CN113093448B - 混合集成型片上光频梳及其制备方法 - Google Patents

混合集成型片上光频梳及其制备方法 Download PDF

Info

Publication number
CN113093448B
CN113093448B CN202110360256.3A CN202110360256A CN113093448B CN 113093448 B CN113093448 B CN 113093448B CN 202110360256 A CN202110360256 A CN 202110360256A CN 113093448 B CN113093448 B CN 113093448B
Authority
CN
China
Prior art keywords
silicon nitride
lithium niobate
thin film
waveguide
film lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110360256.3A
Other languages
English (en)
Other versions
CN113093448A (zh
Inventor
王玲芳
时鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110360256.3A priority Critical patent/CN113093448B/zh
Publication of CN113093448A publication Critical patent/CN113093448A/zh
Application granted granted Critical
Publication of CN113093448B publication Critical patent/CN113093448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/582Thermal treatment using electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种混合集成型片上光频梳,包括依次相邻的硅基底、二氧化硅衬底和薄膜铌酸锂,薄膜铌酸锂上异质集成一层氮化硅波导;氮化硅波导包括横跨薄膜铌酸锂上表面的氮化硅直波导,以及位于氮化硅直波导一侧的氮化硅微环;氮化硅微环下方的薄膜铌酸锂为圆周极化薄膜铌酸锂。本发明的片上光频梳结合了周期极化铌酸锂与氮化硅波导的优良特性,避免了直接刻蚀铌酸锂的工艺要求,能够利用铌酸锂的高效非线性,简化工艺的同时保证了器件效能;圆周极化薄膜铌酸锂引入的准相位匹配与氮化硅波导的尺寸设计引入的色散波匹配技术相结合,使得对泵浦波的频率要求突破了单频率的限制,实现可调谐自由光谱范围的微环。

Description

混合集成型片上光频梳及其制备方法
技术领域
本发明属于集成光学领域,涉及一种生物光子学以及光谱分析器件,特别是一种混合集成型片上光频梳及其制备方法。
背景技术
为提高时间标准的高精确度,原子钟技术在不断的进步,作为原子钟的核心技术之一的光频梳也自面世以来便赢得了科研工作者的极大关注。得益于激光源与集成光学技术的高速发展,光频梳的实现方式变得多种多样,利用超短脉冲在器件材料中的非线性特性,光学频率梳能够在从近红外到远紫外的宽光谱区域进行合成。光谱中产生不同的频率还能够高保真的传输到中红外、太赫兹和微波频域,实现不同频域范围内精准测量。种种优势使得光学频率梳被广泛地应用于多种不同的光学、原子、分子和固态系统,包括X射线和阿秒脉冲的产生、场相关过程中的相干控制、分子指纹识别、气体传感、原子钟测试、原子光谱仪的校准以及精确测距等诸多应用方向。基于微谐振器的片上光频梳系统能够实现紧凑尺寸与低损耗的功率要求,并且能够与现有的半导体工艺技术相结合,利用微环结构的高Q值与谐振条件,增长超短脉冲在环中的非线性作用长度,实现超宽的频谱展宽,结合f-2f技术以实现频率测量与计算,是目前实现芯片级光频梳最具可能的实现方法。光学频率梳正向着实现不同光谱区域的覆盖,不同的频率分辨率并具有更小尺寸、功率的和更高集成度的系统方向发展,光学频率梳的进一步发展带来的技术更新将推动紧密光学测量的系统简化与精度持续提升,为未来的光谱分析、通信传输等领域提供重要的技术支持,具有深远的研究价值与意义。
目前片上光频梳的实现需要通过微谐振腔系统内超短脉冲的非线性效应将单频泵浦光展宽为超连续谱,以实现光频梳的谱宽要求,其器件的制备工艺要求较高,对材料和器件结构十分敏感,对泵浦源的选择局限于单频激光器。
发明内容
本发明的目的在于克服现有技术的不足,提供一种结合了周期极化铌酸锂与氮化硅波导的优良特性,避免了直接刻蚀铌酸锂的工艺要求,能够利用铌酸锂的高效非线性,简化工艺的同时保证了器件效能的混合集成型片上光频梳,并提供该片上光频梳的制备方法。
本发明的目的是通过以下技术方案来实现的:混合集成型片上光频梳,包括依次相邻的硅基底、二氧化硅衬底和薄膜铌酸锂,薄膜铌酸锂上异质集成一层氮化硅波导;
所述氮化硅波导包括横跨薄膜铌酸锂上表面的氮化硅直波导,以及位于氮化硅直波导一侧的氮化硅微环;
氮化硅微环下方的薄膜铌酸锂为圆周极化薄膜铌酸锂。
进一步地,所述氮化硅直波导与氮化硅微环相邻的波导段呈与氮化硅微环的外环平行的弧形。
本发明的另一个目的在于提供一种混合集成型片上光频梳制备方法,包括以下步骤:
S1、在硅基底上生长一层二氧化硅衬底,然后在二氧化硅衬底表面通过晶片键合切割得到薄膜铌酸锂,并对得到的基片进行清洗;
S2、在薄膜铌酸锂上溅射铬阻挡层,在铬阻挡层上旋涂光刻胶,经过标准光刻工艺制备表面圆周极化电极;
S3、施加电压,进行薄膜铌酸锂的圆周极化;
S4、完成薄膜铌酸锂的圆周极化后,通过湿法刻蚀去除圆周极化电极和铬阻挡层;
S5、通过化学气相沉积在薄膜铌酸锂上沉积一层氮化硅薄膜,然后在氮化硅薄膜上溅射一层铬;
S6、旋涂光刻胶,通过标准光刻工艺制备氮化硅波导图案;
S7、通过电子束刻蚀对光波导进行构图,制备氮化硅直波导与氮化硅微环,氮化硅微环部分与圆周极化薄膜铌酸锂部分对应;
S8、去除氮化硅波导表面的光刻胶和铬并进行清洗,完成器件制备。
本发明的有益效果是:
1、本发明的片上光频梳结合了周期极化铌酸锂与氮化硅波导的优良特性,避免了直接刻蚀铌酸锂的工艺要求,能够利用铌酸锂的高效非线性,简化工艺的同时保证了器件效能;
2、圆周极化薄膜铌酸锂引入的准相位匹配与氮化硅波导的尺寸设计引入的色散波匹配技术相结合,使得对泵浦波的频率要求突破了单频率的限制,能够在飞秒激光为连续谱输入的情况下工作,实现可调谐自由光谱范围的微环;
3、本发明提出的器件结构简化了器件工艺,并提出了一种突破泵浦源单模限制的可能方案,为更加灵活的片上光频梳设计提供了一种新思路。
附图说明
图1为本发明的混合集成新型片上光频梳的立体结构图;
图2为本发明的混合集成新型片上光频梳的俯视结构图;
图3为本发明的混合集成新型片上光频梳的侧视图;
附图标记说明:1-硅基底,2-二氧化硅衬底,3-薄膜铌酸锂,4-圆周极化薄膜铌酸锂,5-氮化硅直波导,6-氮化硅微环。
具体实施方式
本发明提出对薄膜铌酸锂进行圆周极化再在其上加载氮化硅微环波导,在飞秒锁模激光器泵浦下,在圆周极化铌酸锂部分通过铌酸锂的高效非线性以及准相位匹配实现模式匹配与频谱展宽,设计极化周期与波导尺寸使得二次谐波与色散波形成拍频,增强谐波处能量,通过f-2f技术实现光频梳的作用,测量重复频率、偏移频率等相关参数。通过在薄膜铌酸锂上进行圆周极化并加载氮化硅微环波导,一方面有效的将光场能量限制在波导区域附近,同时避免了直接刻蚀薄膜铌酸锂的工艺要求;另一方面铌酸锂的圆周极化引入准相位匹配技术以满足泵浦波与二次谐波的相位匹配,提高了微谐振腔的Q值与非线性效应的效率,通过改变泵浦的频率能够在不同频率处产生光频梳。
下面结合附图进一步说明本发明的技术方案。
如图1、图2和图3所示,本发明的混合集成型片上光频梳,包括依次相邻的硅基底1、二氧化硅衬底2和薄膜铌酸锂3,薄膜铌酸锂3上异质集成一层氮化硅波导;
所述氮化硅波导包括横跨薄膜铌酸锂3上表面的氮化硅直波导5,以及位于氮化硅直波导5一侧的氮化硅微环6;
氮化硅微环6下方的薄膜铌酸锂为圆周极化薄膜铌酸锂4(即铌酸锂的极化区域呈圆环状,对该圆环区域的铌酸锂进行周期极化,得到梳状的铌酸锂)。在薄膜铌酸锂上进行了圆周极化,并在对应位置加载了氮化硅微环,有效的避免了直接刻蚀薄膜铌酸锂的工艺困难,利用准相位匹配和色散波相位匹配技术进行铌酸锂圆周极化的设计与氮化硅波导的尺寸设计,能够有效的利用薄膜铌酸锂的高效非线性效应实现频谱展宽,提高光频梳的精确度的同时通过改变泵浦的频率能够在不同频率处产生光频梳。
进一步地,所述氮化硅直波导5与氮化硅微环6相邻的波导段呈与氮化硅微环6的外环平行的弧形。
本发明的混合集成型片上光频梳制备方法,包括以下步骤:
S1、在硅基底上生长一层二氧化硅衬底,然后在二氧化硅衬底表面通过晶片键合切割得到薄膜铌酸锂,并对得到的基片进行清洗;
S2、在薄膜铌酸锂上溅射铬阻挡层,在铬阻挡层上旋涂光刻胶,经过标准光刻工艺制备表面圆周极化电极,圆周极化电极用于对薄膜铌酸锂进行圆周极化,其形状为环状梳,环状梳下面的薄膜铌酸锂即为需要进行圆周极化的薄膜铌酸锂;
S3、施加电压(将步骤S2得到的圆周极化电极作为上电极,在基片底部放置导电盘作为下电极,在上下电极上施加电压),进行薄膜铌酸锂的圆周极化;
S4、完成薄膜铌酸锂的圆周极化后,通过湿法刻蚀去除圆周极化电极和铬阻挡层;
S5、通过化学气相沉积(PECVD)在薄膜铌酸锂上沉积一层氮化硅薄膜,然后在氮化硅薄膜上溅射一层铬;
S6、旋涂光刻胶,通过标准光刻工艺制备氮化硅波导图案;
S7、通过电子束刻蚀对光波导进行构图,制备氮化硅直波导与氮化硅微环,氮化硅微环部分与圆周极化薄膜铌酸锂部分对应;
S8、去除氮化硅波导表面的光刻胶和铬并进行清洗,完成器件制备。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (3)

1.混合集成型片上光频梳,其特征在于,包括依次相邻的硅基底(1)、二氧化硅衬底(2)和薄膜铌酸锂(3),薄膜铌酸锂(3)上异质集成一层氮化硅波导;
所述氮化硅波导包括横跨薄膜铌酸锂(3)上表面的氮化硅直波导(5),以及位于氮化硅直波导(5)一侧的氮化硅微环(6);
氮化硅微环(6)下方的薄膜铌酸锂为圆周极化薄膜铌酸锂(4)。
2.根据权利要求1所述的混合集成型片上光频梳,其特征在于,所述氮化硅直波导(5)与氮化硅微环(6)相邻的波导段呈与氮化硅微环(6)的外环平行的弧形。
3.如权利要求1或2所述的混合集成型片上光频梳制备方法,其特征在于,包括以下步骤:
S1、在硅基底上生长一层二氧化硅衬底,然后在二氧化硅衬底表面通过晶片键合切割得到薄膜铌酸锂,并对得到的基片进行清洗;
S2、在薄膜铌酸锂上溅射铬阻挡层,在铬阻挡层上旋涂光刻胶,经过标准光刻工艺制备表面圆周极化电极;
S3、施加电压,进行薄膜铌酸锂的圆周极化;
S4、完成薄膜铌酸锂的圆周极化后,通过湿法刻蚀去除圆周极化电极和铬阻挡层;
S5、通过化学气相沉积在薄膜铌酸锂上沉积一层氮化硅薄膜,然后在氮化硅薄膜上溅射一层铬;
S6、旋涂光刻胶,通过标准光刻工艺制备氮化硅波导图案;
S7、通过电子束刻蚀对光波导进行构图,制备氮化硅直波导与氮化硅微环,氮化硅微环部分与圆周极化薄膜铌酸锂部分对应;
S8、去除氮化硅波导表面的光刻胶和铬并进行清洗,完成器件制备。
CN202110360256.3A 2021-04-02 2021-04-02 混合集成型片上光频梳及其制备方法 Active CN113093448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110360256.3A CN113093448B (zh) 2021-04-02 2021-04-02 混合集成型片上光频梳及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110360256.3A CN113093448B (zh) 2021-04-02 2021-04-02 混合集成型片上光频梳及其制备方法

Publications (2)

Publication Number Publication Date
CN113093448A CN113093448A (zh) 2021-07-09
CN113093448B true CN113093448B (zh) 2022-01-04

Family

ID=76673102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110360256.3A Active CN113093448B (zh) 2021-04-02 2021-04-02 混合集成型片上光频梳及其制备方法

Country Status (1)

Country Link
CN (1) CN113093448B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113644542B (zh) * 2021-07-15 2023-03-24 上海交通大学 基于掺铒铌酸锂薄膜的稳频和调频激光器及制备方法
CN113567379A (zh) * 2021-09-27 2021-10-29 深圳大学 一种气体分子指纹识别系统
CN115032746B (zh) * 2022-06-10 2023-03-21 上海交通大学 一种可实现自发准相位匹配频率转换的跑道型微环腔

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843957A (zh) * 2017-11-13 2018-03-27 上海理工大学 氮化硅‑铌酸锂异质集成波导器件结构及制备方法
CN108292821A (zh) * 2015-09-11 2018-07-17 赫尔辛基大学 使用光学操纵器生成频率梳的方法和设备
CN109613647A (zh) * 2019-01-10 2019-04-12 济南晶正电子科技有限公司 一种铌酸锂/氮化硅光波导集成结构及其制备方法
CN112217089A (zh) * 2020-10-13 2021-01-12 电子科技大学 一种基于表面掺稀土离子微腔的可调谐孤子频率梳

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11105979B2 (en) * 2017-08-30 2021-08-31 The Regents Of The University Of California Graphene microcavity frequency combs and related methods of manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292821A (zh) * 2015-09-11 2018-07-17 赫尔辛基大学 使用光学操纵器生成频率梳的方法和设备
CN107843957A (zh) * 2017-11-13 2018-03-27 上海理工大学 氮化硅‑铌酸锂异质集成波导器件结构及制备方法
CN109613647A (zh) * 2019-01-10 2019-04-12 济南晶正电子科技有限公司 一种铌酸锂/氮化硅光波导集成结构及其制备方法
CN112217089A (zh) * 2020-10-13 2021-01-12 电子科技大学 一种基于表面掺稀土离子微腔的可调谐孤子频率梳

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tunable hybrid silicon nitride and thin-film lithium niobate electro-optic microresonator;ABU NAIM R. AHMED et al;《Optics Letters》;20190124;全文 *

Also Published As

Publication number Publication date
CN113093448A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN113093448B (zh) 混合集成型片上光频梳及其制备方法
Sun et al. Applications of optical microcombs
Cerullo et al. Ultrafast optical parametric amplifiers
US11105979B2 (en) Graphene microcavity frequency combs and related methods of manufacturing
US20020158260A1 (en) Solid-state light source apparatus
CN108292821A (zh) 使用光学操纵器生成频率梳的方法和设备
CN104779516A (zh) 中红外单频光学参量振荡器
Singh et al. Silicon photonics optical frequency synthesizer
Shu et al. Submilliwatt, widely tunable coherent microcomb generation with feedback-free operation
Katzman et al. Surface acoustic microwave photonic filters in standard silicon-on-insulator
Sun et al. Applications of integrated optical microcombs
Shao et al. Thermal Modulation of Gigahertz Surface Acoustic Waves on Lithium Niobate
US11243419B2 (en) Electro-optic silicon nitride via electric poling
Zhou et al. Multifunctional metasurface for ultrafast all-optical efficient modulation of terahertz wave
Fumeaux et al. Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz
WO2004107033A1 (en) Frequency comb generator
US7283704B2 (en) Optical signal-electric signal converter
Li et al. Frequency Chirped Intensity Modulated Mid-Infrared Light Source Based on Optical Parametric Oscillation
Long et al. Sub-Doppler spectroscopy of quantum systems through nanophotonic spectral translation of electro-optic light
Girardi et al. Superefficient microcombs at the wafer level
Tannoury Traveling-wave photomixers for sub-THz and THz generation
Moss Integrated optical frequency Kerr microcomb applications
Kondratiev et al. Electro-optical interaction in whispering gallery mode resonators for radio-to-optical frequency modulators
Ghosh et al. Integrated piezoelectrically driven acousto-optic modulator
Moss Advanced applications of optical frequency Kerr microcombs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant