CN113084821A - Spraying robot time optimal trajectory planning method based on dynamics - Google Patents
Spraying robot time optimal trajectory planning method based on dynamics Download PDFInfo
- Publication number
- CN113084821A CN113084821A CN202110482412.3A CN202110482412A CN113084821A CN 113084821 A CN113084821 A CN 113084821A CN 202110482412 A CN202110482412 A CN 202110482412A CN 113084821 A CN113084821 A CN 113084821A
- Authority
- CN
- China
- Prior art keywords
- joint
- constraints
- acceleration
- velocity
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000005507 spraying Methods 0.000 title claims abstract description 15
- 230000001133 acceleration Effects 0.000 claims abstract description 64
- 239000011159 matrix material Substances 0.000 claims description 14
- 230000014509 gene expression Effects 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 4
- 238000009795 derivation Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000036544 posture Effects 0.000 claims 6
- 238000010422 painting Methods 0.000 claims 3
- 238000009499 grossing Methods 0.000 claims 2
- 238000010586 diagram Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000005312 nonlinear dynamic Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/0075—Manipulators for painting or coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/1607—Calculation of inertia, jacobian matrixes and inverses
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
一种基于动力学的喷涂机器人时间最优轨迹规划方法,涉及一种机器人轨迹规划方法。给定笛卡尔空间路径;计算插值点相关参数:插值点个数、笛卡尔空间参数、关节空间参数和动力学方程系数,笛卡尔空间参数包括位置、姿态、线速度、欧拉角速度、线加速度和欧拉角加速度,关节空间参数包括关节角、关节速度和关节加速度;计算速度范围;计算速度最优值;平滑轨迹;输出关节参数。既考虑运动学约束,又引入动力学模型考虑动力学约束,与传统轨迹规划方法相比在时间上具有明显优势,运行过程中至少有一个关节电机达到极限运行状态,驱动性能得到充分发挥,并且各关节参数不会超过极限值,提高工作效率,具有普遍性。
A dynamic-based time optimal trajectory planning method for a spraying robot relates to a robot trajectory planning method. Given a Cartesian space path; calculate the parameters related to the interpolation points: the number of interpolation points, Cartesian space parameters, joint space parameters and dynamic equation coefficients, Cartesian space parameters include position, attitude, linear velocity, Euler angular velocity, linear acceleration and Euler angular acceleration, joint space parameters include joint angle, joint velocity and joint acceleration; calculate velocity range; calculate velocity optimal value; smooth trajectory; output joint parameters. Considering both kinematic constraints and dynamic constraints by introducing dynamic models, it has obvious advantages in time compared with traditional trajectory planning methods. During operation, at least one joint motor reaches the limit operating state, and the driving performance is fully utilized, and The parameters of each joint will not exceed the limit value, improve work efficiency, and have universality.
Description
技术领域technical field
本发明涉及一种机器人轨迹规划方法,尤其是一种基于动力学的喷涂机器人时间最优轨迹规划方法,属于机器人控制技术领域。The invention relates to a robot trajectory planning method, in particular to a dynamic-based spraying robot time optimal trajectory planning method, which belongs to the technical field of robot control.
背景技术Background technique
工业机器人的应用和发展推动了社会的进步,但是随着社会经济的不断发展,对工业自动化技术提出了更高的要求。在通过机器人进行喷涂作业时,为了提高喷涂机器人的生产效率,创造更大的经济价值,需要使机器人运动得更快、更准确和更安全。因此,需要对喷涂机器人的轨迹规划进行深入研究。The application and development of industrial robots have promoted the progress of society, but with the continuous development of social economy, higher requirements have been placed on industrial automation technology. When spraying with robots, in order to improve the production efficiency of spraying robots and create greater economic value, it is necessary to make the robots move faster, more accurately and more safely. Therefore, in-depth research on trajectory planning of spraying robots is required.
然而,传统的轨迹规划方法仅仅考虑运动学的约束,没有充分发挥关节电机的驱动性能,而且还存在规划速度超过限制区域的问题,得到的轨迹不是时间最优轨迹,参照图2所示。要想克服这些缺点达到时间最优的效果,就需要考虑动力学约束进行轨迹规划。However, the traditional trajectory planning method only considers the constraints of kinematics, does not give full play to the driving performance of the joint motor, and also has the problem that the planned speed exceeds the limit area, and the obtained trajectory is not the optimal trajectory in time, as shown in Figure 2. In order to overcome these shortcomings and achieve the time-optimized effect, it is necessary to consider the dynamic constraints for trajectory planning.
在现有技术中,存在进行时间最优规划的方法,比如数值积分法、凸优化法。但数值积分法不具有普遍性,不适用于所有动力学模型,而凸优化法计算量大,效率不高。因此,亟需一种对喷涂机器人进行时间最优的轨迹规划方法。In the prior art, there are methods for time optimal planning, such as numerical integration method and convex optimization method. However, the numerical integration method is not universal and is not suitable for all dynamic models, while the convex optimization method has a large amount of calculation and is not efficient. Therefore, there is an urgent need for a time-optimized trajectory planning method for spraying robots.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种基于动力学的喷涂机器人时间最优轨迹规划方法,它既考虑运动学约束,又引入动力学模型考虑动力学约束,在时间上具有明显优势。The purpose of the present invention is to provide a time-optimized trajectory planning method for a spraying robot based on dynamics, which not only considers kinematic constraints, but also introduces a dynamic model to consider dynamic constraints, and has obvious advantages in time.
为实现上述目的,本发明采取下述技术方案:一种基于动力学的喷涂机器人时间最优轨迹规划方法,包括以下步骤:In order to achieve the above object, the present invention adopts the following technical scheme: a dynamic-based spraying robot time optimal trajectory planning method, comprising the following steps:
步骤1、给定笛卡尔空间路径:利用喷涂机器人的示教器给定示教点,通过示教点确定路径;
步骤2、计算插值点相关参数:引入路径参数s,s表示从起始点到插值点的路径长度,设定路径长度为l,s∈[0,l],计算插值点个数、笛卡尔空间参数、关节空间参数和动力学方程系数,所述笛卡尔空间参数包括:位置、姿态、线速度、欧拉角速度、线加速度和欧拉角加速度,所述关节空间参数包括:关节角、关节速度和关节加速度;
2.1插值点个数:取值公式为n=m×l,其中m为经验系数;2.1 Number of interpolation points: the value formula is n=m×l, where m is the empirical coefficient;
2.2如路径为圆弧轨迹需计算出圆心、半径及圆心角,如路径为直线或样条曲线则跳过此步骤;2.2 If the path is an arc trajectory, the center, radius and center angle of the circle need to be calculated. If the path is a straight line or a spline curve, skip this step;
2.3笛卡尔空间参数:针对不同路径具体分析,将位置和姿态采用路径参数s相关的表达式进行表达,姿态采用四元数进行表达,中间姿态采用球面线性插值进行计算,线速度及欧拉角速度是关于位置姿态的微分,线加速度及欧拉角加速度是关于位置姿态的二阶微分;2.3 Cartesian space parameters: According to the specific analysis of different paths, the position and attitude are expressed by expressions related to the path parameter s, the attitude is expressed by quaternion, the intermediate attitude is calculated by spherical linear interpolation, the linear velocity and Euler angular velocity is the differential about the position and attitude, and the linear acceleration and the Euler angular acceleration are the second-order differential about the position and attitude;
2.4关节空间参数:已知位置姿态通过逆解求取关节角,然后利用线速度ps和关节速度qs的关系:2.4 Joint space parameters: The known position and attitude are used to obtain the joint angle through the inverse solution, and then use the relationship between the linear velocity ps and the joint velocity qs:
qs=J-1·psqs=J -1 ·ps
求得关节速度,其中J代表雅可比矩阵,Find the joint velocity, where J represents the Jacobian matrix,
然后对上式进行两边求导,求得关节加速度;Then, derivation of both sides of the above formula is carried out to obtain the joint acceleration;
2.5计算动力学方程系数:关节角q对路径完成的时间t的导数与路径参数s存在如下关系:2.5 Calculate the coefficients of the dynamic equation: the derivative of the joint angle q to the time t of the path completion and the path parameter s have the following relationship:
已知经拉格朗日方程法推导的机器人非线性动力学模型为:It is known that the nonlinear dynamic model of the robot derived by the Lagrange equation method is:
其中,M(q)表示惯量矩阵,表示科氏力与离心力矩阵,g(q)表示重力引起的力矩向量,将上面两个公式代入动力学模型中,整理后得:Among them, M(q) represents the inertia matrix, Represents the Coriolis force and the centrifugal force matrix, and g(q) represents the moment vector caused by gravity. Substitute the above two formulas into the dynamic model, and get:
对于动力学方程系数用公式法直接求解;For the coefficients of the dynamic equation, the formula method is used to directly solve it;
步骤3、计算速度范围:对每个插值点进行分析,约束包括笛卡尔空间约束和关节空间约束,其中笛卡尔空间约束包括线速度约束、欧拉角速度约束、线加速度约束及欧拉角加速度约束,关节空间约束包括关节力矩约束、关节速度约束及关节加速度约束,使对应的参数值小于约束值,考虑关节力矩约束的时候不考虑关节加速度约束,将约束转化为含参数速度平方和参数加速度的公式,综合考虑笛卡尔空间约束和关节空间约束,逐点求出各插值点参数速度平方的最大值,最小值为0,围成的区域即为机器人能达到的速度范围;
步骤4、计算速度最优值:每段轨迹看成加速段、中间段和减速段三部分,要获得时间最优的轨迹,加速段需要以最大加速度加速,中间段需要贴近速度上限运行,减速段需要以最小加速度减速,综合考虑动力学和运动学约束,给定每个插值点能够达到的极限加速度,利用运动学公式进行最优解计算;Step 4. Calculate the optimal value of speed: each trajectory is divided into three parts: acceleration section, middle section and deceleration section. To obtain the optimal trajectory of time, the acceleration section needs to accelerate at the maximum acceleration, and the middle section needs to run close to the upper speed limit and decelerate. The segment needs to decelerate at the minimum acceleration, considering the dynamic and kinematic constraints comprehensively, given the limit acceleration that each interpolation point can reach, and use the kinematic formula to calculate the optimal solution;
步骤5、平滑轨迹:对步骤4得到的轨迹进行平滑处理;Step 5. Smooth the trajectory: smooth the trajectory obtained in step 4;
步骤6、输出关节参数:针对步骤5中的插值点,按照插值周期重新进行排列,得到新的插值点,然后计算出关于时间的关节参数。Step 6. Output joint parameters: For the interpolation points in step 5, rearrange them according to the interpolation period to obtain new interpolation points, and then calculate the joint parameters related to time.
与现有技术相比,本发明的有益效果是:本发明既考虑运动学约束,又引入动力学模型考虑动力学约束,与传统轨迹规划方法相比,机器人喷涂完成相同的路径,在时间上具有明显优势,因为运行过程中至少有一个关节电机达到极限运行状态,使机器人的关节电机驱动性能得到充分发挥,并且机器人的各关节参数不会超过极限值,提高工作效率,具有普遍性。Compared with the prior art, the beneficial effects of the present invention are: the present invention not only considers the kinematic constraints, but also introduces the dynamic model to consider the dynamic constraints. It has obvious advantages, because at least one joint motor reaches the limit running state during operation, so that the joint motor driving performance of the robot can be fully utilized, and the joint parameters of the robot will not exceed the limit value, which improves work efficiency and is universal.
附图说明Description of drawings
图1是本发明的流程图;Fig. 1 is the flow chart of the present invention;
图2是传统轨迹与本发明的时间最优轨迹的对比示意图;Fig. 2 is the contrast schematic diagram of the traditional trajectory and the time optimal trajectory of the present invention;
图3是实施例的时间最优轨迹示意图;3 is a schematic diagram of a time optimal trajectory of an embodiment;
图4是实施例的关节角比率值示意图;4 is a schematic diagram of a joint angle ratio value of an embodiment;
图5是实施例的关节速度比率值示意图;Fig. 5 is the joint velocity ratio value schematic diagram of the embodiment;
图6是实施例的关节力矩比率值示意图。FIG. 6 is a schematic diagram of joint moment ratio values of an embodiment.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments, based on the present invention The embodiments in the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work, fall within the protection scope of the present invention.
如图1所示,一种基于动力学的喷涂机器人时间最优轨迹规划方法,包括以下步骤:As shown in Figure 1, a dynamics-based method for planning the optimal trajectory of spraying robot time, including the following steps:
步骤1、给定笛卡尔空间路径:利用喷涂机器人的示教器给定示教点,通过示教点确定路径;
步骤2、计算插值点相关参数:引入路径参数s,s表示从起始点到插值点的路径长度,设定路径长度为l,s∈[0,l],改变s即可改变速度和加速度进而完成规划,并计算插值点个数、笛卡尔空间参数、关节空间参数和动力学方程系数,所述笛卡尔空间参数包括:位置、姿态、线速度、欧拉角速度、线加速度和欧拉角加速度,所述关节空间参数包括:关节角、关节速度和关节加速度;
2.1插值点个数:与路径长度成正比,路径长度越大则插值点个数越多,取值公式为n=m×l,其中m为经验系数;2.1 The number of interpolation points: proportional to the length of the path, the greater the length of the path, the more the number of interpolation points, the value formula is n=m×l, where m is the empirical coefficient;
2.2如路径为圆弧轨迹需计算出圆心、半径及圆心角,如路径为直线或样条曲线则跳过此步骤;2.2 If the path is an arc trajectory, the center, radius and center angle of the circle need to be calculated. If the path is a straight line or a spline curve, skip this step;
2.3笛卡尔空间参数:针对不同路径具体分析,将位置和姿态采用路径参数s相关的表达式进行表达,姿态采用四元数进行表达,中间姿态采用球面线性插值进行计算,线速度及欧拉角速度是关于位置姿态的微分,线加速度及欧拉角加速度是关于位置姿态的二阶微分;2.3 Cartesian space parameters: According to the specific analysis of different paths, the position and attitude are expressed by expressions related to the path parameter s, the attitude is expressed by quaternion, the intermediate attitude is calculated by spherical linear interpolation, the linear velocity and Euler angular velocity is the differential about the position and attitude, and the linear acceleration and the Euler angular acceleration are the second-order differential about the position and attitude;
2.4关节空间参数:已知位置姿态通过逆解求取关节角,然后利用线速度ps和关节速度qs的关系:2.4 Joint space parameters: The known position and attitude are used to obtain the joint angle through the inverse solution, and then use the relationship between the linear velocity ps and the joint velocity qs:
qs=J-1·psqs=J -1 ·ps
求得关节速度,其中J代表雅可比矩阵,Find the joint velocity, where J represents the Jacobian matrix,
然后对上式进行两边求导,求得关节加速度;Then, derivation of both sides of the above formula is carried out to obtain the joint acceleration;
2.5计算动力学方程系数:关节角q对路径完成的时间t的导数与路径参数s存在如下关系:2.5 Calculate the coefficients of the dynamic equation: the derivative of the joint angle q to the time t of the path completion and the path parameter s have the following relationship:
已知经拉格朗日方程法推导的机器人非线性动力学模型为:It is known that the nonlinear dynamic model of the robot derived by the Lagrange equation method is:
其中,M(q)表示惯量矩阵,表示科氏力与离心力矩阵,g(q)表示重力引起的力矩向量,将上面两个公式代入动力学模型中,整理后得:Among them, M(q) represents the inertia matrix, Represents the Coriolis force and the centrifugal force matrix, and g(q) represents the moment vector caused by gravity. Substitute the above two formulas into the dynamic model, and get:
对于动力学方程系数用公式法直接求解;For the coefficients of the dynamic equation, the formula method is used to directly solve it;
步骤3、计算速度范围:由于每个插值点对应的约束情况不同,需要对每个插值点进行分析,约束包括笛卡尔空间约束和关节空间约束,其中笛卡尔空间约束包括线速度约束、欧拉角速度约束、线加速度约束及欧拉角加速度约束,关节空间约束包括关节力矩约束、关节速度约束及关节加速度约束,使对应的参数值小于约束值,
另外,考虑关节力矩约束的时候不考虑关节加速度约束,In addition, joint acceleration constraints are not considered when considering joint moment constraints,
将约束转化为含参数速度平方和参数加速度的公式,综合考虑笛卡尔空间约束和关节空间约束,逐点求出各插值点参数速度平方的最大值,最小值为0,围成的区域即为机器人能达到的速度范围;Convert Constraint to Parametric Velocity Squared and parameter acceleration The formula of , comprehensively considering the Cartesian space constraints and joint space constraints, the parameter velocity square of each interpolation point is calculated point by point The maximum value of , the minimum value is 0, and the enclosed area is the speed range that the robot can achieve;
步骤4、计算速度最优值:每段轨迹看成加速段、中间段和减速段三部分,要获得时间最优的轨迹,加速段需要以最大加速度加速,中间段需要贴近速度上限运行,减速段需要以最小加速度减速,综合考虑动力学和运动学约束,给定每个插值点能够达到的极限加速度,利用运动学公式进行最优解计算;Step 4. Calculate the optimal value of speed: each trajectory is divided into three parts: acceleration section, middle section and deceleration section. To obtain the optimal trajectory of time, the acceleration section needs to accelerate at the maximum acceleration, and the middle section needs to run close to the upper speed limit and decelerate. The segment needs to decelerate at the minimum acceleration, considering the dynamic and kinematic constraints comprehensively, given the limit acceleration that each interpolation point can reach, and use the kinematic formula to calculate the optimal solution;
步骤5、平滑轨迹:对步骤4得到的轨迹进行平滑处理;Step 5. Smooth the trajectory: smooth the trajectory obtained in step 4;
步骤6、输出关节参数:针对步骤5中的插值点,按照插值周期重新进行排列,得到新的插值点,然后计算出关于时间的关节参数。Step 6. Output joint parameters: For the interpolation points in step 5, rearrange them according to the interpolation period to obtain new interpolation points, and then calculate the joint parameters related to time.
实施例:喷涂机器人在笛卡尔空间中完成一段圆弧轨迹Example: a spraying robot completes a circular arc trajectory in Cartesian space
具体的时间最优轨迹规划方法如下:The specific time optimal trajectory planning method is as follows:
步骤1、给定笛卡尔空间路径:示教器给定三个示教点,位置姿态分别为P1(x1,y1,z1,α1,β1,γ1)、P2(x2,y2,z2,α2,β2,γ2)、P3(x3,y3,z3,α3,β3,γ3)。其中,坐标中前三个坐标代表空间位置,后三个坐标用欧拉角代表姿态;
步骤2、计算插值点相关参数:
2.1插值点个数:按照圆弧路径的长度l进行取值,取值公式为n=m×l,其中m为经验系数;2.1 The number of interpolation points: take the value according to the length l of the arc path, the value formula is n=m×l, where m is the empirical coefficient;
2.2确定圆心和半径,将空间圆弧转化为平面圆弧,使用三平面相交得到圆心的方法确定一个外接圆,该圆所在的平面A1的方程为:2.2 Determine the center and radius, convert the space arc into a plane arc, and use the method of intersecting three planes to obtain the center of the circle to determine a circumscribed circle. The equation of the plane A1 where the circle is located is:
a1x+b1y+c1z+d1=0a 1 x+b 1 y+c 1 z+d 1 =0
P1P2的垂直平分面A2的方程如下:The equation of the vertical bisector A2 of P1P2 is as follows:
a2x+b2y+c2z+d2=0a 2 x+b 2 y+c 2 z+d 2 =0
P2P3的垂直平分面A3的方程如下:The equation of the vertical bisector A3 of P2P3 is as follows:
a3x+b3y+c3z+d3=0a 3 x+b 3 y+c 3 z+d 3 =0
联立上面三个方程,可得到:Combining the above three equations, we can get:
通过上式可以求出圆心P0(x0,y0,z0),然后根据圆心可以求得圆弧半径为:The center P0 (x 0 , y 0 , z 0 ) can be obtained through the above formula, and then the arc radius can be obtained according to the center of the circle:
在求出圆心和半径后,以圆心为基础建立新的坐标系,新坐标系X轴为P0P1的矢量方向,X轴的方向余弦如下所示:After finding the circle center and radius, a new coordinate system is established based on the circle center. The X-axis of the new coordinate system is the vector direction of P0P1, and the cosine of the X-axis direction is as follows:
新坐标系Z轴为平面A1的法相量方向,方向余弦如下所示:The Z axis of the new coordinate system is the normal phasor direction of the plane A1, and the cosine of the direction is as follows:
确定了新坐标系X轴和Z轴的方向后,根据右手定则可以求得新坐标系Y轴的方向,然后可以确定齐次变换矩阵R,通过齐次变换矩阵R将基座标系内的空间圆弧变换到新坐标系内的平面圆弧。最后,判断圆弧是顺时针还是逆时针,求出圆心角;After determining the directions of the X-axis and Z-axis of the new coordinate system, the direction of the Y-axis of the new coordinate system can be obtained according to the right-hand rule, and then the homogeneous transformation matrix R can be determined. Transform the space arc of , to a plane arc in the new coordinate system. Finally, determine whether the arc is clockwise or counterclockwise, and find the central angle;
2.3计算笛卡尔空间参数:2.3 Calculate the Cartesian space parameters:
插值点的位置为:The positions of the interpolation points are:
其中C代表圆心坐标,R代表圆心半径,where C represents the coordinates of the center of the circle, R represents the radius of the center of the circle,
线速度为:The line speed is:
线加速度为:The linear acceleration is:
机器人姿态的表达式采用四元数法,给定P1、P2、P3三个点,可以确定姿态矩阵R1、R2、R3,然后可以求得四元数qa、qb、qc。对于多姿态问题,采用单位四元数球面线性插值,然后采用两级插补,表达式为:The expression of the robot attitude adopts the quaternion method. Given three points P1, P2, and P3, the attitude matrices R1, R2, and R3 can be determined, and then the quaternions q a , q b , and q c can be obtained. For the multi-pose problem, the unit quaternion spherical linear interpolation is used, and then the two-level interpolation is used, and the expression is:
然后,将四元数转为欧拉角α、β、γ,即得到所需要的姿态。Then, the quaternion is converted into Euler angles α, β, γ, that is, the required attitude is obtained.
通过四元数求得轴角和轴速度,利用转轴速度与欧拉角速度的关系式,求得欧拉角速度:The shaft angle and shaft speed are obtained by quaternion, and the Euler angular velocity is obtained by using the relationship between the shaft speed and the Euler angular velocity:
其中,J代表的矩阵为:Among them, the matrix represented by J is:
对上式进行处理,进而可求得欧拉角加速度:By processing the above formula, the Euler angular acceleration can be obtained:
其中,D代表的矩阵为:Among them, the matrix represented by D is:
2.4计算关节空间参数:2.4 Calculate joint space parameters:
利用2.3中求得的位置p,通过逆解求得各插值点对应的关节角q,然后,利用线速度与关节速度的关系求得关节速度、关节加速度为:Using the position p obtained in 2.3, the joint angle q corresponding to each interpolation point is obtained through the inverse solution, and then, using the relationship between the linear velocity and the joint velocity, the joint velocity and joint acceleration are obtained as:
2.5计算动力学方程系数:2.5 Calculate the coefficients of the kinetic equation:
关节角q对路径完成的时间t的导数与路径参数s存在如下关系:The derivative of the joint angle q with respect to the path completion time t has the following relationship with the path parameter s:
已知经拉格朗日方程法推导的机器人非线性动力学模型为:It is known that the nonlinear dynamic model of the robot derived by the Lagrange equation method is:
其中,M(q)表示惯量矩阵,表示科氏力与离心力矩阵,g(q)表示重力引起的力矩向量,将上面两个公式代入动力学模型中,整理后得:Among them, M(q) represents the inertia matrix, Represents the Coriolis force and the centrifugal force matrix, and g(q) represents the moment vector caused by gravity. Substitute the above two formulas into the dynamic model, and get:
对于动力学方程系数用公式法直接求解;For the coefficients of the dynamic equation, the formula method is used to directly solve it;
步骤3、计算速度范围:
对约束进行分析,由于线速度vmax的限制,可得:Analysis of the constraints, due to the limitation of the linear velocity v max , can be obtained:
同理,由于角速度wmax的限制,可得:In the same way, due to the limitation of the angular velocity w max , we can get:
由于线加速度amax的限制,可得:Due to the limitation of linear acceleration a max , we can get:
同理,由于角加速度αmax的限制,可得:In the same way, due to the limitation of angular acceleration α max , we can get:
由电机最大力矩τmax限制,可得:Limited by the maximum torque τ max of the motor, we can get:
由关节速度qtmax限制,表示为:Limited by the joint velocity qt max , expressed as:
其中,代表参数速度,代表参数加速度。in, represents the parameter velocity, represents the parameter acceleration.
综合上面所有式子,逐点求出各插值点参数速度平方的最大值,最小值为0;Combining all the above formulas, the parameter velocity square of each interpolation point is calculated point by point The maximum value of , and the minimum value is 0;
步骤4、计算速度最优值:Step 4. Calculate the optimal speed value:
考虑动力学约束和运动学约束,加速度为:Considering the dynamic and kinematic constraints, the acceleration is:
式中u取较小值,代表后一个插值点对应的最大速度的平方。where u takes a smaller value, Represents the square of the maximum velocity corresponding to the latter interpolation point.
由物理学的运动学公式求得下一个插值点速度的平方为:From the kinematic formula of physics, the square of the velocity of the next interpolation point is obtained as:
如此,依次求得每个插值点的速度最优值;In this way, the optimal speed value of each interpolation point is obtained in turn;
步骤5、平滑轨迹:Step 5. Smooth the trajectory:
可采用常规方式,也可选用下面改进的移动平均滤波方法对每段路径分为前后两段处理。先找到减速点,然后前后两段分别采用不同方式处理。The conventional method can be adopted, or the following improved moving average filtering method can be used to divide each section of the path into two sections for processing. First find the deceleration point, and then use different methods to deal with the two sections before and after.
路径前段:The front part of the path:
路径后段:Back of the path:
步骤6、输出关节参数:Step 6. Output joint parameters:
在步骤4中的到的速度和加速度是关于路径参数的,不是关于时间的。设定插补周期,按照插补周期对得到的序列值调整,得到新的序列值。通过差分法计算出机器人末端线速度,绘制出速度时间图像如图3所示。图3可以看出,图像平滑,加速段以最大加速度加速,中间段贴近极限运行,末尾段较为平缓,所以整体运行时间较传统轨迹规划算法有较大优势。最后,通过逆解得到关节角,然后通过差分法得到关节速度和关节加速度,代入动力学方程得到关机力矩,将得到的所有关节参数除以对应参数的极限值,得到关节参数比率图像,如图4~图6所示。比率图不会改变图像趋势,比率保持在±1之间,代表安全运行,所以图4-图6基本保持在安全范围内,并且图3和图4的对象较为平缓,因此比较理想。The resulting velocity and acceleration in step 4 are path parameters, not time. Set the interpolation cycle, and adjust the obtained sequence value according to the interpolation cycle to obtain a new sequence value. The linear velocity of the robot end is calculated by the difference method, and the velocity-time image is drawn as shown in Figure 3. As can be seen from Figure 3, the image is smooth, the acceleration section accelerates at the maximum acceleration, the middle section runs close to the limit, and the end section is relatively gentle, so the overall running time has a greater advantage than the traditional trajectory planning algorithm. Finally, the joint angle is obtained through the inverse solution, then the joint velocity and joint acceleration are obtained through the difference method, and the shutdown torque is obtained by substituting into the dynamic equation, and all the obtained joint parameters are divided by the limit value of the corresponding parameter to obtain the joint parameter ratio image, as shown in the figure 4 to Figure 6. The ratio graph does not change the image trend, and the ratio remains between ±1, which represents safe operation, so Figures 4-6 are basically kept within the safe range, and the objects in Figures 3 and 4 are relatively flat, so they are ideal.
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的装体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同条件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, but that the present invention may be implemented in other packaging forms without departing from the spirit or essential characteristics of the present invention. Therefore, the embodiments are to be regarded in all respects as illustrative and not restrictive, and the scope of the invention is to be defined by the appended claims rather than the foregoing description, which are therefore intended to fall within the scope of the claims. All changes within the meaning and range of the equivalents of , are embraced within the invention. Any reference signs in the claims shall not be construed as limiting the involved claim.
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described in terms of embodiments, not each embodiment only includes an independent technical solution, and this description in the specification is only for the sake of clarity, and those skilled in the art should take the specification as a whole , the technical solutions in each embodiment can also be appropriately combined to form other implementations that can be understood by those skilled in the art.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110482412.3A CN113084821A (en) | 2021-04-30 | 2021-04-30 | Spraying robot time optimal trajectory planning method based on dynamics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110482412.3A CN113084821A (en) | 2021-04-30 | 2021-04-30 | Spraying robot time optimal trajectory planning method based on dynamics |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113084821A true CN113084821A (en) | 2021-07-09 |
Family
ID=76681054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110482412.3A Withdrawn CN113084821A (en) | 2021-04-30 | 2021-04-30 | Spraying robot time optimal trajectory planning method based on dynamics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113084821A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113442142A (en) * | 2021-07-14 | 2021-09-28 | 江南大学 | Smoothing method for Cartesian space motion trail of six-axis serial industrial robot |
CN113814978A (en) * | 2021-09-30 | 2021-12-21 | 深圳市优必选科技股份有限公司 | Robot control method, robot control device, robot, and storage medium |
CN114474043A (en) * | 2021-12-20 | 2022-05-13 | 埃夫特智能装备股份有限公司 | Method for realizing visual intelligent spraying of bedside |
CN114750153A (en) * | 2022-04-13 | 2022-07-15 | 上海电气集团股份有限公司 | Motion control system for robot arm, cooperative robot, and storage medium |
CN115157270A (en) * | 2022-08-26 | 2022-10-11 | 北京东土科技股份有限公司 | Robot tail end track planning method and device |
CN116422551A (en) * | 2023-04-13 | 2023-07-14 | 盛景智能科技(嘉兴)有限公司 | Special-shaped workpiece spraying method, device, equipment, storage medium and robot |
CN116713160A (en) * | 2023-05-26 | 2023-09-08 | 东风汽车集团股份有限公司 | Spraying track programming method and device suitable for continuous automobile assembly line |
CN117260746A (en) * | 2023-11-22 | 2023-12-22 | 安徽大学 | Time optimal track planning method for robot Cartesian space |
WO2024041647A1 (en) * | 2022-08-26 | 2024-02-29 | 北京东土科技股份有限公司 | Cartesian space trajectory planning method and apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106500702A (en) * | 2016-12-07 | 2017-03-15 | 上海新时达电气股份有限公司 | The smoothing method and device of continuous path planning migration path |
CN107030697A (en) * | 2017-04-28 | 2017-08-11 | 广州大学 | A kind of planing method of robot cartesian space smooth track |
CN107329458A (en) * | 2017-07-10 | 2017-11-07 | 深圳市旗众智能自动化有限公司 | A kind of dynamic self-adapting speed prediction control method of continuous small line segment track |
CN108000501A (en) * | 2017-11-22 | 2018-05-08 | 湖北工业大学 | A kind of new method for planning track for serial manipulator |
US20180207815A1 (en) * | 2013-07-26 | 2018-07-26 | Kuka Deutschland Gmbh | Method And Device For Decelerating A Robot Axis Arrangement |
CN110209048A (en) * | 2019-05-20 | 2019-09-06 | 华南理工大学 | Robot time optimal trajectory planning method, equipment based on kinetic model |
-
2021
- 2021-04-30 CN CN202110482412.3A patent/CN113084821A/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180207815A1 (en) * | 2013-07-26 | 2018-07-26 | Kuka Deutschland Gmbh | Method And Device For Decelerating A Robot Axis Arrangement |
CN106500702A (en) * | 2016-12-07 | 2017-03-15 | 上海新时达电气股份有限公司 | The smoothing method and device of continuous path planning migration path |
CN107030697A (en) * | 2017-04-28 | 2017-08-11 | 广州大学 | A kind of planing method of robot cartesian space smooth track |
CN107329458A (en) * | 2017-07-10 | 2017-11-07 | 深圳市旗众智能自动化有限公司 | A kind of dynamic self-adapting speed prediction control method of continuous small line segment track |
CN108000501A (en) * | 2017-11-22 | 2018-05-08 | 湖北工业大学 | A kind of new method for planning track for serial manipulator |
CN110209048A (en) * | 2019-05-20 | 2019-09-06 | 华南理工大学 | Robot time optimal trajectory planning method, equipment based on kinetic model |
Non-Patent Citations (3)
Title |
---|
RUNDONG WANG: "Time-Optimal Trajectory Planning Based on Dynamics for Industrial Robot", 《2020 5TH INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE)》 * |
孔民秀: "采用积分流形与观测器的并联机器人轨迹控制", 《哈尔滨工业大学学报》 * |
邓承祥: "六自由度可控机构式喷涂机器人动态特性和轨迹规划研究", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113442142B (en) * | 2021-07-14 | 2022-08-23 | 杭州泛海科技有限公司 | Smoothing method for Cartesian space motion trail of six-axis serial industrial robot |
CN113442142A (en) * | 2021-07-14 | 2021-09-28 | 江南大学 | Smoothing method for Cartesian space motion trail of six-axis serial industrial robot |
CN113814978A (en) * | 2021-09-30 | 2021-12-21 | 深圳市优必选科技股份有限公司 | Robot control method, robot control device, robot, and storage medium |
CN113814978B (en) * | 2021-09-30 | 2022-09-16 | 深圳市优必选科技股份有限公司 | Robot control method, robot control device, robot, and storage medium |
CN114474043A (en) * | 2021-12-20 | 2022-05-13 | 埃夫特智能装备股份有限公司 | Method for realizing visual intelligent spraying of bedside |
CN114474043B (en) * | 2021-12-20 | 2024-05-31 | 埃夫特智能装备股份有限公司 | Method for realizing intelligent spraying of head of bed vision |
CN114750153B (en) * | 2022-04-13 | 2024-03-19 | 上海电气集团股份有限公司 | Motion control system for robot arm, cooperative robot and storage medium |
CN114750153A (en) * | 2022-04-13 | 2022-07-15 | 上海电气集团股份有限公司 | Motion control system for robot arm, cooperative robot, and storage medium |
CN115157270A (en) * | 2022-08-26 | 2022-10-11 | 北京东土科技股份有限公司 | Robot tail end track planning method and device |
WO2024041647A1 (en) * | 2022-08-26 | 2024-02-29 | 北京东土科技股份有限公司 | Cartesian space trajectory planning method and apparatus |
CN115157270B (en) * | 2022-08-26 | 2024-09-27 | 北京东土科技股份有限公司 | Planning method and device for tail end track of robot |
CN116422551A (en) * | 2023-04-13 | 2023-07-14 | 盛景智能科技(嘉兴)有限公司 | Special-shaped workpiece spraying method, device, equipment, storage medium and robot |
CN116713160A (en) * | 2023-05-26 | 2023-09-08 | 东风汽车集团股份有限公司 | Spraying track programming method and device suitable for continuous automobile assembly line |
CN117260746A (en) * | 2023-11-22 | 2023-12-22 | 安徽大学 | Time optimal track planning method for robot Cartesian space |
CN117260746B (en) * | 2023-11-22 | 2024-02-09 | 安徽大学 | A time-optimal trajectory planning method in Cartesian space for robots |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113084821A (en) | Spraying robot time optimal trajectory planning method based on dynamics | |
CN106313044B (en) | A kind of industrial robot feedforward torque compensation method | |
CN108241339A (en) | Motion solution and configuration control method of humanoid manipulator | |
CN109623810B (en) | Method for planning smooth time optimal trajectory of robot | |
CN112757306A (en) | Inverse solution multi-solution selection and time optimal trajectory planning algorithm for mechanical arm | |
CN106125728A (en) | A kind of 4 wheel driven wheeled mobile robot trace tracking and controlling method | |
CN106041926A (en) | Industrial mechanical arm force/position mixed control method based on Kalman filter | |
CN112894821B (en) | Method, device and equipment for dragging and teaching control of collaborative robot based on current method | |
CN108527365A (en) | A kind of high speed parallel robot drive system parameters optimized Selection method | |
CN109940609B (en) | A Robot Dynamics Modeling Method Based on Centrosymmetric Static Friction Model | |
CN114721275B (en) | An adaptive tracking control method for visual servo robot based on preset performance | |
CN110421564A (en) | A kind of robot working unit's layout optimization method based on joint energy consumption assessment | |
CN107943034B (en) | A complete and shortest time trajectory planning method for mobile robots along a given path | |
CN109857100B (en) | Composite track tracking control algorithm based on inversion method and fast terminal sliding mode | |
CN109746913B (en) | Method and system for teaching robot posture keeping dragging | |
CN107756400A (en) | A kind of 6R Robotic inverse kinematics geometry solving methods based on spinor theory | |
CN115122325A (en) | Robust visual servo control method for anthropomorphic manipulator with view field constraint | |
CN102736626A (en) | Vision-based pose stabilization control method of moving trolley | |
CN110561421A (en) | Mechanical arm indirect dragging demonstration method and device | |
Nabavi et al. | Closed-form dynamic formulation of a general 6-p us robot | |
CN109760063B (en) | Parallel robot control method, device, equipment and storage medium | |
CN105234930B (en) | Control method of motion of redundant mechanical arm based on configuration plane | |
CN104827481A (en) | A Control Method of SCARA Manipulator Based on Motion Controller | |
CN104070523A (en) | Method for interpolating circular arcs in real time for industrial robots on basis of space coordinate transformation | |
CN114179089B (en) | Robust region tracking control method for mechanical arm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20210709 |
|
WW01 | Invention patent application withdrawn after publication |