天津大学 一种基于需求响应的空调系统双层优化调度方法
CN115018184B (zh) * 2022-06-28 2024-04-05 天津大学 一种基于需求响应的空调系统双层优化调度方法
CN117172516A (zh) * 2023-11-03 2023-12-05 深圳航天科创泛在电气有限公司 充电桩动态调度决策方法、装置、设备及存储介质
CN117172516B (zh) * 2023-11-03 2024-03-05 深圳航天科创泛在电气有限公司 充电桩动态调度决策方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN113094907A (zh) 一种用于空调负荷和电动汽车充电负荷联合调度方法
Jing et al. A study on energy performance of 30 commercial office buildings in Hong Kong
Hao et al. Transactive control of commercial buildings for demand response
CN105940584A (zh) 需求控制装置及程序
Nikovski et al. A method for computing optimal set-point schedules for HVAC systems
CN108426354A (zh) 基于辐射时间序列方法的空调负荷预测系统
KR101301123B1 (ko) 냉난방부하 예측방법
CN113987734A (zh) 机会约束条件的园区综合能源系统多目标优化调度方法
CN108197404A (zh) 一种基于时间遗传特性的建筑负荷预测方法
Gao et al. Energy management and demand response with intelligent learning for multi-thermal-zone buildings
CN110135649A (zh) 短期建筑能耗区间预测方法、系统、介质及设备
CN111339689A (zh) 建筑综合能源调度方法、系统、存储介质及计算机设备
CN113255968A (zh) 基于设备和行为信息的商业办公楼精细化负荷预测方法
Ding et al. Coordinated optimization of robustness and flexibility of building heating systems for demand response control considering prediction uncertainty
Bai et al. Flexibility quantification and enhancement of flexible electric energy systems in buildings
CN114037165A (zh) 一种考虑多源不确定性的建筑冷热负荷预测方法
CN208567008U (zh) 基于辐射时间序列方法的空调负荷预测系统
CN116777048A (zh) 基于物联网的零碳城乡公交网络设计与管理方法
CN113283649B (zh) 供需协同运行能效控制方法、装置、设备和介质
CN113222227B (zh) 基于建筑特性和虚拟电厂的建筑综合能源系统调度方法
CN114862059A (zh) 一种城市重要用能形态优化分析系统
Zhao et al. Air Conditioning Load Forecasting Model Considering EV and Urban Heat Island Effect
Alyami et al. Novel flexibility indices of controllable loads in relation to EV and rooftop PV
Tuchowski et al. Optimizing the air source heat pump's working time in the context of increasing the energy efficiency ratio
CN113949082A (zh) 一种工业园区能源日前调度方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination