CN113087916B - 基于杂芳基官能团配体的金属有机框架材料及其制备方法和应用 - Google Patents

基于杂芳基官能团配体的金属有机框架材料及其制备方法和应用 Download PDF

Info

Publication number
CN113087916B
CN113087916B CN202010023346.9A CN202010023346A CN113087916B CN 113087916 B CN113087916 B CN 113087916B CN 202010023346 A CN202010023346 A CN 202010023346A CN 113087916 B CN113087916 B CN 113087916B
Authority
CN
China
Prior art keywords
metal
organic framework
framework material
pfc
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010023346.9A
Other languages
English (en)
Other versions
CN113087916A (zh
Inventor
刘天赋
黄阁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN202010023346.9A priority Critical patent/CN113087916B/zh
Publication of CN113087916A publication Critical patent/CN113087916A/zh
Application granted granted Critical
Publication of CN113087916B publication Critical patent/CN113087916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明设计合成了一种基于含杂芳基(如三氮唑或二氮唑)官能团配体构筑的金属有机框架材料,利用杂芳基配体的电荷相互作用力的协同作用,得到基于杂芳基配体构筑的金属有机框架材料,该类金属有机框架材料框架可以为电中性或电正性,证明了阳离子骨架能够提高MOFs的稳定性。本发明中的有机框架材料具有高比表面积、永久孔道、高化学与热稳定性。并且,所述有机框架材料还具有合成条件温和、离子交换能力良好等特点,解决了以往金属有机框架材料稳定性差、不能保持永久孔道的问题。材料制备方法简单,可操作性强,可以自由控制颗粒的粒径,最小可以达到200纳米。同时还具有良好的功能性,在进一步复合贵金属前驱体之后,具有优良的催化甲酸产氢的能力。

Description

基于杂芳基官能团配体的金属有机框架材料及其制备方法和 应用
技术领域
本发明属于金属有机框架材料领域,具体涉及一种基于杂芳基官能团配体的金属有机框架材料及其制备方法和应用。
背景技术
金属有机框架材料(MOFs)是一类由金属节点和有机配体组装而成的多孔框架材料,由于该类材料具备高孔隙率、良好的结晶性以及结构的可调控性等优点,因而在材料化学领域受到广泛关注。然而,金属与配体之间的配位键与C-C,C-N,C-O等共价键相比有着更低的键能,极大地限制了该类材料的应用范围。因此,增强金属与配体之间的结合能力即配位键的强度是一种最有效的提高MOFs稳定性的方法。迄今为止,在增强MOFs的稳定性方面主要有以下几种策略:(1)根据软硬酸碱理论,选择合适的软硬酸碱组合,使配体和金属之间形成较强的配位键;(2)通过框架中引入疏水性官能团来保护金属和配体之间的配位键,从而增强其水稳定性;(3)合理选择多齿配体即在金属节点上设计高的螯合数目从而增强MOFs稳定性。在以上几种策略的基础上,虽然部分MOFs在常规温和的操作环境中可以稳定存在,但是在苛刻条件(强酸、强碱、强氧化性、强腐蚀性以及高离子浓度溶液)下的稳定性却很难得到保证,比如核废料的回收往往在强酸条件下进行以及海水的淡化需要材料具有抗高度离子浓度的性能,而大多数的MOFs在如此严苛的环境中是无法稳定存在的。所以,合成高稳定的MOFs以及探索更有效的稳定该类材料的策略依然是一个挑战。
发明内容
为改善上述问题,本发明提供一种金属有机框架材料,包括金属中心和如式(I)所示的配体或所述配体脱质子后的阴离子,以及任选存在或不存在的额外的阴离子:
Figure GDA0003642244860000021
其中,R1、R2相同或不同,彼此独立地选自杂芳基;
R3选自H或杂芳基;
L选自化学键、-N=N-、无取代或被1个、2个或更多个Ra取代的烷基、环烷基、氨基、杂环基、芳基、杂芳基;
每一个Ra相同或不同,彼此独立地选自烷基、芳基、杂芳基、环烷基、杂环基;
所述金属中心选自金属阳离子,例如过渡金属阳离子。
根据本发明的实施方案,所述金属中心可以选自例如Cr、Mn、Fe、Co、Ni、Cu、Zn、Cd的阳离子中的一种或几种,例如选自Cr3+、Cr6+、Mn2+、Mn7+、Fe2+、Fe3+、Co2+、Co3+、Ni2+、Cu2+、Zn2 +、Cd2+中的一种或几种。
根据本发明的实施方案,所述配体脱质子后的阴离子可以与金属中心一起实现电中性。
根据本发明的实施方案,所述杂芳基优选为5元或6元杂芳基,其具有5个或6个成环原子,其中1、2、3或4个成环原子选自N、O、S中的一种,优选其中至少1个成环原子选自N原子,特别优选其中1、2或3个成环原子选自N原子。
根据本发明的实施方案,R3为H,则R1、R2相同或不同,彼此独立地选自5元杂芳基;作为实例,R1、R2相同或不同,彼此独立地选自二氮唑、三氮唑,例如
Figure GDA0003642244860000022
或者作为选择,根据本发明的实施方案,R1、R2、R3相同或不同,彼此独立地选自5元杂芳基;作为实例,R1、R2、R3相同或不同,彼此独立地选自二氮唑、三氮唑,例如
Figure GDA0003642244860000031
根据本发明的实施方案,所述额外的阴离子不是式(I)所示的配体本身产生的阴离子,例如其可以选自卤素阴离子,例如氟、氯、溴或碘阴离子。
根据本发明的实施方案,L选自化学键、-N=N-、无取代或被1个、2个或更多个Ra取代的烷基、环烷基、氨基、芳基。
根据本发明的实施方案,L选自化学键、-N=N-、无取代或被1个、2个或更多个Ra取代的金刚烷基、氨基、苯基。
根据本发明的实施方案,Ra选自烷基、芳基,例如甲基、乙基、苯基。
根据本发明示例性的实施方案,L可以选自化学键、-N=N-、金刚烷基、芳基、单烷基芳基、二烷基芳基、三烷基芳基、三芳基芳基(如1,3,5-三亚苯基苯基)、单烷基氨基、二烷基氨基、三烷基氨基、三芳基氨基。
根据本发明示例性的实施方案,所述配体可以具有以下的结构:
Figure GDA0003642244860000032
Figure GDA0003642244860000041
根据本发明的实施方案,所述金属有机框架材料金属中心为Ni2+,配体为
Figure GDA0003642244860000042
阴离子为Cl-,将该材料记为PFC-8。
根据本发明的实施方案,所述金属有机框架材料金属中心为Ni2+,所述配体为
Figure GDA0003642244860000043
无额外的阴离子,将该材料记为PFC-9。
根据本发明的实施方案,所述金属有机框架材料中每个金属中心可以与n个配体配位,n为2-8的整数,如2、3、4、5、6、7、8;
根据本发明的实施方案,所述金属有机框架材料中每个配体可以与m个金属中心配位,m为2-6的整数,如2、3、4、5、6;
根据本发明的实施方案,所述金属有机框架材料中每个金属中心与n个配体配位,每个配体与m个金属中心配位,以形成空间网状结构,其中n为2-8的整数,m为2-6的整数。
根据本发明的实施方案,PFC-8和PFC-9具有相同空间群、拓扑结构。
根据本发明的实施方案,所述金属有机框架材料可以为电正性或电中性。
根据本发明的实施方案,PFC-8中,每个金属中心与4个配体配位,其中两个配体在一个平面的延伸方向上与金属配位,另外两个配体在另一个平面的延伸方向上与金属中心配位,呈平行四边形配位;轴向位置占据了两个氯离子。每个配体与4个金属中心配位,与同一个配体同一端配位的金属中心之间形成轴线,四根互相相邻的轴线之间形成孔道,进而形成空间网状结构,孔道尺寸约
Figure GDA0003642244860000051
PFC-9的结构和PFC-8类似,唯一不同的是金属-氮平面四边形的轴向位置没有被氯原子占据,孔道尺寸约
Figure GDA0003642244860000052
根据本发明的实施方案,所述金属有机框架材料为框架可以为电正性或电中性的MOFs材料;若所述金属有机框架材料的框架为电正性,则所述孔道中可以含有阴离子;若所述金属有机框架材料的框架为电中性,则所述孔道中可以不含阴离子。
作为实例,PFC-8的配体1,4-二(4氢-1,2,4-三氮唑-4-基)苯(BTAB)作为电中性的配体与二价镍配位,由于电荷的不平衡导致在孔道当中有游离的氯离子保持电荷的守衡。PFC-9的配体1,4-二(1氢-吡唑-4-基)苯(H2DPB)的DPB2-与Ni2+形成的一个电中性的金属有机框架结构。
根据本发明的实施方案,所述金属有机框架材料的比表面积可以为1149~1400平方米/克;粒径可以为200纳米~100微米;晶体颗粒度可以为60-100微米。
本发明还提供上述金属有机框架材料的制备方法,包括在存在或不存在有机碱的情况下,将金属盐、配体混合、超声、静置,得到所述金属有机框架材料。
优选地,所述方法在不加入有机碱的情况下,将过渡金属盐和配体混合、超声、静置,得到纳米级金属有机框架材料。
所述金属盐优选过渡金属盐,例如可以选自Cr、Mn、Fe、Co、Ni、Cu、Zn、Cd的盐,例如其氯化盐、醋酸盐、高氯酸盐、硫酸盐及其盐类水合物中的一种,例如氯化铬、氯化锰、氯化铁、氯化钴、氯化镍、六水合氯化镍、氯化铜、氯化锌、氯化镉。
所述过渡金属盐可以以其溶液形式使用,其中所述溶液的溶剂可以为水。
所述配体可以以其溶液形式使用,其中所述溶液的溶剂可以为有机溶剂,所述有机溶剂可以选自N,N-二甲基甲酰胺、N-甲基甲酰胺或N-甲基乙酰胺,优选为N,N-二甲基甲酰胺。
所述有机碱可以选自有机胺,例如三乙胺、三丁胺、二甲基乙二胺、异丙基乙二胺,优选为三乙胺。
所述静置的温度可以为100-150℃,优选为130℃。
所述静置的时间可以为10-20个小时,优选为16个小时。
本发明还提供了所述金属有机框架材料的应用,其可作为官能化的载体材料。
本发明还提供了一种所述金属有机框架材料官能化的方法:通过离子交换作用将金属有机框架材料中的阴离子交换为带电性相同的功能分子;所述功能分子选自染料、药物、催化剂前驱体、光敏剂或导电小分子;
根据本发明的实施方案,所述离子交换作用的方法可以为把金属有机框架材料加入到功能分子溶解的溶液中,在摇床上晃动进行交换。
本发明还提供一种所述金属有机框架材料官能化后的材料,可以为按照所述金属有机框架材料官能化的方法制备的材料;
根据本发明的实施方案,所述金属有机框架材料官能化后的材料包括对其进行进一步处理的材料;所述进一步处理可以为还原、氧化。
根据本发明的实施方案,所述金属有机框架材料官能化后的材料可以为将所述金属有机框架材料当中的Cl-交换为PdCl4 2-后的材料;例如,将PFC-8材料当中的Cl-交换为PdCl4 2-后的材料。
根据本发明的实施方案,所述金属有机框架材料官能化后的材料可以为将所述金属有机框架材料中的Cl-交换为PdCl4 2-后的材料再将氯钯酸根还原成钯后的材料;例如,将PFC-8材料中的Cl-交换为PdCl4 2-后的材料再将氯钯酸根还原成钯后的材料(Pd@Nano-PFC-8)。
本发明还提供了所述金属有机框架材料官能化后的材料作为催化剂的用途,优选作为催化产氢的催化剂,例如催化甲酸产氢的催化剂。
术语解释和定义
除非另有说明,本申请说明书和权利要求书中记载的基团和术语定义,包括其作为实例的定义、示例性的定义、优选的定义、表格中记载的定义、实施例中具体化合物的定义等,可以彼此之间任意组合和结合。这样的组合和结合后的基团定义及化合物结构,应当属于本申请记载和保护的范围。
本发明中"任选的阴离子"表示所述金属有机框架材料可以为包括阴离子的形式,或者不包括阴离子的形式。
本发明使用的术语“取代”意指被任选一个或多个取代基取代。适宜的取代基包括但不限于烷基、环烷基、胺基、芳基、杂环基、杂芳基。所述取代基可以无取代或任选被一个或多个相同或不同的选自上列的取代基进一步取代。
本发明单独使用或用作后缀或前缀的“烷基”意在包括具有1至20个碳原子(或若提供了碳原子的具体数目,则指该具体数目)的支链和直链饱和脂族烃基。例如,“C1-C8烷基”表示具有1、2、3、4、5、6、7或8个碳原子的直链和支链烷基。烷基的实例包括但不限于甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基和己基。
本发明使用的术语“环烷基”意在包括具有指定数目碳原子的饱和环基。这些术语可包括稠合或桥接的多环系统。环烷基在其环结构中具有3至40个碳原子。在一个实施方案中,环烷基在其环结构中具有3、4、5、6、7、8、9、10、11或12个碳原子。例如,“C3-12环烷基”表示例如环丙基、环丁基、环戊基、环己基、金刚烷基(三环[3.3.1.13,7]癸烷)的基团。
本发明使用的术语“芳基”指由5至20个碳原子构成的芳族环结构。例如:包含5、6、7和8个碳原子的芳族环结构可以是单环芳族基团例如苯基;包含8、9、10、11、12、13或14个碳原子的环结构可以是多环的例如萘基。芳环可在一个或多个环位置取代有上述那些取代基。术语“芳基”还包括具有两个或更多个环的多环环系,其中两个或更多个碳为两个相邻环所共有(所述环为“稠环”),其中至少一个环是芳族的且其它环例如可以是环烷基、环烯基、环炔基、芳基和/或杂环基。多环的实例包括但不限于2,3-二氢-1,4-苯并二氧杂环己二烯和2,3-二氢-1-苯并呋喃。
本发明使用的“杂芳基”指具有至少一个环杂原子(例如硫、氧或氮)的杂芳族杂环。杂芳基包括单环系统和多环系统(例如具有2、3或4个稠环)。杂芳基的实例包括但不限于吡啶基、嘧啶基、吡嗪基、哒嗪基、三嗪基、呋喃基、喹啉基、异喹啉基、噻吩基、咪唑基、噻唑基、吲哚基、吡咯基、噁唑基、苯并呋喃基、苯并噻吩基、苯并噻唑基、异噁唑基、吡唑基、三唑基、四唑基、吲唑基、1,2,4-噻二唑基、异噻唑基、苯并噻吩基、嘌呤基、咔唑基、苯并咪唑基、苯并噁唑基、氮杂苯并噁唑基、咪唑并噻唑基、苯并[1,4]二氧杂环己烯基、苯并[1,3]二氧杂环戊烯基等。在一些实施方案中,杂芳基具有3至40个碳原子且在其它实施方案中具有3至20个碳原子。在一些实施方案中,杂芳基包含3至14个、4至14个、3至7个或5至6个成环原子。在一些实施方案中,杂芳基具有1至4个、1至3个或1至2个选自N、O、S的杂原子。在一些实施方案中,杂芳基具有1、2或3个N原子。
除非另有说明,本发明使用的术语“杂环基”指包含3至20个原子的饱和、不饱和或部分饱和的单环、二环或三环,其中1、2、3、4或5个环原子选自N、O、S的杂原子,除非另有说明,其可通过碳或氮连接,其中-CH2-基团任选被-C(O)-代替;及其中除非另有相反说明,环氮原子或环硫原子任选被氧化以形成N-氧化物或S-氧化物或环氮原子任选被季铵化;其中环中的-NH任选被乙酰基、甲酰基、甲基或甲磺酰基取代;及环任选被一个或多个卤素取代。应该理解的是,当杂环基中S原子和O原子的总数超过1时,这些杂原子不彼此相邻。若所述杂环基为二环或三环,则至少一个环可任选为杂芳族环或芳族环,条件是至少一个环是非杂芳族的。若所述杂环基为单环,则其为非杂芳族的。杂环基的实例包括但不限于哌啶基、N-乙酰基哌啶基、N-甲基哌啶基、N-甲酰基哌嗪基、N-甲磺酰基哌嗪基、高哌嗪基、哌嗪基、氮杂环丁烷基、氧杂环丁烷基、吗啉基、四氢异喹啉基、四氢喹啉基、二氢吲哚基、四氢吡喃基、二氢-2H-吡喃基、四氢呋喃基、四氢噻喃基、四氢噻喃-1-氧化物、四氢噻喃-1,1-二氧化物、1H-吡啶-2-酮和2,5-二氧代咪唑烷基。
有益效果
本发明利用杂芳基(如三氮唑、二氮唑)配体的电荷相互作用力的协同作用,得到基于杂芳基配体构筑的金属有机框架材料,并首次证明阳离子骨架能够提高MOFs的稳定性。该类有机框架材料具有高比表面积、永久孔道、高化学与热稳定性。例如,PFC-8在高强度的离子溶液强酸、强氧化性的溶液中具有很好的稳定性,在12M HCl中至少稳定301天,H2O2中至少稳定30天,海水中至少稳定30天,王水中至少稳定86天;PFC-9能在pH=3到pH=12的条件下稳定。并且,所述有机框架材料还具有合成条件温和、离子交换能力良好等特点,解决了以往金属有机框架材料稳定性差、不能保持永久孔道的问题。且材料制备方法简单,可操作性强,可以自由控制颗粒的粒径,最小可以达到200纳米。
并且,所述有机框架材料具有良好的功能性,在进一步复合贵金属前驱体之后,具有优良的催化甲酸产氢的能力。
附图说明
图1为本发明三氮唑和二氮唑金属有机框架材料的结构示意图;
图2为实施例1中PFC-8和实施例2中PFC-9的稳定性测试结果,其中(a)为PFC-8及其在不同环境下处理后的PFC-8的X射线衍射图;(b)为PFC-8及其在不同环境下处理后的PFC-8的氮气吸附脱附等温线图;(c)为PFC-9及其在不同环境下处理后的PFC-9的X射线衍射图;(d)为PFC-9及其在不同环境下处理后的PFC-9的氮气吸附脱附等温线图;(e)为PFC-8和PFC-9在不同温度下的二氧化碳吸附脱附等温线图(f)为PFC-8和PFC-9的二氧化碳吸附热图;
图3为实施例1中PFC-8配体BTAB的合成路线和核磁谱图;
图4(a)和(b)为实施例4中Pd@Nano-PFC-8的钯纳米颗粒的透射电镜扫描图,(c)为实施例4中Pd@Nano-PFC-8的X射线光电子能谱(xps)信号分布图;(d)和(e)为实施例4中Pd@PFC-9的透射电镜扫描图;(f)为实施例4中Pd@Nano-PFC-8中钯纳米颗粒的粒径分布图;
图5(a),(b)为PFC-8的SEM图;(c),(d)为实施例3中Nano-PFC-8的SEM图;(e),(f)为实施例4中Pd@Nano-PFC-8的SEM图;
图6Nano-PFC-8和PFC-9对于氯钯酸根的吸附过程;
图7为实施例5中Pd@Nano-PFC-8和Pd@PFC-9作为催化剂用于催化甲酸产氢反应活性比较:(a)Pd@Nano-PFC-8和Pd@PFC-9的催化性能;(b)Pd@Nano-PFC-8经过五轮催化以后的TEM;(c)Pd@Nano-PFC-8和(d)Pd@PFC-9的循环性实验。
具体实施方式
下文将结合具体实施例对本发明材料及其制备方法和应用做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
部分仪器信息如下:
Figure GDA0003642244860000101
Figure GDA0003642244860000111
实施例1基于三氮唑的金属有机框架材料的合成(PFC-8)
114毫克的六水合氯化镍溶解在4mL的水溶液当中,然后将溶液超声2分钟。66mg的1,4-二(4氢-1,2,4-三氮唑-4-基)苯(BTAB)溶解在14mL的DMF溶液当中伴随着超声10分钟。然后将两种溶液混合均匀以后再加入3mL的三乙胺超声溶解15分钟。最后将配好的21mL的混合物平均分装进7个10mL标准的玻璃样品瓶内(每个3mL)用加橡胶垫片的盖子密封。然后将瓶子静置于130℃的条件下16个小时。然后得到的固体用体积比为2:1的12M HCl和DMF混合溶液洗两遍,最后用丙酮清洗三遍,得到PFC-8,X射线衍射图如图2(a)所示,SEM图如图5(a)和(b)所示。
实施例2基于二氮的金属有机框架材料的合成(PFC-9)
取1,4-二(1氢-吡唑-4-基)苯(H2DPB)105mg溶解在15mL的DMF当中超声十分钟。然后将溶液置于密封玻璃瓶中放置于90℃烘箱预热完全溶解。然后取出来再趁热加入125mg的四水乙酸镍,搅拌均匀后再超声10分钟。然后将得到的溶液转移5个10mL标准的玻璃样品瓶当中(每个3mL)。将小瓶子静置于120℃的烘箱24小时。得到的棕色的固体粉末用DMF和丙酮清洗三遍,得到PFC-9,X射线衍射图如图2(c)所示。
实施例3纳米级基于三氮唑的金属有机框架材料的合成(Nano-PFC-8)
114毫克的六水合氯化镍溶解在4mL的水溶液当中,然后超声2分钟。66mg的BTAB溶解在14mL的DMF溶液当中超声10分钟。然后将两种溶液混合均匀超声溶解15分钟.最后将配好的18mL的混合物平均分装进6个10mL标准的玻璃样品瓶内(每个3mL)用加橡胶垫片的盖子密封。然后将瓶子静置于120℃的条件下16个小时。然后得到的固体用体积比为2:1的12MHCl和DMF混合溶液洗两遍,最后用丙酮清洗三遍。得到Nano-PFC-8纳米级材料的粒径如图5(c,d)所示为200纳米~100微米。
实施例4合成Pd@Nano-PFC-8和Pd@PFC-9
我们通过离子交换作用将纳米级PFC-8材料当中的Cl-交换为PdCl4 2-,然后用硼氢化钠通过化学还原的方法将氯钯酸根还原成钯纳米颗粒。我们把这种催化剂命名为Pd@Nano-PFC-8,粉末射线衍射图如图4所示,透射电镜图如图4(a)和(b)所示,扫描电镜图如图5(e)和(f)所示。同样地,我们把PFC-9利用这个相同的制备过程制作出Pd@PFC-9,透射电镜图如图4(d)和(e)所示。合成Pd@Nano-PFC-8和合成Pd@PFC-9的方法是一致的,以制备Pd@Nano-PFC-8的方法为例:将活化后的100mg的Nano-PFC-8分散在无水的正己烷当中,然后超声10分钟让它高度分散。然后0.20mL的氯钯酸钾(5mg)溶液以每分钟20uL的速率用移液枪转移到伴随着强烈搅拌(转速800rpm)的正己烷溶液当中。之后再搅拌一个小时。最后将沉降的固体粉末通过去除上清液的方法收集然后用水清洗一遍放到60℃的真空干燥箱里面烘干。将烘干后的固体粉末再分散到10mL的水溶液当中,超声十分钟使得它高度分散。然后将预先配置好的1mL浓度为0.265M NaBH4(10mg)溶液滴加到伴随有搅拌(转速400rpm)的分散有材料的水溶液当中,在温和搅拌1个小时。最后得到的粉末固体用清水溶液清洗一遍然后放到80℃的真空干燥箱当中干燥。
在实验过程当中,我们清楚地发现分散在正乙烷溶液当中的PFC-8对于滴入PdCl4 2-溶液有着很强的吸附能力,相分离逐渐出现,纳米级PFC-8逐渐出现在瓶壁。这可能是因为PdCl4 2-离子与Cl-之间发生强烈的交换作用导致Nano-PFC-8亲水性的增加。对比之下,PFC-9分散在正己烷当中对滴加的PdCl4 2-没有任何反应,也无法增强它的亲水性,所以最后也没有完全将PFC-9从有机相里面分离开来。在化学还原以后,如图4所示,利用透射扫描电镜(TEM)发现Pd纳米颗粒均匀分散在Nano-PFC-8的孔道当中,而且平均尺寸在1.75nm左右。通过测量钯纳米颗粒的晶格条纹宽度为0.224nm,这与Pd纳米颗粒的理论尺寸0.223nm吻合。而在PFC-9当中没有发现明显的钯纳米颗粒的存在。X射线能谱分析也进一步证明在Nano-PFC-8当中的钯的负载量要比PFC-9当中的钯的负载量高。
类似的,该方法也可以用于引入其他催化剂前驱体、光敏剂、导电小分子等功能基元。即将活化后的100mg的Nano-PFC-8分散在功能基元的溶剂中,然后超声10分钟让它高度分散。将沉降的固体粉末通过去除上清液的方法收集然后用水清洗,放到真空干燥箱里面烘干。
实施例5Pd@Nano-PFC-8和Pd@PFC-9的催化活性比较
如图7(a),10mg的催化剂能够使2mmol的甲酸(92mg)在25分钟以内完全催化转化成H2和CO2(摩尔比为1:1)。通过气相色谱检测发现没有CO副产物的产生。通过计算活性位点钯的TOF值为5141h-1。经过五轮的反应以后,催化剂仍然保持的优良的活性,通过TEM表征发现MOF上仍然高度均匀分布着钯纳米催化剂,如图7(b)所示。相比之下,Pd@PFC-9的转化率为32.7%。这是因为PFC-9耐酸性不强,在第一轮催化甲酸产氢过程当中,催化剂已经失活,而且第二轮失去催化活性。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种金属有机框架材料,由金属中心和配体或所述配体脱质子后的阴离子,以及额外的阴离子组成:
其中,所述配体具有以下结构:
Figure FDA0003670313350000011
其中,L选自无取代或被1个、2个或更多个甲基或乙基取代的苯基;两个三氮唑基位于所述苯基的对位;
所述金属中心为Ni2+
所述额外的阴离子选自氟、氯、溴或碘阴离子。
2.根据权利要求1所述的金属有机框架材料,其中述金属有机框架材料选自下列中的一种:
金属中心为Ni2+,配体为
Figure FDA0003670313350000012
阴离子为Cl-
3.根据权利要求1所述的金属有机框架材料,其中:
所述金属有机框架材料中每个金属中心与n个配体配位,n为2、3、4、5、6、7或8;
所述金属有机框架材料中每个配体与m个金属中心配位,m为2、3、4、5或6。
4.权利要求1-3任一项所述的金属有机框架材料的制备方法,包括在存在或不存在有机碱的情况下,将金属盐、配体混合、超声、静置,得到所述金属有机框架材料;
所述金属盐选自氯化镍、六水合氯化镍;
所述有机碱选自三乙胺、三丁胺、二甲基乙二胺、异丙基乙二胺。
5.一种金属有机框架材料官能化的方法,通过离子交换作用将权利要求1-3任一项所述的金属有机框架材料中的阴离子交换为带电性相同的功能分子;
所述功能分子选自染料、药物、催化剂前驱体、光敏剂或导电小分子。
6.权利要求1-3任一项所述的金属有机框架材料作为催化产氢的催化剂的用途。
7.根据权利要求6所述的用途,其特征在于,所述催化剂为催化甲酸产氢的催化剂。
CN202010023346.9A 2020-01-09 2020-01-09 基于杂芳基官能团配体的金属有机框架材料及其制备方法和应用 Active CN113087916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010023346.9A CN113087916B (zh) 2020-01-09 2020-01-09 基于杂芳基官能团配体的金属有机框架材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010023346.9A CN113087916B (zh) 2020-01-09 2020-01-09 基于杂芳基官能团配体的金属有机框架材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113087916A CN113087916A (zh) 2021-07-09
CN113087916B true CN113087916B (zh) 2022-07-19

Family

ID=76663560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010023346.9A Active CN113087916B (zh) 2020-01-09 2020-01-09 基于杂芳基官能团配体的金属有机框架材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113087916B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196036A (zh) * 2021-12-20 2022-03-18 商丘师范学院 一种阴离子辅助型磺酰基铜配合物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816289A (zh) * 2018-06-02 2018-11-16 长春工业大学 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014182648A1 (en) * 2013-05-06 2014-11-13 Massachusetts Institute Of Technolgy Compositions and methods comprising porous metal organic framewroks and related uses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108816289A (zh) * 2018-06-02 2018-11-16 长春工业大学 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs";Galli, S. et al;《CHEMISTRY OF MATERIALS》;20100209;第22卷;第1664-1672页 *
"Highly Selective Adsorption of C2/C1 Mixtures and Solvent-Dependent Thermochromic Properties in Metal-Organic Frameworks Containing Infinite Copper-Halogen Chains";wang lihua et al;《CRYSTAL GROWTH & DESIGN》;20171215;第17卷;第2081-2089页 *

Also Published As

Publication number Publication date
CN113087916A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
Annamalai et al. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications–a review
Liu et al. Metal-organic framework composites as green/sustainable catalysts
Liang et al. Dislocated bilayer MOF enables high‐selectivity photocatalytic reduction of CO2 to CO
Chen et al. Boosting photocatalytic performance in mixed-valence MIL-53 (Fe) by changing FeII/FeIII ratio
Khan et al. Beyond pristine metal-organic frameworks: Preparation and application of nanostructured, nanosized, and analogous MOFs
Feng et al. Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U (VI)
Nasiri-Ardali et al. A comprehensive study on the kinetics and thermodynamic aspects of batch and column removal of Pb (II) by the clinoptilolite–glycine adsorbent
Zhang et al. Applications and interfaces of halloysite nanocomposites
Fronczak et al. Extraordinary adsorption of methyl blue onto sodium-doped graphitic carbon nitride
Hu et al. Synthesis of superparamagnetic nanoporous iron oxide particles with hollow interiors by using Prussian blue coordination polymers
Zhu et al. Metal–organic framework composites
Ahmed et al. Tuning morphology of nanostructured ZIF-8 on silica microspheres and applications in liquid chromatography and dye degradation
Wen et al. Design of single‐site photocatalysts by using metal–organic frameworks as a matrix
Zhang et al. ZIF-67-based catalysts in persulfate advanced oxidation processes (PS-AOPs) for water remediation
Minh et al. Synthesis of porous octahedral ZnO/CuO composites from Zn/Cu‐based MOF‐199 and their applications in visible‐light‐driven photocatalytic degradation of dyes
Lu et al. Interfacial Synthesis of Free‐Standing Metal–Organic Framework Membranes
Mao et al. Fe-based MOFs@ Pd@ COFs with spatial confinement effect and electron transfer synergy of highly dispersed Pd nanoparticles for Suzuki-Miyaura coupling reaction
Gao et al. Construction of UiO-66@ MoS2 flower-like hybrids through electrostatically induced self-assembly with enhanced photodegradation activity towards lomefloxacin
Yin et al. In-situ preparation of iron (II) phthalocyanine modified bismuth oxybromide with enhanced visible-light photocatalytic activity and mechanism insight
Wang et al. Synthesis of a magnetic 2D Co@ NC-600 material by designing a MOF precursor for efficient catalytic reduction of water pollutants
Ökte et al. The effect of ZnO or TiO2 loaded nanoparticles on the adsorption and photocatalytic performance of Cu-BTC and ZIF-8 MOFs
KR101759774B1 (ko) 활성탄에 고정화된 코어-쉘 구조 구리 나노입자의 제조방법 및 이를 촉매로 이용한 칼코게나이드 화합물의 제조방법
Vo et al. Facile synthesis of magnetic framework composite MgFe2O4@ UiO-66 (Zr) and its applications in the adsorption–photocatalytic degradation of tetracycline
Hu et al. In-situ construction of bifunctional MIL-125 (Ti)/BiOI reactive adsorbent/photocatalyst with enhanced removal efficiency of organic contaminants
Cao et al. Peptide-mediated green synthesis of the MnO2@ ZIF-8 core–shell nanoparticles for efficient removal of pollutant dyes from wastewater via a synergistic process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant