CN113094422A - Urban road traffic flow chart generation method, system and equipment - Google Patents

Urban road traffic flow chart generation method, system and equipment Download PDF

Info

Publication number
CN113094422A
CN113094422A CN202110273734.7A CN202110273734A CN113094422A CN 113094422 A CN113094422 A CN 113094422A CN 202110273734 A CN202110273734 A CN 202110273734A CN 113094422 A CN113094422 A CN 113094422A
Authority
CN
China
Prior art keywords
map
traffic flow
traffic
feature map
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110273734.7A
Other languages
Chinese (zh)
Other versions
CN113094422B (en
Inventor
李冠彬
刘梦梦
刘凌波
林倞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202110273734.7A priority Critical patent/CN113094422B/en
Publication of CN113094422A publication Critical patent/CN113094422A/en
Application granted granted Critical
Publication of CN113094422B publication Critical patent/CN113094422B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/26Visual data mining; Browsing structured data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/042Knowledge-based neural networks; Logical representations of neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Computing Systems (AREA)
  • Business, Economics & Management (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Tourism & Hospitality (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Remote Sensing (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种城市道路交通流量图生成方法、系统及设备。本发明通过将第一编码器生成交通路网特征图以及第二编码器生成的第二交通流量特征图输入到解码器中进行解码,生成第三交通流量特征图,并基于第一交通流量特征图以及第三交通流量特征图,生成细粒度交通流量图。本发明通过将第一编码器生成交通路网特征图作为生成细粒度交通流量图的先验知识,并在解码器中显式编码先验知识,充分发挥了先验知识在生成细粒度交通流量图中的指导作用,充分发掘了城市交通流量分布模式,在高清晰度的城市交通流量图生成任务上能取得优越的性能和准确度。

Figure 202110273734

The invention discloses a method, system and equipment for generating a traffic flow map of an urban road. The present invention generates a third traffic flow feature map by inputting the traffic road network feature map generated by the first encoder and the second traffic flow feature map generated by the second encoder into the decoder for decoding, and based on the first traffic flow feature map and a third traffic flow feature map to generate a fine-grained traffic flow map. By using the traffic road network feature map generated by the first encoder as the prior knowledge for generating the fine-grained traffic flow map, and explicitly encoding the prior knowledge in the decoder, the present invention gives full play to the prior knowledge in generating the fine-grained traffic flow. The guiding role of the map fully explores the urban traffic flow distribution pattern, and can achieve superior performance and accuracy in the task of generating high-definition urban traffic flow maps.

Figure 202110273734

Description

一种城市道路交通流量图生成方法、系统及设备Method, system and device for generating urban road traffic flow map

技术领域technical field

本发明涉及交通领域,尤其涉及一种城市道路交通流量图生成方法、系统及设备。The invention relates to the field of traffic, and in particular to a method, system and device for generating a traffic flow map of an urban road.

背景技术Background technique

城市交通流量监控是智慧城市建设中的重要组成部分,可以为公共安全,城市规划和其他任务的预警提供重要的信息基础。在现代信息社会中,车辆和基础设施(例如交通监控,空气质量监测站)正在不断生成海量的异构格式的城市数据,例如GPS轨迹点,天气数据等。Urban traffic flow monitoring is an important part in the construction of smart cities, which can provide an important information basis for early warning of public safety, urban planning and other tasks. In the modern information society, vehicles and infrastructure (such as traffic monitoring, air quality monitoring stations) are constantly generating massive amounts of urban data in heterogeneous formats, such as GPS track points, weather data, etc.

深度学习和数据挖掘使得这些数据在探索城市动态模式和表现预测上具有重要意义。但是通常来说,细粒度的实际城市数据是很难收集的。例如,对城市交通流量的监测需要在整个城市中部署足够的传感器设备,必须在交通路段部署数千个探头,回路传感器,监视摄像机和其他监测设备,来实时监控交通流量并收集交通数据。实时道路交通监测系统高度依赖这些监测设备,长期稳定运行需要大量的电力资源和可靠的容灾能力,这将带来巨大的费用和较高的维护成本。Deep learning and data mining make these data significant for exploring urban dynamic patterns and predicting performance. But generally, fine-grained actual city data is difficult to collect. For example, the monitoring of urban traffic flow requires the deployment of sufficient sensor devices throughout the city. Thousands of probes, loop sensors, surveillance cameras and other monitoring devices must be deployed in traffic sections to monitor traffic flow in real time and collect traffic data. The real-time road traffic monitoring system is highly dependent on these monitoring devices, and long-term stable operation requires a lot of power resources and reliable disaster recovery capabilities, which will bring huge expenses and high maintenance costs.

如今,全球范围内智慧城市的发展日新月异,而相应的交通流量监控成本也呈指数增长,这可能成为限制进一步发展的关键因素。为了解决这个问题并促进智能城市应用更好地发展,需要一种新的方法来降低监测成本,同时能确保交通流量数据的粒度和准确性。因此,如何从容易获取的粗粒度数据中推断出原始的细粒度流分布成为了问题的重点。Today, the rapid development of smart cities around the world, and the corresponding exponential increase in the cost of monitoring traffic flow, may be a key factor limiting further development. To solve this problem and facilitate the development of smart city applications, a new approach is needed to reduce monitoring costs while ensuring the granularity and accuracy of traffic flow data. Therefore, how to infer the original fine-grained flow distribution from the easily obtained coarse-grained data becomes the focus of the problem.

近年来,深度神经网络已广泛用于城市交通数据细化推理。现有研究主要将该问题建模为将信息熵低的数据映射到信息熵高的数据的映射问题。这些工作通常根据经度和纬度坐标将研究区域划分为网格地图,并将收集到的交通数据组织为张量,以便于将其直接输入到卷积网络中进行映射的自动表示学习。一些策略还提出在粗粒度流数据和细粒度流数据之间建立空间约束,以便于学习空间相关性的表示。In recent years, deep neural networks have been widely used for refined reasoning on urban traffic data. Existing studies mainly model this problem as a mapping problem of mapping data with low information entropy to data with high information entropy. These works typically divide the study area into grid maps based on longitude and latitude coordinates, and organize the collected traffic data into tensors to facilitate automatic representation learning that feeds them directly into convolutional networks for mapping. Some strategies also propose to establish spatial constraints between coarse-grained flow data and fine-grained flow data to facilitate learning representations of spatial correlations.

然而,现有的方法都忽略了先验知识对这个问题的重要性,例如城市道路网络,它在很长一段时间内几乎没有显著变化。道路是城市交通系统的重要组成部分,城市道路网络原本就是为车辆行驶而设计的,这意味着大部分交通流量将在道路上产生。例如,公共汽车等交通工具通常只在特定的道路上行驶,不会出现在居民区。现有技术中没有充分考虑先验知识在生成高细粒度城市交通流量图过程中的影响,导致生成的高细粒度城市交通流量图的准确度相对较差。However, existing methods all ignore the importance of prior knowledge for this problem, such as the urban road network, which hardly changes significantly over a long period of time. Roads are an important part of urban transportation systems, and urban road networks are originally designed for vehicles, which means that most traffic flows will be generated on roads. For example, vehicles such as buses usually only travel on specific roads and do not appear in residential areas. The prior art does not fully consider the influence of prior knowledge in the process of generating a high-fine-grained urban traffic flow map, resulting in relatively poor accuracy of the generated high-fine-grained urban traffic flow map.

综上所述,现有技术中没有充分考虑先验知识在生成高细粒度的城市交通流量图过程中的影响,导致存在着生成的高细粒度城市交通流量图的准确度比较差的技术问题。To sum up, the prior art does not fully consider the influence of prior knowledge in the process of generating a high-fine-grained urban traffic flow map, resulting in a technical problem of poor accuracy of the generated high-fine-grained urban traffic flow map. .

发明内容SUMMARY OF THE INVENTION

本发明提供了一种城市道路交通流量图生成方法、系统及设备,本发明引入交通路网特征图作为生成细粒度交通流量图的先验知识,从而提高了细粒度交通流量图的准确度。The present invention provides a method, system and device for generating an urban road traffic flow map. The present invention introduces a traffic road network feature map as a priori knowledge for generating a fine-grained traffic flow map, thereby improving the accuracy of the fine-grained traffic flow map.

为了解决上述技术问题,本发明实施例提供了一种城市道路交通流量图生成方法,包括以下步骤:In order to solve the above technical problems, an embodiment of the present invention provides a method for generating an urban road traffic flow map, including the following steps:

获取目标区域的粗粒度交通流量图、目标区域的环境数据以及目标区域的交通地图;Obtain the coarse-grained traffic flow map of the target area, the environmental data of the target area, and the traffic map of the target area;

将所述粗粒度交通流量图以及所述交通地图输入到第一编码器中进行编码,生成交通路网特征图;Inputting the coarse-grained traffic flow map and the traffic map into a first encoder for encoding to generate a traffic road network feature map;

基于所述交通路网特征图、所述环境数据以及粗粒度交通流量图,生成第一交通流量特征图;generating a first traffic flow feature map based on the traffic road network feature map, the environmental data and the coarse-grained traffic flow map;

将所述第一交通流量特征图输入到第二编码器中进行编码,生成第二交通流量特征图;Inputting the first traffic flow feature map into a second encoder for encoding, and generating a second traffic flow feature map;

将所述第二交通流量特征图以及所述交通路网特征图输入到解码器中进行解码,生成第三交通流量特征图;Inputting the second traffic flow feature map and the traffic road network feature map into a decoder for decoding to generate a third traffic flow feature map;

基于所述第一交通流量特征图以及所述第三交通流量特征图,生成细粒度交通流量图。Based on the first traffic flow feature map and the third traffic flow feature map, a fine-grained traffic flow map is generated.

优选的,将所述粗粒度交通流量图以及所述交通地图输入到第一编码器中进行编码,生成交通路网特征图的具体过程为:Preferably, the coarse-grained traffic flow map and the traffic map are input into the first encoder for encoding, and the specific process of generating the traffic road network feature map is as follows:

基于所述交通地图,生成交通路网图;based on the traffic map, generating a traffic road network map;

将所述交通路网图与所述粗粒度交通流量图进行加权,得到加权后的第一交通路网图,将所述第一交通路网图输入到第一编码器中,以使所述第一编码器对所述第一交通路网图中的道路特征进行编码,得到交通路网特征图。The traffic road network map and the coarse-grained traffic flow map are weighted to obtain a weighted first traffic road network map, and the first traffic road network map is input into the first encoder, so that the The first encoder encodes the road features in the first traffic road network map to obtain a traffic road network feature map.

优选的,所述第一编码器对所述第一交通路网图进行特征提取,得到交通路网特征图的具体过程为:Preferably, the first encoder performs feature extraction on the first traffic road network map, and the specific process of obtaining the traffic road network feature map is:

所述第一编码器分别对所述第一交通路网图进行水平卷积、垂直卷积、正对角卷积以及反对角卷积,生成水平特征、垂直特征、正对角特征以及反对角特征,基于所述水平特征、所述垂直特征、所述正对角特征以及所述反对角特征得到交通路网特征图。The first encoder performs horizontal convolution, vertical convolution, positive diagonal convolution and anti-diagonal convolution on the first traffic network map, respectively, to generate horizontal features, vertical features, positive diagonal features, and anti-diagonal features. feature, and a traffic road network feature map is obtained based on the horizontal feature, the vertical feature, the positive diagonal feature, and the opposite diagonal feature.

优选的,基于所述交通路网特征图、所述环境数据以及粗粒度交通流量图,生成第一交通流量特征图的具体过程为:Preferably, based on the traffic road network feature map, the environmental data and the coarse-grained traffic flow map, the specific process of generating the first traffic flow feature map is as follows:

将所述环境数据转化为环境因素嵌入向量;converting the environmental data into an environmental factor embedding vector;

对所述交通路网特征图进行特征提取,生成路网特征图;performing feature extraction on the traffic road network feature map to generate a road network feature map;

将所述路网特征图、外部因素嵌入向量以及粗粒度交通流量图进行特征融合,生成第一交通流量特征图。Feature fusion is performed on the road network feature map, the external factor embedding vector and the coarse-grained traffic flow map to generate a first traffic flow feature map.

优选的,将所述路网特征图、外部因素嵌入向量以及粗粒度交通流量图进行特征融合,生成第一交通流量特征图的具体过程为:Preferably, the feature fusion of the road network feature map, the external factor embedding vector and the coarse-grained traffic flow map is performed, and the specific process of generating the first traffic flow feature map is as follows:

将所述外部因素嵌入向量以及粗粒度交通流量图进行特征级联,得到第一级联特征,对第一级联特征进行融合,得到交通流量初级特征图;Perform feature cascading on the external factor embedding vector and the coarse-grained traffic flow map to obtain a first cascade feature, and fuse the first cascade feature to obtain a primary traffic flow feature map;

将所述路网特征图以及交通流量初级特征图进行特征级联,得到第二级联特征,对所述第二级联特征进行融合,得到所述第一交通流量特征图。Feature cascading is performed on the road network feature map and the primary traffic flow feature map to obtain a second cascade feature, and the second cascade feature is fused to obtain the first traffic flow feature map.

优选的,将所述第一交通流量特征图输入到第二编码器中进行编码,生成第二交通流量特征图的具体过程为:Preferably, the first traffic flow feature map is input into the second encoder for encoding, and the specific process of generating the second traffic flow feature map is as follows:

将所述第一交通流量特征图输入到第二编码器中,以使所述第二编码器基于多头注意力机制对所述第一交通流量特征图进行编码,生成第二交通流量特征图。The first traffic flow feature map is input into the second encoder, so that the second encoder encodes the first traffic flow feature map based on a multi-head attention mechanism to generate a second traffic flow feature map.

优选的,将所述第二交通流量特征图以及所述交通路网特征图输入到解码器中进行解码,生成第三交通流量特征图的具体过程为:Preferably, the second traffic flow feature map and the traffic road network feature map are input into the decoder for decoding, and the specific process of generating the third traffic flow feature map is as follows:

将所述交通路网特征图作为嵌入编码,将所述嵌入编码以及所述第二交通流量特征图输入到解码器中,以使所述解码器基于多头注意力机制进行解码,得到第三交通流量特征图。The traffic road network feature map is used as an embedded code, and the embedded code and the second traffic flow feature map are input into the decoder, so that the decoder decodes based on the multi-head attention mechanism to obtain a third traffic flow. Traffic characteristic map.

优选的,基于所述第一交通流量特征图以及所述第三交通流量特征图,生成细粒度交通流量图的具体过程为:Preferably, based on the first traffic flow feature map and the third traffic flow feature map, the specific process for generating a fine-grained traffic flow map is:

将所述第一交通流量特征图以及所述第三交通流量特征图进行特征融合,生成细粒度交通流量图。Feature fusion is performed on the first traffic flow feature map and the third traffic flow feature map to generate a fine-grained traffic flow map.

本发明实施例还提供了一种城市道路交通流量图生成系统,包括数据获取模块、交通路网特征图生成模块、第一交通流量特征图生成模块、第二交通流量特征图生成模块、第三交通流量特征图生成模块以及细粒度交通流量图生成模块;An embodiment of the present invention further provides a system for generating an urban road traffic flow map, including a data acquisition module, a traffic road network feature map generating module, a first traffic flow feature map generating module, a second traffic flow feature map generating module, and a third traffic flow feature map generating module. Traffic flow feature map generation module and fine-grained traffic flow map generation module;

所述数据获取模块用于获取目标区域的粗粒度交通流量图、目标区域的环境数据以及目标区域的交通地图;The data acquisition module is used to acquire the coarse-grained traffic flow map of the target area, the environmental data of the target area and the traffic map of the target area;

所述交通路网特征图生成模块用于将所述粗粒度交通流量图以及所述交通地图输入到第一编码器中进行编码,生成交通路网特征图;The traffic road network feature map generation module is configured to input the coarse-grained traffic flow map and the traffic map into the first encoder for encoding, and generate a traffic road network feature map;

所述第一交通流量特征图生成模块用于基于所述交通路网特征图、所述环境数据以及粗粒度交通流量图,生成第一交通流量特征图;The first traffic flow feature map generating module is configured to generate a first traffic flow feature map based on the traffic road network feature map, the environmental data and the coarse-grained traffic flow map;

所述第二交通流量特征图生成模块用于将所述第一交通流量特征图输入到第二编码器中进行编码,生成第二交通流量特征图;The second traffic flow feature map generation module is configured to input the first traffic flow feature map into a second encoder for encoding, and generate a second traffic flow feature map;

所述第三交通流量特征图生成模块用于将所述第二交通流量特征图以及所述交通路网特征图输入到解码器中进行解码,生成第三交通流量特征图;The third traffic flow feature map generation module is configured to input the second traffic flow feature map and the traffic road network feature map into a decoder for decoding, and generate a third traffic flow feature map;

所述细粒度交通流量图生成模块用于基于所述第一交通流量特征图以及所述第三交通流量特征图,生成细粒度交通流量图。The fine-grained traffic flow map generating module is configured to generate a fine-grained traffic flow map based on the first traffic flow feature map and the third traffic flow feature map.

本发明实施例还提供了一种城市道路交通流量图生成设备,包括处理器以及存储器;The embodiment of the present invention also provides a device for generating a city road traffic flow map, including a processor and a memory;

所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;the memory is used to store program code and transmit the program code to the processor;

所述处理器用于根据所述程序代码中的指令执行上述的一种城市道路交通流量图生成方法。The processor is configured to execute the above-mentioned method for generating an urban road traffic flow map according to the instructions in the program code.

相比于现有技术,本发明实施例具有如下有益效果:Compared with the prior art, the embodiments of the present invention have the following beneficial effects:

本发明实施例通过将第一编码器生成交通路网特征图以及第二编码器生成的第二交通流量特征图输入到解码器中进行解码,生成第三交通流量特征图,并基于第一交通流量特征图以及第三交通流量特征图,生成细粒度交通流量图。本发明实施例通过将第一编码器生成交通路网特征图作为生成细粒度交通流量图的先验知识,并在解码器中显式编码先验知识,充分发挥了先验知识在生成细粒度交通流量图中的指导作用,充分发掘了城市交通流量分布模式,在高清晰度的城市交通流量图生成任务上能取得优越的性能和准确度。In the embodiment of the present invention, the traffic road network feature map generated by the first encoder and the second traffic flow feature map generated by the second encoder are input into the decoder for decoding to generate a third traffic flow feature map, and based on the first traffic flow feature map The flow feature map and the third traffic flow feature map generate a fine-grained traffic flow map. In the embodiment of the present invention, by using the traffic road network feature map generated by the first encoder as the prior knowledge for generating the fine-grained traffic flow map, and explicitly encoding the prior knowledge in the decoder, the prior knowledge is fully utilized in generating fine-grained traffic flow maps. The guiding role of the traffic flow map fully explores the urban traffic flow distribution pattern, and can achieve superior performance and accuracy in the task of generating high-definition urban traffic flow maps.

附图说明Description of drawings

图1:为本发明实施例提供的一种城市道路交通流量图生成方法的流程图。FIG. 1 is a flowchart of a method for generating an urban road traffic flow map provided by an embodiment of the present invention.

图2:为本发明实施例提供的一种城市道路交通流量图生成模型(RAFM)的结构示意图。FIG. 2 is a schematic structural diagram of an urban road traffic flow map generation model (RAFM) provided by an embodiment of the present invention.

图3:为本发明实施例提供的一种城市道路交通流量图生成模型中的一维卷积层的结构示意图。FIG. 3 is a schematic structural diagram of a one-dimensional convolution layer in an urban road traffic flow map generation model provided by an embodiment of the present invention.

图4:为本发明实施例提供的一种城市道路交通流量图生成模型中的一维残差模块层的结构示意图。FIG. 4 is a schematic structural diagram of a one-dimensional residual module layer in an urban road traffic flow map generation model provided by an embodiment of the present invention.

图5:为本发明实施例提供的一种城市道路交通流量图生成系统的结构示意图。FIG. 5 is a schematic structural diagram of a system for generating an urban road traffic flow map according to an embodiment of the present invention.

图6:为本发明实施例提供的一种城市道路交通流量图生成设备的结构示意图。FIG. 6 is a schematic structural diagram of a device for generating an urban road traffic flow map according to an embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

实施例一Example 1

请参照图1,为本发明实施例提供的一种城市道路交通流量图生成方法的流程图,包括以下步骤:Please refer to FIG. 1 , which is a flowchart of a method for generating an urban road traffic flow map provided by an embodiment of the present invention, including the following steps:

S101:获取目标区域的粗粒度交通流量图、目标区域的环境数据以及目标区域的交通地图。S101: Obtain a coarse-grained traffic flow map of the target area, environmental data of the target area, and a traffic map of the target area.

其中,需要进一步说明的是,由于天气、风速、温度、时间等环境数据会对城市交通流量分布产生复杂而重要的影响,因此,在本实施例中需要考虑目标区域的环境数据在细粒度交通流量图生成过程中的影响。Among them, it needs to be further explained that since environmental data such as weather, wind speed, temperature, time, etc. will have a complex and important impact on the distribution of urban traffic flow, in this embodiment, it is necessary to consider the environmental data of the target area in the fine-grained traffic flow. Influence during flow map generation.

S102:将粗粒度交通流量图以及交通地图输入到第一编码器中进行编码,生成交通路网特征图,并将交通路网特征图作为生成细粒度交通流量图的先验知识。S102: Input the coarse-grained traffic flow map and the traffic map into the first encoder for encoding, generate a traffic road network feature map, and use the traffic road network feature map as prior knowledge for generating a fine-grained traffic flow map.

S103:基于交通路网特征图、环境数据以及粗粒度交通流量图,生成第一交通流量特征图。S103: Based on the traffic road network feature map, the environmental data, and the coarse-grained traffic flow map, generate a first traffic flow feature map.

其中,需要进一步说明的是,将交通路网特征图的特征、环境数据以及粗粒度交通流量图的特征进行融合,生成第一交通流量特征图。It should be further explained that the features of the traffic road network feature map, the environmental data, and the features of the coarse-grained traffic flow map are fused to generate the first traffic flow feature map.

S104:将第一交通流量特征图输入到第二编码器中进行编码,生成第二交通流量特征图。S104: Input the first traffic flow feature map into the second encoder for encoding to generate a second traffic flow feature map.

S105:将第二交通流量特征图以及交通路网特征图输入到解码器中进行解码,显式编码先验知识,从而生成第三交通流量特征图。S105: Input the second traffic flow feature map and the traffic road network feature map into the decoder for decoding, and explicitly encode the prior knowledge, thereby generating a third traffic flow feature map.

S106:将第一交通流量特征图以及第三交通流量特征图进行特征融合,生成细粒度交通流量图,即具有高清晰度的城市道路交通流量图。S106: Perform feature fusion on the first traffic flow feature map and the third traffic flow feature map to generate a fine-grained traffic flow map, that is, a high-definition urban road traffic flow map.

本发明实施例通过将第一编码器生成交通路网特征图作为生成细粒度交通流量图的先验知识,并在解码器中显式编码先验知识,充分发挥了先验知识在生成细粒度交通流量图中的指导作用,充分发掘了城市交通流量分布模式,在高清晰度的城市交通流量图生成任务上能取得优越的性能和准确度。In the embodiment of the present invention, by using the traffic road network feature map generated by the first encoder as the prior knowledge for generating the fine-grained traffic flow map, and explicitly encoding the prior knowledge in the decoder, the prior knowledge is fully utilized in generating fine-grained traffic flow maps. The guiding role of the traffic flow map fully explores the urban traffic flow distribution pattern, and can achieve superior performance and accuracy in the task of generating high-definition urban traffic flow maps.

实施例二Embodiment 2

在详细介绍本实施例的方法之前,首先定义本实施例中相关的一些符号表示。Before introducing the method of this embodiment in detail, some related symbols in this embodiment are first defined.

在本实施例中,将目标区域(如城市)按地理经纬度坐标均匀划分为I×J的网格图。交通流量图的数据粒度与此区域划分有关,更大尺寸的网格图(每个网格的实际大小更小)将得到更细粒度的流图。In this embodiment, the target area (such as a city) is evenly divided into an I×J grid map according to the geographic latitude and longitude coordinates. The data granularity of the traffic flow map is related to this area division, and a larger size grid map (the actual size of each grid is smaller) will result in a more fine-grained flow map.

将在t时间间隔内网格(i,j)的交通流量数据表示为

Figure BDA0002973198340000071
Figure BDA0002973198340000072
为一个二元实数集合,代表流入/流出的车辆数。所以,在某个时间间隔内,整个研究区域的交通流量图可以表示为Denote the traffic flow data for grid (i,j) in time interval t as
Figure BDA0002973198340000071
Figure BDA0002973198340000072
is a set of binary real numbers representing the number of vehicles flowing in/out. So, in a certain time interval, the traffic flow map of the whole study area can be expressed as

Figure BDA0002973198340000073
Figure BDA0002973198340000073

在本实施例中,粗粒度表示能够在最小规模的监测传感器上获得的数据粒度,粗粒度交通流量图可以通过将目标区域划分为I×J网格图处理得到。在同一区域内,采用NI×NJ网格图,以N为比例因子,可以得到相对应的具有高清晰度的细粒度交通流量图。粗粒度交通流量图中的每个格子由对应的高清晰度的细粒度交通流量图中的N×N个格子。In this embodiment, the coarse-grained represents the data granularity that can be obtained on the smallest-scale monitoring sensor, and the coarse-grained traffic flow map can be obtained by dividing the target area into an I×J grid map. In the same area, using the NI×NJ grid map and taking N as the scale factor, the corresponding fine-grained traffic flow map with high definition can be obtained. Each grid in the coarse-grained traffic flow map consists of N×N grids in the corresponding high-resolution fine-grained traffic flow map.

令x(i,j)作为粗粒度交通流量图的一个网格的数值,y(i′,j′)代表该网格对应在高清晰度的细粒度交通流量图上的N×N个小格子,则存在以下的约束:Let x (i,j) be the value of a grid of the coarse-grained traffic flow map, and y (i′,j′ ) represent the N×N small grids corresponding to the grid on the high-definition fine-grained traffic flow map. lattice, there are the following constraints:

Figure BDA0002973198340000081
Figure BDA0002973198340000081

其中i∈[1,I],j∈[1,J];i′∈[1,NI],j′∈[1,NJ],in,out分别为流入的车辆数量和流出的车辆数量。where i∈[1,I],j∈[1,J]; i′∈[1,NI],j′∈[1,NJ],in,out are the number of incoming and outgoing vehicles, respectively.

对于给定的粗粒度交通流量图

Figure BDA0002973198340000082
和比例因子N∈Z+,本实施例的目标则是推理出高清晰度的细粒度交通流量图
Figure BDA0002973198340000083
其中,需要进一步说明的是,在本实施例中提供了一种城市道路交通流量图生成模型(RAFM),结构如图2所示,模型由四个组件组成,包括主推理分支、路网分支(RNB)、转换器架构(TR E-D)和外部因素融合模块(EM)。使用训练好的RAFM模型来输出高清晰度的细粒度交通流量图
Figure BDA0002973198340000084
过程如下:For a given coarse-grained traffic flow map
Figure BDA0002973198340000082
and the scale factor N∈Z+, the goal of this embodiment is to infer a high-definition fine-grained traffic flow map
Figure BDA0002973198340000083
Among them, it should be further explained that an urban road traffic flow map generation model (RAFM) is provided in this embodiment. The structure is shown in Figure 2. The model consists of four components, including a main reasoning branch and a road network branch. (RNB), converter architecture (TR ED) and external factor fusion module (EM). Use the trained RAFM model to output high-definition fine-grained traffic flow maps
Figure BDA0002973198340000084
The process is as follows:

在本实施例中,首先获取目标区域的粗粒度交通流量图、目标区域的环境数据以及目标区域的交通地图。其中,需要进一步说明的是,在本实施例中首先获取目标区域(如一个城市)的真实世界交通地图,根据城市交通道路标签,可以得到目标区域内每条道路的详细分类。根据所研究车辆(如出租车)的实际驾驶场景,保留了最符合研究车辆的行驶条件的道路,如高速公路、干线、次要道路等,舍弃不常行驶或不可能行驶的道路,如小径、铁路、自行车道等。由于交通地图包含很多与任务无关的信息,需要进一步进行处理,因此利用地理信息软件(如Arcmap)作为辅助工具,绘制渲染出道路的形状来构建交通路网图,其中道路用不同的直线或曲线来表示。在生成的交通路网图中,线的宽度和形状可能会有所不同。例如,交通等级较高的道路通常会渲染为较宽的线条,大型环形路可能会渲染为圆形。In this embodiment, a coarse-grained traffic flow map of the target area, environmental data of the target area, and a traffic map of the target area are first acquired. It should be further explained that in this embodiment, a real-world traffic map of the target area (eg, a city) is obtained first, and a detailed classification of each road in the target area can be obtained according to the urban traffic road labels. According to the actual driving scenarios of the studied vehicles (such as taxis), the roads that best meet the driving conditions of the research vehicles, such as highways, arterial roads, secondary roads, etc., are reserved, and the roads that are not frequently traveled or impossible to travel, such as trails, are discarded , railways, bicycle paths, etc. Since the traffic map contains a lot of information that is irrelevant to the task and needs to be further processed, geographic information software (such as Arcmap) is used as an auxiliary tool to draw and render the shape of the road to construct the traffic road network map, in which the road uses different straight lines or curves. To represent. The width and shape of the lines may vary in the resulting traffic network diagram. For example, roads with high traffic levels are often rendered as wider lines, and large roundabouts may be rendered as circles.

为了便于后续处理,将划分目标区域时获取的粗粒度交通流量图视为正方形(例如划分为16*16的网格图),但会导致当粗粒度交通流量图与真实地图匹配时存在一定的畸变,为了使交通路网图与粗粒度交通流量图相吻合,需要对交通路网图进行尺寸调整以消除经纬度上的比例失真,为了进一步处理,将渲染并调整后的交通路网图转换为一通道的反转灰度图像,其中每个像素上的数值表示道路的存在程度,因此包含道路的像素的值不为零,而不包含道路的像素的值为零。In order to facilitate subsequent processing, the coarse-grained traffic flow map obtained when dividing the target area is regarded as a square (for example, divided into a 16*16 grid map). Distortion, in order to make the traffic road network map match the coarse-grained traffic flow map, the traffic road network map needs to be resized to eliminate the scale distortion in latitude and longitude. For further processing, the rendered and adjusted traffic road network map is converted into A one-channel inverted grayscale image, where the numerical value on each pixel represents the presence of a road, so pixels that contain roads have a non-zero value, and pixels that don't have a value of zero.

在本实施例中,利用RAFM模型中的路网分支(RNB)来生成交通路网特征图,其中,路网分支(RNB)中包括有第一编码器以及残差网络,其过程如下:In this embodiment, the road network branch (RNB) in the RAFM model is used to generate a traffic road network feature map, wherein the road network branch (RNB) includes a first encoder and a residual network, and the process is as follows:

Figure BDA0002973198340000091
表示交通路网图,为了消除交通路网图与实际交通流的分布差异,使用粗粒度交通流量图X对交通路网图进行加权,首先计算粗粒度交通流量图X在第0维上的平均值,然后用最近邻插值法将其调整为与Go相同的大小:make
Figure BDA0002973198340000091
Represents the traffic road network map. In order to eliminate the distribution difference between the traffic road network map and the actual traffic flow, the coarse-grained traffic flow map X is used to weight the traffic road network map. First, the average of the coarse-grained traffic flow map X on the 0th dimension is calculated. value, and then resize it to the same size as G o using nearest neighbor interpolation:

Figure BDA0002973198340000092
Figure BDA0002973198340000092

计算出加权后的第一交通路网图

Figure BDA0002973198340000093
Calculate the weighted first traffic road network map
Figure BDA0002973198340000093

Figure BDA0002973198340000094
Figure BDA0002973198340000094

其中,

Figure BDA0002973198340000095
表示特征点乘,inflow,outflow分别表示流入的车辆数量,流出的车辆数量。in,
Figure BDA0002973198340000095
Represents feature point multiplication, inflow, outflow represent the number of inflowing vehicles and outflowing vehicles respectively.

在得到第一交通路网图后,利用第一编码器来充分编码第一交通路网图中的道路特征作为先验知识。第一编码器由一个一维卷积层和两个一维残差模块层组成,以第一交通路网图G为输入,构建相应的交通路网特征图FGAfter the first traffic road network map is obtained, the first encoder is used to fully encode the road features in the first traffic road network map as prior knowledge. The first encoder consists of a one-dimensional convolutional layer and two one-dimensional residual module layers, and takes the first traffic road network graph G as an input to construct a corresponding traffic road network feature map F G .

在大多数情况下,卷积架构使用方形滤波核(例如3×3),它拥有方形的感受野,适合具有清晰边界和形状的自然物体。然而,由于城市道路与自然物体有很大的不同,大多数道路又细又长,如果继续使用传统的方形核,那么需用大尺寸的滤波核来覆盖长度较长的道路,这将导致许多与道路不相关的像素被提取。而一维滤波器更符合道路形状,比传统的卷积能更有效地实现道路特征提取。In most cases, convolutional architectures use square filter kernels (e.g. 3×3), which have square receptive fields and are suitable for natural objects with sharp boundaries and shapes. However, since urban roads are very different from natural objects, most of the roads are thin and long, if we continue to use the traditional square kernel, then a large-sized filter kernel is needed to cover the long-length roads, which will lead to many Pixels not related to the road are extracted. The one-dimensional filter is more in line with the shape of the road, and can achieve road feature extraction more effectively than the traditional convolution.

如图3所示,一维卷积层由四组四个不同方向的一维滤波器连接组成,令

Figure BDA0002973198340000096
表示尺寸为2r+1的一维卷积滤波器,输入为
Figure BDA0002973198340000097
一维滤波器为有四个不同的方向标识向量I=(Ih,Iw)的κ,输出为
Figure BDA0002973198340000098
公式如下:As shown in Figure 3, the one-dimensional convolutional layer is composed of four groups of one-dimensional filter connections in four different directions, let
Figure BDA0002973198340000096
represents a 1D convolutional filter of size 2r+1, the input is
Figure BDA0002973198340000097
The one-dimensional filter is κ with four different direction identification vectors I=(I h , I w ), and the output is
Figure BDA0002973198340000098
The formula is as follows:

Figure BDA0002973198340000101
Figure BDA0002973198340000101

其中,方向标识向量分别取(0,1)、(1,0)、(1,1)、(1,-1)用于水平卷积、垂直卷积、正对角卷积和反对角卷积。当r=4时,每个一维滤波器有9个参数,与3×3卷积滤波器相同。因此在特征提取过程中能取代3×3卷积,每组一维滤波器的参数数量是3×3过滤器参数数量的1/4,保持了参数数量和计算开销相同。在生成水平特征、垂直特征、正对角特征以及反对角特征后,对四个特征进行相加并输入到一维残差模块层中,如图4所示,一维残差模块层包含两个卷积层,每个卷积层分别跟随有批量归一化,两个卷积层之间使用一个ReLU函数引入非线性,获取一维残差模块的输出获得交通路网特征图FGAmong them, the direction identification vectors are respectively (0,1), (1,0), (1,1), (1,-1) for horizontal convolution, vertical convolution, positive diagonal convolution and anti diagonal convolution product. When r=4, each 1D filter has 9 parameters, the same as the 3x3 convolution filter. Therefore, the 3×3 convolution can be replaced in the feature extraction process, and the number of parameters of each set of one-dimensional filters is 1/4 of the number of parameters of the 3×3 filters, keeping the same number of parameters and computational overhead. After generating horizontal features, vertical features, positive diagonal features and anti-diagonal features, the four features are added and input into the one-dimensional residual module layer. As shown in Figure 4, the one-dimensional residual module layer contains two Each convolutional layer is followed by batch normalization. A ReLU function is used between the two convolutional layers to introduce nonlinearity, and the output of the one-dimensional residual module is obtained to obtain the traffic road network feature map F G .

在获取了目标区域的环境数据后,RAFM模型使用外部因素融合模块(EM)将外部因素融合模块(EM)转换为环境因素嵌入向量,具体如下:After obtaining the environmental data of the target area, the RAFM model uses the external factor fusion module (EM) to convert the external factor fusion module (EM) into the environmental factor embedding vector, as follows:

将天气、星期几和时间等可分类因素分别转换为低维向量,并分别送入不同的嵌入层,并合并为一个向量

Figure BDA0002973198340000102
将不可分类因素被合并为向量
Figure BDA0002973198340000103
并将
Figure BDA0002973198340000104
以及
Figure BDA0002973198340000105
进行连接,得到环境因素嵌入向量:
Figure BDA0002973198340000106
Convert categorical factors such as weather, day of the week, and time into low-dimensional vectors, respectively, and feed them into different embedding layers and combine them into one vector
Figure BDA0002973198340000102
Combine unclassifiable factors into a vector
Figure BDA0002973198340000103
and will
Figure BDA0002973198340000104
as well as
Figure BDA0002973198340000105
Connect to get the environmental factor embedding vector:
Figure BDA0002973198340000106

其中,外部因素融合模块(EM)由两个密集层组成,跟随有dropout和ReLU函数。将e输入外部因素融合模块后,得到和粗粒度交通流量图相同尺寸的特征图

Figure BDA0002973198340000107
Among them, the external factor fusion module (EM) consists of two dense layers followed by dropout and ReLU functions. After inputting e into the external factor fusion module, a feature map of the same size as the coarse-grained traffic flow map is obtained
Figure BDA0002973198340000107

之后,RAFM模型将交通路网特征图、环境因素嵌入向量以及粗粒度交通流量图输入到主推理分支中,生成第一交通流量特征图,具体如下:After that, the RAFM model inputs the traffic road network feature map, the environmental factor embedding vector, and the coarse-grained traffic flow map into the main reasoning branch to generate the first traffic flow feature map, as follows:

对粗粒度交通流量图X使用双线性插值和比例因子N进行上采样,得到调整大小的粗粒度交通流量图

Figure BDA0002973198340000108
然后将Xup和Fe级联后输入主推理分支中。主推理分支中首先使用一个卷积层提取低级特征,然后使用了16个具有相同结构的残差模块构造第一交通流量特征图F。具体为:将外部因素嵌入向量以及粗粒度交通流量图进行特征级联,得到第一级联特征,对第一级联特征进行融合,得到交通流量初级特征图;将路网特征图以及交通流量初级特征图进行特征级联,得到第二级联特征,对第二级联特征进行融合,得到第一交通流量特征图F。Upsampling the coarse-grained traffic flow map X using bilinear interpolation and a scale factor N to obtain a resized coarse-grained traffic flow map
Figure BDA0002973198340000108
Then X up and Fe are cascaded and fed into the main inference branch. In the main inference branch, a convolutional layer is first used to extract low-level features, and then 16 residual modules with the same structure are used to construct the first traffic flow feature map F. Specifically, the features are cascaded with the external factor embedding vector and the coarse-grained traffic flow map to obtain the first cascaded features, and the first cascaded features are fused to obtain the primary traffic flow feature map; the road network feature map and the traffic flow The primary feature map performs feature cascade to obtain the second cascade feature, and the second cascade feature is fused to obtain the first traffic flow feature map F.

在得到第一交通流量特征图F后,将第一交通流量特征图F以及交通路网特征图FG输入转换器架构(TR E-D)中,其中,需要进一步说明的是,转换器架构(TR E-D)为一个基于转换器的编码器-解码器架构,包括转换器编码器(TRE)以及转换器解码器(TRD)。转换器架构(TR E-D)根据先验知识推断出高清晰度的细粒度交通流量图,并对它们之间的关系建模。该转换器架构通过使用自注意力机制和编解码器注意力机制,能够将整个细粒度交通流量图作为上下文,以成对关系对特征进行全局推理。After the first traffic flow feature map F is obtained, the first traffic flow feature map F and the traffic road network feature map F G are input into the converter architecture (TR ED), wherein, it should be further explained that the converter architecture (TR ED) ED) is a transformer-based encoder-decoder architecture, including a transformer encoder (TRE) and a transformer decoder (TRD). Transducer Architecture (TR ED) infers high-resolution, fine-grained traffic flow maps based on prior knowledge and models the relationships between them. By using self-attention mechanism and encoder-decoder attention mechanism, this converter architecture is able to use the entire fine-grained traffic flow graph as context to perform global inference on features with pairwise relationships.

第一交通流量特征图

Figure BDA0002973198340000111
需要先通过平均池化层变为具有合适的分辨率大小的
Figure BDA0002973198340000112
交通路网特征图FG则需要通过最大池化层进行同样的变换得到F′G。The first traffic flow characteristic map
Figure BDA0002973198340000111
It needs to pass through the average pooling layer first to have a suitable resolution size
Figure BDA0002973198340000112
The traffic road network feature map F G needs to undergo the same transformation through the maximum pooling layer to obtain F′ G .

根据转换器结构的定义,将TRE中每个编码器层设置为由一个多头自注意力模块组成的标准结构。首先,1×1卷积将F′的通道维数从C降至d,生成新的特征图

Figure BDA0002973198340000113
构成TRE的输入。由于TRE需要一个序列作为输入,因此将Ft的二维空间维度折叠为水平维度进行输入扁平化,从而得到形状为d×HW的特征图。由于TRE的架构是排列不变的,这意味着原始二维输入的信息会丢失,因此,为了保留每个像素点的相对位置信息,在TRE的每个多头自注意力层都加入了空间位置编码。TRE对F′的进行编码,得到第二交通流量特征图,将第二交通流量特征图传递到TRD。According to the definition of the converter structure, each encoder layer in TRE is set to a standard structure consisting of a multi-head self-attention module. First, 1×1 convolution reduces the channel dimension of F′ from C to d, generating a new feature map
Figure BDA0002973198340000113
The inputs that make up the TRE. Since TRE requires a sequence as input, the two-dimensional spatial dimension of F t is collapsed into the horizontal dimension for input flattening, resulting in a feature map with shape d × HW. Since the architecture of TRE is invariant in arrangement, it means that the information of the original two-dimensional input will be lost. Therefore, in order to preserve the relative position information of each pixel, the spatial position is added to each multi-head self-attention layer of TRE. coding. TRE encodes F' to obtain a second traffic flow feature map, and transmits the second traffic flow feature map to TRD.

TRD同样遵循转换器的标准架构,但在本实施例中,TRD采用并行结构,在各解码器层并行地解码特征,而原始变压器采用自回归模型,在输入端只传递一次空间位置编码和一次输出编码,从而一次一个元素地预测输出序列。TRD also follows the standard architecture of the converter, but in this embodiment, the TRD adopts a parallel structure and decodes features in parallel at each decoder layer, while the original transformer adopts an autoregressive model, which transmits only one spatial position encoding and one time at the input. Output encoding to predict the output sequence one element at a time.

TRD接收TRE的发送的第二交通流量特征图,以交通路网特征图F′G作为嵌入编码,并将其添加到每个解码器的注意力层的输入中用于感知学习,TRE的编码结果传入TRD作为上下文。经过TRD转换后第三交通流量特征图,即城市路网引导下的交通流量特征图。TRD receives the second traffic flow feature map sent by TRE, takes the traffic road network feature map F′G as the embedded encoding, and adds it to the input of the attention layer of each decoder for perceptual learning, the encoding of TRE The result is passed into TRD as the context. After TRD transformation, the third traffic flow feature map is the traffic flow feature map guided by the urban road network.

最后,RAFM模型将第一交通流量特征图以及第三交通流量特征图输入到一个卷积层中进行特征融合,生成细粒度交通流量图,即高清晰度的城市道路交通流量图。Finally, the RAFM model inputs the first traffic flow feature map and the third traffic flow feature map into a convolutional layer for feature fusion to generate a fine-grained traffic flow map, that is, a high-definition urban road traffic flow map.

其中,需要进一步说明的是,在本实施例中,RAFM模型基于Python和PyTorch深度学习框架实现,RAFM模型的训练采用随机梯度下降优化器,动量为0.9,初始学习率为3e-4,所有层的滤波器权重都由Xavier初始化,通过最小化推理结果和相应的真值之间的平均绝对误差(MAPE)来端到端地优化RAFM模型。Among them, it needs to be further explained that in this embodiment, the RAFM model is implemented based on the Python and PyTorch deep learning framework, and the training of the RAFM model adopts the stochastic gradient descent optimizer, the momentum is 0.9, the initial learning rate is 3e-4, all layers The filter weights of all are initialized by Xavier, which optimizes the RAFM model end-to-end by minimizing the mean absolute error (MAPE) between the inference results and the corresponding ground truth.

实施例三Embodiment 3

如图5所示,本发明实施例还提供了一种城市道路交通流量图生成系统,所述系统用于执行上述的一种城市道路交通流量图生成方法,包括数据获取模块201、交通路网特征图生成模块202、第一交通流量特征图生成模块203、第二交通流量特征图生成模块204、第三交通流量特征图生成模块205以及细粒度交通流量图生成模块206;As shown in FIG. 5 , an embodiment of the present invention further provides a system for generating an urban road traffic flow map. The system is configured to execute the above-mentioned method for generating an urban road traffic flow map, including a data acquisition module 201, a traffic road network a feature map generation module 202, a first traffic flow feature map generation module 203, a second traffic flow feature map generation module 204, a third traffic flow feature map generation module 205, and a fine-grained traffic flow map generation module 206;

所述数据获取模块201用于与获取目标区域的粗粒度交通流量图、目标区域的环境数据以及目标区域的交通地图;The data acquisition module 201 is used to acquire the coarse-grained traffic flow map of the target area, the environmental data of the target area, and the traffic map of the target area;

所述交通路网特征图生成模块202用于将所述粗粒度交通流量图以及所述交通地图输入到第一编码器中进行编码,生成交通路网特征图;The traffic road network feature map generation module 202 is configured to input the coarse-grained traffic flow map and the traffic map into the first encoder for encoding, and generate a traffic road network feature map;

所述第一交通流量特征图生成模块203用于基于所述交通路网特征图、所述环境数据以及粗粒度交通流量图,生成第一交通流量特征图;The first traffic flow feature map generating module 203 is configured to generate a first traffic flow feature map based on the traffic road network feature map, the environmental data and the coarse-grained traffic flow map;

所述第二交通流量特征图生成模块204用于将所述第一交通流量特征图输入到第二编码器中进行编码,生成第二交通流量特征图;The second traffic flow feature map generation module 204 is configured to input the first traffic flow feature map into the second encoder for encoding, and generate a second traffic flow feature map;

所述第三交通流量特征图生成模块205用于将所述第二交通流量特征图以及所述交通路网特征图输入到解码器中进行解码,生成第三交通流量特征图;The third traffic flow feature map generation module 205 is configured to input the second traffic flow feature map and the traffic road network feature map into the decoder for decoding to generate a third traffic flow feature map;

所述细粒度交通流量图生成模块206用于基于所述第一交通流量特征图以及所述第三交通流量特征图,生成细粒度交通流量图。The fine-grained traffic flow map generating module 206 is configured to generate a fine-grained traffic flow map based on the first traffic flow feature map and the third traffic flow feature map.

如图6所示,本实施例还提供了一种城市道路交通流量图生成设备30,所述设备包括处理器300以及存储器301;As shown in FIG. 6 , the present embodiment further provides a device 30 for generating an urban road traffic flow map, and the device includes a processor 300 and a memory 301;

所述存储器301用于存储程序代码302,并将所述程序代码302传输给所述处理器;The memory 301 is used for storing program codes 302 and transmitting the program codes 302 to the processor;

所述处理器300用于根据所述程序代码302中的指令执行上述的一种城市道路交通流量图生成方法实施例中的步骤。The processor 300 is configured to execute the steps in the above-mentioned embodiment of the method for generating an urban road traffic flow map according to the instructions in the program code 302 .

示例性的,所述计算机程序302可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器301中,并由所述处理器300执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序302在所述终端设备30中的执行过程。Exemplarily, the computer program 302 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 301 and executed by the processor 300 to complete the this application. The one or more modules/units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 302 in the terminal device 30 .

所述终端设备30可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端设备可包括,但不仅限于,处理器300、存储器301。本领域技术人员可以理解,图6仅仅是终端设备30的示例,并不构成对终端设备30的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备还可以包括输入输出设备、网络接入设备、总线等。The terminal device 30 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server. The terminal device may include, but is not limited to, the processor 300 and the memory 301 . Those skilled in the art can understand that FIG. 6 is only an example of the terminal device 30, and does not constitute a limitation on the terminal device 30. It may include more or less components than the one shown, or combine some components, or different components For example, the terminal device may further include an input and output device, a network access device, a bus, and the like.

所称处理器300可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The so-called processor 300 may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.

所述存储器301可以是所述终端设备30的内部存储单元,例如终端设备30的硬盘或内存。所述存储器301也可以是所述终端设备30的外部存储设备,例如所述终端设备30上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器301还可以既包括所述终端设备30的内部存储单元也包括外部存储设备。所述存储器301用于存储所述计算机程序以及所述终端设备所需的其他程序和数据。所述存储器301还可以用于暂时地存储已经输出或者将要输出的数据。The memory 301 may be an internal storage unit of the terminal device 30 , such as a hard disk or a memory of the terminal device 30 . The memory 301 may also be an external storage device of the terminal device 30, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) equipped on the terminal device 30. card, flash card (Flash Card) and so on. Further, the memory 301 may also include both an internal storage unit of the terminal device 30 and an external storage device. The memory 301 is used for storing the computer program and other programs and data required by the terminal device. The memory 301 can also be used to temporarily store data that has been output or will be output.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working process of the system, device and unit described above may refer to the corresponding process in the foregoing method embodiments, which will not be repeated here.

在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed system, apparatus and method may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The integrated unit, if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes: U disk, removable hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,应当理解,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围。特别指出,对于本领域技术人员来说,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the protection scope of the present invention. . It is particularly pointed out that for those skilled in the art, any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention should be included within the protection scope of the present invention.

Claims (10)

1.一种城市道路交通流量图生成方法,其特征在于,包括以下步骤:1. an urban road traffic flow map generation method, is characterized in that, comprises the following steps: 获取目标区域的粗粒度交通流量图、目标区域的环境数据以及目标区域的交通地图;Obtain the coarse-grained traffic flow map of the target area, the environmental data of the target area, and the traffic map of the target area; 将所述粗粒度交通流量图以及所述交通地图输入到第一编码器中进行编码,生成交通路网特征图;Inputting the coarse-grained traffic flow map and the traffic map into a first encoder for encoding to generate a traffic road network feature map; 基于所述交通路网特征图、所述环境数据以及粗粒度交通流量图,生成第一交通流量特征图;generating a first traffic flow feature map based on the traffic road network feature map, the environmental data and the coarse-grained traffic flow map; 将所述第一交通流量特征图输入到第二编码器中进行编码,生成第二交通流量特征图;Inputting the first traffic flow feature map into a second encoder for encoding, and generating a second traffic flow feature map; 将所述第二交通流量特征图以及所述交通路网特征图输入到解码器中进行解码,生成第三交通流量特征图;Inputting the second traffic flow feature map and the traffic road network feature map into a decoder for decoding to generate a third traffic flow feature map; 基于所述第一交通流量特征图以及所述第三交通流量特征图,生成细粒度交通流量图。Based on the first traffic flow feature map and the third traffic flow feature map, a fine-grained traffic flow map is generated. 2.根据权利要求1所述的一种城市道路交通流量图生成方法,其特征在于,将所述粗粒度交通流量图以及所述交通地图输入到第一编码器中进行编码,生成交通路网特征图的具体过程为:2 . The method for generating an urban road traffic flow map according to claim 1 , wherein the coarse-grained traffic flow map and the traffic map are input into the first encoder for encoding to generate a traffic road network. 3 . The specific process of the feature map is: 基于所述交通地图,生成交通路网图;based on the traffic map, generating a traffic road network map; 将所述交通路网图与所述粗粒度交通流量图进行加权,得到加权后的第一交通路网图,将所述第一交通路网图输入到第一编码器中,以使所述第一编码器对所述第一交通路网图中的道路特征进行编码,得到交通路网特征图。The traffic road network map and the coarse-grained traffic flow map are weighted to obtain a weighted first traffic road network map, and the first traffic road network map is input into the first encoder, so that the The first encoder encodes the road features in the first traffic road network map to obtain a traffic road network feature map. 3.根据权利要求2所述的一种城市道路交通流量图生成方法,其特征在于,所述第一编码器对所述第一交通路网图进行特征提取,得到交通路网特征图的具体过程为:3 . The method for generating an urban road traffic flow map according to claim 2 , wherein the first encoder performs feature extraction on the first traffic road network map to obtain the specific characteristics of the traffic road network feature map. 4 . The process is: 所述第一编码器分别对所述第一交通路网图进行水平卷积、垂直卷积、正对角卷积以及反对角卷积,生成水平特征、垂直特征、正对角特征以及反对角特征,基于所述水平特征、所述垂直特征、所述正对角特征以及所述反对角特征得到交通路网特征图。The first encoder performs horizontal convolution, vertical convolution, positive diagonal convolution and anti-diagonal convolution on the first traffic network map, respectively, to generate horizontal features, vertical features, positive diagonal features, and anti-diagonal features. feature, and a traffic road network feature map is obtained based on the horizontal feature, the vertical feature, the positive diagonal feature, and the opposite diagonal feature. 4.根据权利要求1所述的一种城市道路交通流量图生成方法,其特征在于,基于所述交通路网特征图、所述环境数据以及粗粒度交通流量图,生成第一交通流量特征图的具体过程为:4. The method for generating an urban road traffic flow map according to claim 1, wherein a first traffic flow feature map is generated based on the traffic road network feature map, the environmental data and the coarse-grained traffic flow map The specific process is: 将所述环境数据转化为环境因素嵌入向量;converting the environmental data into an environmental factor embedding vector; 对所述交通路网特征图进行特征提取,生成路网特征图;performing feature extraction on the traffic road network feature map to generate a road network feature map; 将所述路网特征图、外部因素嵌入向量以及粗粒度交通流量图进行特征融合,生成第一交通流量特征图。Feature fusion is performed on the road network feature map, the external factor embedding vector and the coarse-grained traffic flow map to generate a first traffic flow feature map. 5.根据权利要求4所述的一种城市道路交通流量图生成方法,其特征在于,将所述路网特征图、外部因素嵌入向量以及粗粒度交通流量图进行特征融合,生成第一交通流量特征图的具体过程为:5. The method for generating an urban road traffic flow map according to claim 4, wherein the feature fusion of the road network feature map, the external factor embedding vector and the coarse-grained traffic flow map is performed to generate the first traffic flow The specific process of the feature map is: 将所述外部因素嵌入向量以及粗粒度交通流量图进行特征级联,得到第一级联特征,对第一级联特征进行融合,得到交通流量初级特征图;Perform feature cascading on the external factor embedding vector and the coarse-grained traffic flow map to obtain a first cascade feature, and fuse the first cascade feature to obtain a primary traffic flow feature map; 将所述路网特征图以及交通流量初级特征图进行特征级联,得到第二级联特征,对所述第二级联特征进行融合,得到所述第一交通流量特征图。Feature cascading is performed on the road network feature map and the primary traffic flow feature map to obtain a second cascade feature, and the second cascade feature is fused to obtain the first traffic flow feature map. 6.根据权利要求1所述的一种城市道路交通流量图生成方法,其特征在于,将所述第一交通流量特征图输入到第二编码器中进行编码,生成第二交通流量特征图的具体过程为:6. The method for generating an urban road traffic flow map according to claim 1, wherein the first traffic flow characteristic map is input into the second encoder for encoding, and the second traffic flow characteristic map is generated. The specific process is: 将所述第一交通流量特征图输入到第二编码器中,以使所述第二编码器基于多头注意力机制对所述第一交通流量特征图进行编码,生成第二交通流量特征图。The first traffic flow feature map is input into the second encoder, so that the second encoder encodes the first traffic flow feature map based on a multi-head attention mechanism to generate a second traffic flow feature map. 7.根据权利要求1所述的一种城市道路交通流量图生成方法,其特征在于,将所述第二交通流量特征图以及所述交通路网特征图输入到解码器中进行解码,生成第三交通流量特征图的具体过程为:7 . The method for generating an urban road traffic flow map according to claim 1 , wherein the second traffic flow feature map and the traffic road network feature map are input into a decoder for decoding to generate the first traffic flow map. 8 . The specific process of the three traffic flow feature maps is as follows: 将所述交通路网特征图作为嵌入编码,将所述嵌入编码以及所述第二交通流量特征图输入到解码器中,以使所述解码器基于多头注意力机制进行解码,得到第三交通流量特征图。The traffic road network feature map is used as an embedded code, and the embedded code and the second traffic flow feature map are input into the decoder, so that the decoder decodes based on the multi-head attention mechanism to obtain a third traffic flow. Traffic characteristic map. 8.根据权利要求1所述的一种城市道路交通流量图生成方法,其特征在于,基于所述第一交通流量特征图以及所述第三交通流量特征图,生成细粒度交通流量图的具体过程为:8 . The method for generating an urban road traffic flow map according to claim 1 , wherein, based on the first traffic flow feature map and the third traffic flow feature map, a specific method for generating a fine-grained traffic flow map is generated. 9 . The process is: 将所述第一交通流量特征图以及所述第三交通流量特征图进行特征融合,生成细粒度交通流量图。Feature fusion is performed on the first traffic flow feature map and the third traffic flow feature map to generate a fine-grained traffic flow map. 9.一种城市道路交通流量图生成系统,其特征在于,所述系统用于执行权利要求1至权利要求8任一项所述的一种城市道路交通流量图生成方法,包括数据获取模块、交通路网特征图生成模块、第一交通流量特征图生成模块、第二交通流量特征图生成模块、第三交通流量特征图生成模块以及细粒度交通流量图生成模块;9. A system for generating an urban road traffic flow map, wherein the system is used to execute the method for generating an urban road traffic flow map according to any one of claims 1 to 8, comprising a data acquisition module, a traffic road network feature map generation module, a first traffic flow feature map generation module, a second traffic flow feature map generation module, a third traffic flow feature map generation module, and a fine-grained traffic flow map generation module; 所述数据获取模块用于获取目标区域的粗粒度交通流量图、目标区域的环境数据以及目标区域的交通地图;The data acquisition module is used to acquire the coarse-grained traffic flow map of the target area, the environmental data of the target area and the traffic map of the target area; 所述交通路网特征图生成模块用于将所述粗粒度交通流量图以及所述交通地图输入到第一编码器中进行编码,生成交通路网特征图;The traffic road network feature map generation module is configured to input the coarse-grained traffic flow map and the traffic map into the first encoder for encoding, and generate a traffic road network feature map; 所述第一交通流量特征图生成模块用于基于所述交通路网特征图、所述环境数据以及粗粒度交通流量图,生成第一交通流量特征图;The first traffic flow feature map generating module is configured to generate a first traffic flow feature map based on the traffic road network feature map, the environmental data and the coarse-grained traffic flow map; 所述第二交通流量特征图生成模块用于将所述第一交通流量特征图输入到第二编码器中进行编码,生成第二交通流量特征图;The second traffic flow feature map generation module is configured to input the first traffic flow feature map into a second encoder for encoding, and generate a second traffic flow feature map; 所述第三交通流量特征图生成模块用于将所述第二交通流量特征图以及所述交通路网特征图输入到解码器中进行解码,生成第三交通流量特征图;The third traffic flow feature map generation module is configured to input the second traffic flow feature map and the traffic road network feature map into the decoder for decoding, and generate a third traffic flow feature map; 所述细粒度交通流量图生成模块用于基于所述第一交通流量特征图以及所述第三交通流量特征图,生成细粒度交通流量图。The fine-grained traffic flow map generating module is configured to generate a fine-grained traffic flow map based on the first traffic flow feature map and the third traffic flow feature map. 10.一种城市道路交通流量图生成设备,其特征在于,包括处理器以及存储器;10. An urban road traffic flow map generating device, comprising a processor and a memory; 所述存储器用于存储程序代码,并将所述程序代码传输给所述处理器;the memory is used to store program code and transmit the program code to the processor; 所述处理器用于根据所述程序代码中的指令执行权利要求1至权利要求8中任一项所述的一种城市道路交通流量图生成方法。The processor is configured to execute the method for generating an urban road traffic flow map according to any one of claims 1 to 8 according to the instructions in the program code.
CN202110273734.7A 2021-03-12 2021-03-12 Method, system and device for generating urban road traffic flow map Active CN113094422B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110273734.7A CN113094422B (en) 2021-03-12 2021-03-12 Method, system and device for generating urban road traffic flow map

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110273734.7A CN113094422B (en) 2021-03-12 2021-03-12 Method, system and device for generating urban road traffic flow map

Publications (2)

Publication Number Publication Date
CN113094422A true CN113094422A (en) 2021-07-09
CN113094422B CN113094422B (en) 2023-07-07

Family

ID=76667160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110273734.7A Active CN113094422B (en) 2021-03-12 2021-03-12 Method, system and device for generating urban road traffic flow map

Country Status (1)

Country Link
CN (1) CN113094422B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116206443A (en) * 2023-02-03 2023-06-02 重庆邮电大学 A traffic flow data interpolation method based on pixelated representation of spatio-temporal road network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020082767A1 (en) * 1999-03-08 2002-06-27 Telquest, Ltd. Method and system for mapping traffic congestion
CN107170236A (en) * 2017-06-14 2017-09-15 中山大学 A kind of important intersection extracting method of road network based on floating car data
CN107958246A (en) * 2018-01-17 2018-04-24 深圳市唯特视科技有限公司 A kind of image alignment method based on new end-to-end human face super-resolution network
CN112288701A (en) * 2020-10-23 2021-01-29 西安科锐盛创新科技有限公司 Intelligent traffic image detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020082767A1 (en) * 1999-03-08 2002-06-27 Telquest, Ltd. Method and system for mapping traffic congestion
CN107170236A (en) * 2017-06-14 2017-09-15 中山大学 A kind of important intersection extracting method of road network based on floating car data
CN107958246A (en) * 2018-01-17 2018-04-24 深圳市唯特视科技有限公司 A kind of image alignment method based on new end-to-end human face super-resolution network
CN112288701A (en) * 2020-10-23 2021-01-29 西安科锐盛创新科技有限公司 Intelligent traffic image detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUANBIN LI ETC: "Deep Contrast Learning for Salient Object Detection", COMPUTER VISION FOUNATION, pages 478 - 487 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116206443A (en) * 2023-02-03 2023-06-02 重庆邮电大学 A traffic flow data interpolation method based on pixelated representation of spatio-temporal road network
CN116206443B (en) * 2023-02-03 2023-12-15 重庆邮电大学 Traffic flow data interpolation method based on time-space road network pixelized representation

Also Published As

Publication number Publication date
CN113094422B (en) 2023-07-07

Similar Documents

Publication Publication Date Title
Chu et al. Deep multi-scale convolutional LSTM network for travel demand and origin-destination predictions
Du et al. Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction
CN113256649B (en) Remote sensing image station selection and line selection semantic segmentation method based on deep learning
CN112954399B (en) Image processing method and device and computer equipment
CN116168246A (en) Method, device, equipment and medium for identifying waste slag field for railway engineering
CN117849903A (en) A global ocean environment forecasting method based on multi-level feature aggregation
Li et al. 2dsegformer: 2-d transformer model for semantic segmentation on aerial images
CN117079148A (en) Urban functional area identification method, device, equipment and medium
Li et al. Learning to holistically detect bridges from large-size vhr remote sensing imagery
CN113094422B (en) Method, system and device for generating urban road traffic flow map
CN116051977A (en) Multi-branch fusion-based lightweight foggy weather street view semantic segmentation algorithm
CN114694031A (en) Remote sensing image typical ground object extraction method based on multitask attention mechanism
CN114445624A (en) A fine-grained traffic accident risk identification method in urban geographic space
Pang et al. PTRSegNet: A Patch-to-Region Bottom-Up Pyramid Framework for the Semantic Segmentation of Large-Format Remote Sensing Images
Du et al. IMG2HEIGHT: height estimation from single remote sensing image using a deep convolutional encoder-decoder network
CN116310764B (en) A method and system for intelligent detection of pavement manhole cover
Zhao et al. Effective recognition of word-wheel water meter readings for smart urban infrastructure
CN115393733B (en) A method and system for automatic identification of water bodies based on deep learning
Ranieri et al. A deep learning workflow enhanced with optical flow fields for flood risk estimation
CN111274900B (en) Empty-base crowd counting method based on bottom layer feature extraction
CN115601649A (en) TransUnnet-based ocean internal wave stripe segmentation method and equipment and storage medium
CN115773744A (en) Model training and road network processing method, device, equipment, medium and product
Wang Remote sensing image semantic segmentation network based on ENet
CN115511280A (en) A Method for Urban Flood Resilience Evaluation Based on Multimodal Data Fusion
CN114154740A (en) Multidirectional traffic flow prediction method based on interest point space-time residual error neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant