CN113084787B - Bionic snake-shaped robot motion gait planning method, system, equipment and medium - Google Patents
Bionic snake-shaped robot motion gait planning method, system, equipment and medium Download PDFInfo
- Publication number
- CN113084787B CN113084787B CN202110330142.4A CN202110330142A CN113084787B CN 113084787 B CN113084787 B CN 113084787B CN 202110330142 A CN202110330142 A CN 202110330142A CN 113084787 B CN113084787 B CN 113084787B
- Authority
- CN
- China
- Prior art keywords
- function
- snake
- trajectory
- curvature
- motion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000033001 locomotion Effects 0.000 title claims abstract description 118
- 239000011664 nicotinic acid Substances 0.000 title claims abstract description 79
- 230000005021 gait Effects 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 37
- 241000270295 Serpentes Species 0.000 claims abstract description 70
- 230000006870 function Effects 0.000 claims description 137
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000012795 verification Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000013598 vector Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 235000001968 nicotinic acid Nutrition 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
- B25J9/065—Snake robots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种仿生蛇形机器人运动步态规划方法、系统、设备及介质,所述方法包括:获取蛇的蜿蜒运动轨迹图像;根据蛇的蜿蜒运动轨迹图像,构建轨迹函数;在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数;求出运动轨迹函数的曲率;根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,得到曲率函数;根据曲率函数,确定仿生蛇形机器人的舵机转动参数,以完成仿生蛇形机器人的运动步态规划。本发明可以让仿生蛇形机器人在最简单的方式下实现对真蛇各种运动的模拟,提高了给仿生蛇形机器人做步态规划的高效性,有效地降低了仿生蛇形机器人步态规划的复杂度。
The invention discloses a motion gait planning method, system, equipment and medium of a bionic snake-shaped robot. The method includes: acquiring a snake's meandering motion trajectory image; constructing a trajectory function according to the snake's meandering motion trajectory image; The time variable is added to the trajectory function to obtain the dynamic trajectory function with time; the curvature of the trajectory function is obtained; according to the curvature of the trajectory function, the trajectory position is converted into the length of the snake body to obtain the curvature function; according to the curvature function, the bionic function is determined The servo rotation parameters of the snake-shaped robot are used to complete the motion gait planning of the bionic snake-shaped robot. The invention enables the bionic snake-shaped robot to simulate various movements of the real snake in the simplest way, improves the efficiency of gait planning for the bionic snake-shaped robot, and effectively reduces the gait planning of the bionic snake-shaped robot. complexity.
Description
技术领域technical field
本发明涉及一种仿生蛇形机器人运动步态规划方法、系统、设备及介质,属于机器人运动步态控制技术领域。The invention relates to a motion gait planning method, system, equipment and medium of a bionic snake-shaped robot, and belongs to the technical field of robot motion gait control.
背景技术Background technique
步态规划是使机器人按照规划的步态运动的一种控制方法。步态规划的方法大致有一下几种:仿生学方法、智能学习算法、模型简化等。基于仿生学的步态规划方法是蛇形机器人最主流的步态规划方法,首先蛇形机器人是模仿蛇的形态和行为制造的机器人,它具有类蛇的机械结构,基于仿生学的步态规划方法是使用仪器记录蛇蜿蜒或蠕动时的运动数据,然后对记录的数据进行分析和处理,最后要修正使其符合蛇形仿生机器人的驱动方式,质量分布,和机械结构。最后将修正后的数据作为机器人的输入控制参数。仿生学是20世纪60年代出现的一门综合性边缘学科,它由生命科学和工程技术科学相互渗透、相互结合而成。可以说仿生学的研究对科学技术和社会的发展起着举足轻重的作用。仿生系统以其能体现和再现生命特征成为现代研究的重点课题。生命系统的自主运动和适应能力的物理实现不仅能够把人从繁重、危险、单调乏味的工作环境中解脱出来,而且能够代替人在危险场合完成复杂作业。仿生学将生命原理应用到工程系统的研究和设计中,尤其对当今日益发展的机器人学科起到了巨大的推动作用,促进了仿生机器人领域的蓬勃发展。但是由真实的蛇行运动经过仿生学研究后修改为机器人的输入控制参数往往需要很大的工作量。Gait planning is a control method to make the robot move according to the planned gait. There are several methods of gait planning: bionic methods, intelligent learning algorithms, model simplification, etc. The gait planning method based on bionics is the most mainstream gait planning method for snake-like robots. First, the snake-like robot is a robot manufactured by imitating the shape and behavior of a snake. It has a snake-like mechanical structure. The method is to use the instrument to record the motion data of the snake when it is meandering or creeping, then analyze and process the recorded data, and finally correct it to conform to the driving mode, mass distribution, and mechanical structure of the snake-like bionic robot. Finally, the corrected data is used as the input control parameters of the robot. Biomimicry is a comprehensive marginal subject that appeared in the 1960s, which is formed by the mutual penetration and combination of life science and engineering technology science. It can be said that the research of bionics plays a pivotal role in the development of science and technology and society. The bionic system has become a key subject of modern research because of its ability to embody and reproduce the characteristics of life. The physical realization of the autonomous movement and adaptability of the living system can not only free people from the heavy, dangerous and monotonous work environment, but also can replace people to complete complex tasks in dangerous situations. Biomimicry applies the principle of life to the research and design of engineering systems, especially for today's growing robotics discipline, and promotes the vigorous development of the field of bionic robotics. However, it often requires a lot of work to modify the real meandering motion into the input control parameters of the robot after bionic research.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明提供了一种仿生蛇形机器人运动步态规划方法、系统、设备及介质,其可以让仿生蛇形机器人在最简单的方式下实现对真蛇各种运动的模拟,提高了给仿生蛇形机器人做步态规划的高效性,有效地降低了仿生蛇形机器人步态规划的复杂度。In view of this, the present invention provides a motion gait planning method, system, equipment and medium for a bionic snake-shaped robot, which can allow the bionic snake-shaped robot to simulate various movements of real snakes in the simplest way, and improve the The efficiency of gait planning for the bionic snake-shaped robot is effectively reduced, and the complexity of the gait planning of the bionic snake-shaped robot is effectively reduced.
本发明的第一个目的在于提供一种仿生蛇形机器人运动步态规划方法。The first object of the present invention is to provide a motion gait planning method for a bionic snake-shaped robot.
本发明的第二个目的在于提供一种仿生蛇形机器人运动步态规划系统。The second object of the present invention is to provide a motion gait planning system for a bionic snake-shaped robot.
本发明的第三个目的在于提供一种计算机设备。A third object of the present invention is to provide a computer device.
本发明的第四个目的在于提供一种存储介质。A fourth object of the present invention is to provide a storage medium.
本发明的第一个目的可以通过采取如下技术方案达到:The first purpose of the present invention can be achieved by adopting the following technical solutions:
一种仿生蛇形机器人运动步态规划方法,所述方法包括:A method for planning the motion gait of a bionic snake-shaped robot, the method comprising:
获取蛇的蜿蜒运动轨迹图像;Obtain the snake's meandering trajectory image;
根据蛇的蜿蜒运动轨迹图像,构建轨迹函数;According to the snake's meandering motion trajectory image, the trajectory function is constructed;
在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数;The time variable is added to the trajectory function to obtain the dynamic trajectory function with time;
求出运动轨迹函数的曲率;Find the curvature of the motion trajectory function;
根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,得到曲率函数;According to the curvature of the motion trajectory function, the trajectory position is converted into the length of the snake body, and the curvature function is obtained;
根据曲率函数,确定仿生蛇形机器人的舵机转动参数,以完成仿生蛇形机器人的运动步态规划。According to the curvature function, the rotation parameters of the steering gear of the bionic snake-shaped robot are determined to complete the motion gait planning of the bionic snake-shaped robot.
进一步的,所述根据蛇的蜿蜒运动轨迹图像,构建轨迹方程,具体包括:Further, according to the snake's meandering motion trajectory image, the trajectory equation is constructed, which specifically includes:
根据蛇的蜿蜒运动轨迹图像,得到关于轨迹的初步拟定函数;According to the snake's meandering motion trajectory image, the preliminary proposed function of the trajectory is obtained;
选取特征点,将特征点坐标代入初步拟定函数,求出初步拟定函数内幅值、频率和初相位的关系式;Select the feature points, substitute the coordinates of the feature points into the preliminary proposed function, and obtain the relationship between the amplitude, frequency and initial phase in the preliminary proposed function;
根据幅值、频率和初相位的关系式,构建轨迹函数。According to the relationship between amplitude, frequency and initial phase, the trajectory function is constructed.
进一步的,所述初步拟定函数如下式:Further, the preliminary proposed function is as follows:
其中,i(x)=ax+b,(a,b)为幅值的特征向量;w(x)=cx+d,(c,d)为频率的特征向量;(e,f)为初相位的特征向量。Among them, i(x)=ax+b, (a,b) is the eigenvector of amplitude; w(x)=cx+d, (c,d) is the eigenvector of frequency; (e, f) are the eigenvectors of the initial phase.
进一步的,所述在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数,如下式:Further, the time variable is added to the trajectory function to obtain a dynamic motion trajectory function over time, as follows:
其中,t为时间,g为运动速度参数。in, t is the time, and g is the motion speed parameter.
进一步的,所述运动轨迹函数的曲率,计算如下:Further, the curvature of the motion trajectory function is calculated as follows:
f(x,t)=∫∫g(x,t)dxf(x,t)=∫∫g(x,t)dx
其中,t为时间,x为轨迹位置。where t is the time and x is the trajectory position.
进一步的,所述根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,得到曲率函数,具体为:Further, according to the curvature of the motion trajectory function, the trajectory position is converted into the length of the snake body to obtain the curvature function, specifically:
根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,即令s=∫g(x,t)dx,得到曲率函数g(s,t)。According to the curvature of the motion trajectory function, the trajectory position is converted into the length of the snake body, that is, s=∫g(x,t)dx, and the curvature function g(s,t) is obtained.
进一步的,所述根据曲率函数,确定仿生蛇形机器人的舵机转动参数,具体包括:Further, determining the rotation parameters of the steering gear of the bionic snake-shaped robot according to the curvature function specifically includes:
将相邻舵机的间距k与舵机节数n相乘得到的结果代入曲率函数,得到各舵机处的曲率g(nk,t);Substitute the result obtained by multiplying the distance k between adjacent steering gears and the number of steering gear segments n into the curvature function to obtain the curvature g(nk,t) at each steering gear;
根据各舵机处的曲率,确定仿生蛇形机器人的舵机转动参数为θ(nk,t)=αg(nk,t)+β。According to the curvature of each steering gear, the rotation parameter of the steering gear of the bionic snake robot is determined as θ(nk,t)=αg(nk,t)+β.
本发明的第二个目的可以通过采取如下技术方案达到:The second object of the present invention can be achieved by adopting the following technical solutions:
一种仿生蛇形机器人运动步态规划系统,所述系统包括:A bionic snake-shaped robot motion gait planning system, the system includes:
轨迹图像获取模块,用于获取蛇的蜿蜒运动轨迹图像;The trajectory image acquisition module is used to acquire the snake's meandering motion trajectory image;
轨迹函数构建模块,用于根据蛇的蜿蜒运动轨迹图像,构建轨迹函数;The trajectory function building module is used to construct the trajectory function according to the snake's meandering motion trajectory image;
时间变量加入模块,用于在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数;The time variable adding module is used to add time variables to the trajectory function to obtain the dynamic trajectory function with time;
曲率计算模块,用于求出运动轨迹函数的曲率;The curvature calculation module is used to obtain the curvature of the motion trajectory function;
曲率函数获取模块,用于根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,得到曲率函数;The curvature function acquisition module is used to convert the trajectory position into the length of the snake body according to the curvature of the motion trajectory function to obtain the curvature function;
舵机转动参数确定模块,用于根据曲率函数,确定仿生蛇形机器人的舵机转动参数,以完成仿生蛇形机器人的运动步态规划The steering gear rotation parameter determination module is used to determine the steering gear rotation parameters of the bionic snake-shaped robot according to the curvature function, so as to complete the motion gait planning of the bionic snake-shaped robot
本发明的第三个目的可以通过采取如下技术方案达到:The third object of the present invention can be achieved by adopting the following technical solutions:
一种计算机设备,包括处理器以及用于存储处理器可执行程序的存储器,所述处理器执行存储器存储的程序时,实现上述的仿生蛇形机器人运动步态规划方法。A computer device includes a processor and a memory for storing a program executable by the processor. When the processor executes the program stored in the memory, the above-mentioned method for planning the motion gait of a bionic snake-shaped robot is implemented.
本发明的第四个目的可以通过采取如下技术方案达到:The fourth object of the present invention can be achieved by adopting the following technical solutions:
一种存储介质,存储有程序,所述程序被处理器执行时,实现上述的仿生蛇形机器人运动步态规划方法。A storage medium stores a program, and when the program is executed by a processor, the above-mentioned method for planning the motion gait of a bionic snake-shaped robot is realized.
本发明相对于现有技术具有如下的有益效果:The present invention has the following beneficial effects with respect to the prior art:
本发明通过获取真蛇的蜿蜒运动轨迹图像,根据该运动轨迹图像构建轨迹函数,并在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数,从而能够得到仿生蛇形机器人关节处的舵机控制参数,可以让仿生蛇形机器人在最简单的方式下实现对真蛇各种运动的模拟,提高了给仿生蛇形机器人做步态规划的高效性,有效地降低了仿生蛇形机器人步态规划的复杂度。The invention obtains the meandering motion trajectory image of a real snake, constructs a trajectory function according to the motion trajectory image, and adds a time variable to the trajectory function to obtain a time-dynamic motion trajectory function, so as to obtain the trajectories at the joints of the bionic snake-shaped robot. The control parameters of the steering gear allow the bionic snake-shaped robot to simulate various movements of the real snake in the simplest way, improve the efficiency of gait planning for the bionic snake-shaped robot, and effectively reduce the cost of the bionic snake-shaped robot The complexity of gait planning.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained according to the structures shown in these drawings without creative efforts.
图1为本发明实施例1的仿生蛇形机器人运动步态规划方法的简易流程图。FIG. 1 is a simple flowchart of the motion gait planning method for a bionic snake-shaped robot according to Embodiment 1 of the present invention.
图2为本发明实施例1的仿生蛇形机器人运动步态规划方法的详细流程图。FIG. 2 is a detailed flowchart of the motion gait planning method for a bionic snake-shaped robot according to Embodiment 1 of the present invention.
图3为本发明实施例1的蛇蜿蜒运动某一时刻的运动轨迹图。FIG. 3 is a motion trajectory diagram of a snake at a certain moment of meandering motion according to Embodiment 1 of the present invention.
图4为本发明实施例1的仿生蛇形机器人蜿蜒步态时的力学原理分析图。FIG. 4 is an analysis diagram of the mechanical principle of the bionic snake-shaped robot in the meandering gait according to the first embodiment of the present invention.
图5为本发明实施例1的通过实际轨迹构建的蛇运动轨迹数学模型图。FIG. 5 is a diagram of a mathematical model of a snake motion trajectory constructed by an actual trajectory according to Embodiment 1 of the present invention.
图6为本发明实施例2的仿生蛇形机器人运动步态规划系统的结构框图。FIG. 6 is a structural block diagram of a motion gait planning system for a bionic snake-shaped robot according to Embodiment 2 of the present invention.
图7为本发明实施例3的计算机设备的结构框图。FIG. 7 is a structural block diagram of a computer device according to Embodiment 3 of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work are protected by the present invention. scope.
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。Before discussing the exemplary embodiments in greater detail, it should be mentioned that some exemplary embodiments are described as processes or methods depicted as flowcharts. Although the flowchart depicts the steps as a sequential process, many of the steps may be performed in parallel, concurrently, or concurrently. Furthermore, the order of the steps can be rearranged. The process may be terminated when its operation is complete, but may also have additional steps not included in the figures. The processes may correspond to methods, functions, procedures, subroutines, subroutines, and the like.
实施例1:Example 1:
蛇的运动可以看作是一些行波的传递,并且蛇的传递有规律性和重复性,即在某一时刻的身体形状与在路上行进的轨迹是一致的,对蛇运动轨迹的研究就可以得到蛇身的扭动和弯曲情况,从而能够得到仿生蛇形机器人关节处的舵机控制参数;如图1和图2所示,本实施例提供了一种仿生蛇形机器人运动步态规划方法,该方法包括以下步骤:The movement of the snake can be regarded as the transmission of some traveling waves, and the transmission of the snake is regular and repetitive, that is, the shape of the body at a certain moment is consistent with the trajectory of the road, and the study of the snake's movement trajectory can be The twisting and bending of the snake body can be obtained, so that the steering gear control parameters at the joints of the bionic snake robot can be obtained; as shown in Figures 1 and 2, this embodiment provides a motion gait planning method for the bionic snake robot , the method includes the following steps:
S101、获取蛇的蜿蜒运动轨迹图像。S101. Acquire a meandering motion trajectory image of the snake.
选取真蛇的蜿蜒运动轨迹图像如图3所示,对轨迹分析做最简单的力学原理分析可行性:在蛇身的前端蛇呈收缩状,后端呈舒张状,两者的合力及蛇皮层的运动能够使得蛇身沿着轨迹前行,对蛇形关节力学原理分析如图4所示。The meandering motion trajectory image of the real snake is selected as shown in Figure 3, and the feasibility of the simplest mechanical principle analysis for trajectory analysis is carried out: at the front end of the snake body, the snake is in a contraction shape, and the rear end is in a diastolic shape. The movement of the cortex can make the snake body move forward along the trajectory. The mechanical principle analysis of the snake joint is shown in Figure 4.
S102、根据蛇的蜿蜒运动轨迹图像,构建轨迹函数。S102 , constructing a trajectory function according to the meandering motion trajectory image of the snake.
该步骤S102具体包括:The step S102 specifically includes:
S1021、根据蛇的蜿蜒运动轨迹图像,得到关于轨迹的初步拟定函数。S1021 , obtaining a preliminary proposed function on the trajectory according to the snake's meandering motion trajectory image.
具体地,关于轨迹,在初步观察结论下可以用以下的初步拟定函数对轨迹进行描述:Specifically, regarding the trajectory, the following preliminary proposed function can be used to describe the trajectory under the preliminary observation conclusion:
i(x),w(x)和为该初步拟定函数的关键参数,三个关键参数都可以认定为关于轨迹位置x的一次方程式:i(x), w(x) and For the key parameters of this preliminary proposed function, all three key parameters can be identified as linear equations about the trajectory position x:
i(x)=ax+bi(x)=ax+b
w(x)=cx+dw(x)=cx+d
其中,(a,b)为幅值的特征向量,a和b是幅值的特征值;(c,d)为频率的特征向量,c和d为频率的特征值;(e,f)为初相位的特征向量,e和f是初相位的特征值。Among them, (a, b) are the eigenvectors of the amplitude, a and b are the eigenvalues of the amplitude; (c, d) are the eigenvectors of the frequency, and c and d are the eigenvalues of the frequency; (e, f) are The eigenvectors of the initial phase, e and f are the eigenvalues of the initial phase.
S1022、选取特征点,将特征点坐标代入初步拟定函数,求出初步拟定函数内幅值、频率和初相位的关系式。S1022 , selecting feature points, substituting the coordinates of the feature points into the preliminary drawn function, and obtaining the relational expressions of amplitude, frequency and initial phase in the preliminary drawn function.
S1023、根据幅值、频率和初相位的关系式,构建轨迹函数。S1023 , constructing a trajectory function according to the relational expression of amplitude, frequency and initial phase.
幅值的特征向量、频率的特征向量和初相位的特征向量,可由运动轨迹图像上的两个特征点构建的幅值向量、频率向量和初相位向量解得,在蛇身不同部分往往存在不同运动特征即不同的特征向量,所以会得到不连续的幅值、频率、初相位关系式i(x),w(x),只要取到合适的特征点坐标,便能建立蛇运动时的轨迹函数,即轨迹方程。The eigenvectors of amplitude, frequency and initial phase can be obtained from the amplitude vector, frequency vector and initial phase vector constructed by two feature points on the motion trajectory image, and there are often differences in different parts of the snake body. Motion features are different feature vectors, so discontinuous amplitude, frequency, and initial phase relationships i(x), w(x) will be obtained, As long as the appropriate feature point coordinates are obtained, the trajectory function of the snake can be established, that is, the trajectory equation.
本实施例通过蜿蜒运动轨迹图像的实际轨迹构建的蛇运动轨迹数学模型如图5所示,利用一系列特征点坐标推导出的轨迹函数,如下:The snake motion trajectory mathematical model constructed by the actual trajectory of the meandering motion trajectory image in the present embodiment is shown in Figure 5, and the trajectory function derived by using a series of feature point coordinates is as follows:
i(x)=11*x/30+2.5x<=15;i(x)=11*x/30+2.5x<=15;
i=8x<=75;i=8x<=75;
-(x-75)/40+8x>75;-(x-75)/40+8x>75;
w(x)=π/5/((0.4*x+0.25)^0.5+0.5);w(x)=π/5/((0.4*x+0.25)^0.5+0.5);
轨迹函数的轨迹代码如下:The trajectory code of the trajectory function is as follows:
S103、在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数。S103, adding a time variable to the trajectory function to obtain a dynamic motion trajectory function with time.
在建立好的轨迹方程上,加入时间t使得相位角成为时间变量如下式:On the established trajectory equation, add time t to make the phase angle become time variable The formula is as follows:
其中,g为运动速度参数,其大小决定运动的快慢,由设计者自行设定。Among them, g is the movement speed parameter, and its size determines the speed of movement, which is set by the designer.
因此,通过加入时间变量得到随时间动态的运动轨迹函数,即运动轨迹方程,如下式:Therefore, by adding the time variable The dynamic trajectory function over time, that is, the trajectory equation, is obtained, as follows:
S104、求出运动轨迹函数的曲率。S104, the curvature of the motion trajectory function is obtained.
具体地,求出已得运动轨迹函数的曲率是对参数处理和转换的重要一步,运动轨迹函数的曲率计算如下:Specifically, finding the curvature of the obtained motion trajectory function is an important step for parameter processing and conversion. The curvature of the motion trajectory function is calculated as follows:
f(x,t)=∫∫g(x,t)dxf(x,t)=∫∫g(x,t)dx
S105、根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,得到曲率函数;S105, according to the curvature of the motion trajectory function, convert the trajectory position into the length of the snake body to obtain the curvature function;
具体地,根据运动轨迹函数的曲率,将自变量轨迹位置x转化为蛇身长度s,即即令s=∫g(x,t)dx,得到曲率函数g(s,t)。Specifically, according to the curvature of the motion trajectory function, the independent variable trajectory position x is converted into the snake body length s, that is, s=∫g(x,t)dx, and the curvature function g(s,t) is obtained.
S106、根据曲率函数,确定仿生蛇形机器人的舵机转动参数,以完成仿生蛇形机器人的运动步态规划。S106: Determine the rotation parameters of the steering gear of the bionic snake-shaped robot according to the curvature function, so as to complete the motion gait planning of the bionic snake-shaped robot.
测量舵机间距,将相邻舵机的间距k与舵机节数n相乘得到的结果代入曲率函数g(s,t)的s中,即s=nk,得到各舵机处的曲率g(nk,t)。Measure the distance between the steering gears, and substitute the result obtained by multiplying the distance k between adjacent steering gears and the number of steering gear segments n into the s of the curvature function g(s, t), that is, s=nk, to obtain the curvature g at each steering gear (nk,t).
因此,根据各舵机处的曲率,确定仿生蛇形机器人的舵机转动参数(即舵机控制参数)为:Therefore, according to the curvature of each steering gear, the steering gear rotation parameters (that is, the steering gear control parameters) of the bionic snake robot are determined as:
θ(nk,t)=αg(nk,t)+βθ(nk,t)=αg(nk,t)+β
其中,α,β可以由经验确定,根据经验β一般设为90,α范围一般为45到90。Among them, α, β can be determined by experience, according to experience, β is generally set to 90, and the range of α is generally 45 to 90.
本实施例通过运动轨迹函数理论推导的控制函数如下:The control function derived from the motion trajectory function theory in this embodiment is as follows:
θi,ref=α1sin(ω1t+(i-1)δ1),i=2kθ i,ref =α 1 sin(ω 1 t+(i-1)δ 1 ), i=2k
θi,ref=0,i=2k-1θ i,ref = 0, i = 2k-1
控制函数简化后的实际舵机控制代码,如下:The actual servo control code after the simplified control function is as follows:
a=90-50*sin(t/50);a=90-50*sin(t/50);
b=90+50*sin((t/50)+pi*0.2);b=90+50*sin((t/50)+pi*0.2);
c=90-50*sin((t/50)+0.4*pi)。c=90-50*sin((t/50)+0.4*pi).
通过上述步骤S101~S106,即完成仿生蛇形机器人的运动步态规划,之后可以将参数编译成代码输入仿生蛇形机器人进行运动验证,可以根据仿生蛇形机器人所需速度调整g的值,可以根据仿生蛇形机器人实际轨迹调整α,β的值。Through the above steps S101 to S106, the motion gait planning of the bionic snake-shaped robot is completed, and then the parameters can be compiled into codes and input to the bionic snake-shaped robot for motion verification, and the value of g can be adjusted according to the required speed of the bionic snake-shaped robot. Adjust the values of α and β according to the actual trajectory of the bionic snake robot.
本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤可以通过程序来指令相关的硬件来完成,相应的程序可以存储于计算机可读取存储介质中。Those skilled in the art can understand that all or part of the steps in the methods of the above embodiments can be completed by instructing relevant hardware through a program, and the corresponding program can be stored in a computer-readable storage medium.
实施例2:Example 2:
如图6所示,本实施例提供了一种仿生蛇形机器人运动步态规划系统,该系统包括轨迹图像获取模块601、轨迹函数构建模块602、时间变量加入模块603、曲率计算模块604、曲率函数获取模块605和舵机转动参数确定模块606,各个模块的具体功能如下:As shown in FIG. 6 , this embodiment provides a motion gait planning system for a bionic snake-shaped robot. The system includes a trajectory
轨迹图像获取模块601,用于获取蛇的蜿蜒运动轨迹图像。The trajectory
轨迹函数构建模块602,用于根据蛇的蜿蜒运动轨迹图像,构建轨迹函数。The trajectory
时间变量加入模块603,用于在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数。The time
曲率计算模块604,用于求出运动轨迹函数的曲率。The
曲率函数获取模块605,用于根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,得到曲率函数。The curvature
舵机转动参数确定模块606,用于根据曲率函数,确定仿生蛇形机器人的舵机转动参数,以完成仿生蛇形机器人的运动步态规划。The steering gear rotation
本实施例中各个模块的具体实现可以参见上述实施例1,在此不再一一赘述;需要说明的是,本实施例提供的系统仅以上述各功能模块的划分进行举例说明,在实际应用中,可以根据需要而将上述功能分配给不同的功能单元完成,即将内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。For the specific implementation of each module in this embodiment, reference may be made to the above-mentioned Embodiment 1, which will not be repeated here. It should be noted that the system provided in this embodiment only takes the division of the above-mentioned functional modules as an example, and in practical applications , the above functions can be allocated to different functional units to complete according to needs, that is, the internal structure is divided into different functional modules, so as to complete all or part of the functions described above.
实施例3:Example 3:
如图7所示,本实施例提供了一种计算机设备,该计算机设备可以是计算机、服务器等,包括通过系统总线701连接的处理器702、存储器、输入装置703、显示器704和网络接口705。其中,处理器702用于提供计算和控制能力,存储器包括非易失性存储介质706和内存储器707,该非易失性存储介质706存储有操作系统、计算机程序和数据库,该内存储器707为非易失性存储介质706中的操作系统和计算机程序的运行提供环境,计算机程序被处理器702执行时,实现上述实施例1的仿生蛇形机器人运动步态规划方法,如下:As shown in FIG. 7 , this embodiment provides a computer device, which can be a computer, a server, etc., and includes a
获取蛇的蜿蜒运动轨迹图像;Obtain the snake's meandering motion trajectory image;
根据蛇的蜿蜒运动轨迹图像,构建轨迹函数;According to the snake's meandering motion trajectory image, the trajectory function is constructed;
在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数;The time variable is added to the trajectory function to obtain the dynamic trajectory function with time;
求出运动轨迹函数的曲率;Find the curvature of the motion trajectory function;
根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,得到曲率函数;According to the curvature of the motion trajectory function, the trajectory position is converted into the length of the snake body, and the curvature function is obtained;
根据曲率函数,确定仿生蛇形机器人的舵机转动参数,以完成仿生蛇形机器人的运动步态规划。According to the curvature function, the rotation parameters of the steering gear of the bionic snake-shaped robot are determined to complete the motion gait planning of the bionic snake-shaped robot.
进一步地,所述根据蛇的蜿蜒运动轨迹图像,构建轨迹方程,具体包括:Further, according to the snake's meandering motion trajectory image, the trajectory equation is constructed, which specifically includes:
根据蛇的蜿蜒运动轨迹图像,得到关于轨迹的初步拟定函数;According to the snake's meandering motion trajectory image, the preliminary proposed function of the trajectory is obtained;
选取特征点,将特征点坐标代入初步拟定函数,求出初步拟定函数内幅值、频率和初相位的关系式;Select the feature points, substitute the coordinates of the feature points into the preliminary proposed function, and obtain the relationship between the amplitude, frequency and initial phase in the preliminary proposed function;
根据幅值、频率和初相位的关系式,构建轨迹函数。According to the relationship between amplitude, frequency and initial phase, the trajectory function is constructed.
实施例4:Example 4:
本实施例提供了一种存储介质,该存储介质为计算机可读存储介质,其存储有计算机程序,计算机程序被处理器执行时,实现上述实施例1的仿生蛇形机器人运动步态规划方法,如下:This embodiment provides a storage medium, where the storage medium is a computer-readable storage medium, and stores a computer program. When the computer program is executed by a processor, the method for planning the motion gait of a bionic snake-shaped robot in the foregoing embodiment 1 is implemented, as follows:
获取蛇的蜿蜒运动轨迹图像;Obtain the snake's meandering motion trajectory image;
根据蛇的蜿蜒运动轨迹图像,构建轨迹函数;According to the snake's meandering motion trajectory image, the trajectory function is constructed;
在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数;The time variable is added to the trajectory function to obtain the dynamic trajectory function with time;
求出运动轨迹函数的曲率;Find the curvature of the motion trajectory function;
根据运动轨迹函数的曲率,将轨迹位置转化为蛇身长度,得到曲率函数;According to the curvature of the motion trajectory function, the trajectory position is converted into the length of the snake body, and the curvature function is obtained;
根据曲率函数,确定仿生蛇形机器人的舵机转动参数,以完成仿生蛇形机器人的运动步态规划。According to the curvature function, the rotation parameters of the steering gear of the bionic snake-shaped robot are determined to complete the motion gait planning of the bionic snake-shaped robot.
进一步地,所述根据蛇的蜿蜒运动轨迹图像,构建轨迹方程,具体包括:Further, according to the snake's meandering motion trajectory image, the trajectory equation is constructed, which specifically includes:
根据蛇的蜿蜒运动轨迹图像,得到关于轨迹的初步拟定函数;According to the snake's meandering motion trajectory image, the preliminary proposed function of the trajectory is obtained;
选取特征点,将特征点坐标代入初步拟定函数,求出初步拟定函数内幅值、频率和初相位的关系式;Select the feature points, substitute the coordinates of the feature points into the preliminary proposed function, and obtain the relationship between the amplitude, frequency and initial phase in the preliminary proposed function;
根据幅值、频率和初相位的关系式,构建轨迹函数。According to the relationship between amplitude, frequency and initial phase, the trajectory function is constructed.
需要说明的是,本实施例的计算机可读存储介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读存储介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读存储介质上包含的计算机程序可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。It should be noted that the computer-readable storage medium in this embodiment may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above. In this embodiment, the computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. In this embodiment, however, the computer-readable signal medium may include a data signal in baseband or propagated as part of a carrier wave, carrying a computer-readable program therein. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable storage medium, other than a computer-readable storage medium, that can send, propagate, or transport a computer-readable signal medium for use by or in connection with the instruction execution system, apparatus, or device. program. A computer program embodied on a computer-readable storage medium may be transmitted using any suitable medium including, but not limited to, electrical wire, optical fiber cable, RF (radio frequency), etc., or any suitable combination of the foregoing.
上述计算机可读存储介质可以是计算设备中所包含的;也可以是单独存在,而未装配入该计算设备中。可以以一种或多种程序设计语言或其组合来编写用于执行本实施例的操作的计算机程序,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Python、C++,还包括常规的过程式程序设计语言—诸如C语言或类似的程序设计语言。程序可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。The above-mentioned computer-readable storage medium may be included in a computing device; or may exist alone without being assembled into the computing device. Computer programs for performing the operations of the present embodiments may be written in one or more programming languages, including object-oriented programming languages—such as Java, Python, C++, but also conventional Procedural programming languages—such as C or similar programming languages. The program may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider through Internet connection).
附图中的流程图和框图,图示了按照上述各个实施例的方法、系统和计算机设备的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,该模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。描述于上述实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of methods, systems, and computer devices in accordance with the various embodiments described above. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which contains one or more possible functions for implementing the specified logical function(s) Execute the instruction. It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or operations , or can be implemented in a combination of dedicated hardware and computer instructions. The modules involved in the above-mentioned embodiments may be implemented in software or hardware.
以上描述仅为本发明的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,上述实施例中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与上述实施例公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present invention and an illustration of the applied technical principles. Those skilled in the art should understand that the scope of disclosure involved in the above embodiments is not limited to the technical solutions formed by the specific combination of the above technical features, and should also cover the above technical features without departing from the above disclosed concept. Other technical solutions formed by any combination of its equivalent features. For example, a technical solution is formed by replacing the above features with the technical features disclosed in the above embodiments (but not limited to) having similar functions.
综上所述,本发明通过获取真蛇的蜿蜒运动轨迹图像,根据该运动轨迹图像构建轨迹函数,并在轨迹函数中加入时间变量,得到随时间动态的运动轨迹函数,从而能够得到仿生蛇形机器人关节处的舵机控制参数,可以让仿生蛇形机器人在最简单的方式下实现对真蛇各种运动的模拟,提高了给仿生蛇形机器人做步态规划的高效性,有效地降低了仿生蛇形机器人步态规划的复杂度。To sum up, the present invention obtains a meandering motion trajectory image of a real snake, constructs a trajectory function according to the motion trajectory image, and adds a time variable to the trajectory function to obtain a dynamic motion trajectory function over time, thereby obtaining a bionic snake The control parameters of the steering gear at the joints of the bionic snake-shaped robot can allow the bionic snake-shaped robot to simulate various movements of the real snake in the simplest way, improve the efficiency of gait planning for the bionic snake-shaped robot, and effectively reduce the The complexity of gait planning for a bionic snake-like robot.
本领域技术人员应当理解,本发明不限于上述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Those skilled in the art should understand that the present invention is not limited to the above-mentioned specific embodiments, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110330142.4A CN113084787B (en) | 2021-03-29 | 2021-03-29 | Bionic snake-shaped robot motion gait planning method, system, equipment and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110330142.4A CN113084787B (en) | 2021-03-29 | 2021-03-29 | Bionic snake-shaped robot motion gait planning method, system, equipment and medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113084787A CN113084787A (en) | 2021-07-09 |
CN113084787B true CN113084787B (en) | 2022-08-30 |
Family
ID=76670238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110330142.4A Active CN113084787B (en) | 2021-03-29 | 2021-03-29 | Bionic snake-shaped robot motion gait planning method, system, equipment and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113084787B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113733095A (en) * | 2021-09-18 | 2021-12-03 | 南开大学 | Three-dimensional motion gait generation method for wheel-free snake-shaped robot |
CN114494337A (en) * | 2021-12-21 | 2022-05-13 | 上海交通大学 | Quantitative simulation method for motion behavior of frog animals |
CN114638064B (en) * | 2022-03-23 | 2024-12-13 | 昆明理工大学 | A vision-based method for a quadruped bionic robot to simulate animal gaits |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002040224A1 (en) * | 2000-11-17 | 2002-05-23 | Honda Giken Kogyo Kabushiki Kaisha | Gait pattern generating device for legged mobile robot |
WO2004099942A2 (en) * | 2003-03-05 | 2004-11-18 | The Arizona Board Of Regents | Gait recognition system |
WO2016055408A1 (en) * | 2014-10-06 | 2016-04-14 | Norwegian University Of Science And Technology (Ntnu) | Guidance of underwater snake robots |
CN105511267A (en) * | 2016-01-06 | 2016-04-20 | 北京化工大学 | Snake imitation search and rescue robot multi-gait control method |
CN108994836A (en) * | 2018-08-20 | 2018-12-14 | 上海交通大学 | A kind of snake-shaped robot path follows planing method |
CN111338384A (en) * | 2019-12-17 | 2020-06-26 | 北京化工大学 | Self-adaptive path tracking method of snake-like robot |
CN112140098A (en) * | 2020-09-15 | 2020-12-29 | 天津大学 | Underwater snake-shaped robot high-speed gait generation method based on near-end strategy optimization |
CN112549010A (en) * | 2020-12-22 | 2021-03-26 | 南昌大学 | Design method of multi-joint snake-shaped robot self-adaptive trajectory tracking controller based on improved Serpenoid curve |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5859036B2 (en) * | 2014-02-04 | 2016-02-10 | 本田技研工業株式会社 | robot |
-
2021
- 2021-03-29 CN CN202110330142.4A patent/CN113084787B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002040224A1 (en) * | 2000-11-17 | 2002-05-23 | Honda Giken Kogyo Kabushiki Kaisha | Gait pattern generating device for legged mobile robot |
WO2004099942A2 (en) * | 2003-03-05 | 2004-11-18 | The Arizona Board Of Regents | Gait recognition system |
WO2016055408A1 (en) * | 2014-10-06 | 2016-04-14 | Norwegian University Of Science And Technology (Ntnu) | Guidance of underwater snake robots |
CN105511267A (en) * | 2016-01-06 | 2016-04-20 | 北京化工大学 | Snake imitation search and rescue robot multi-gait control method |
CN108994836A (en) * | 2018-08-20 | 2018-12-14 | 上海交通大学 | A kind of snake-shaped robot path follows planing method |
CN111338384A (en) * | 2019-12-17 | 2020-06-26 | 北京化工大学 | Self-adaptive path tracking method of snake-like robot |
CN112140098A (en) * | 2020-09-15 | 2020-12-29 | 天津大学 | Underwater snake-shaped robot high-speed gait generation method based on near-end strategy optimization |
CN112549010A (en) * | 2020-12-22 | 2021-03-26 | 南昌大学 | Design method of multi-joint snake-shaped robot self-adaptive trajectory tracking controller based on improved Serpenoid curve |
Non-Patent Citations (2)
Title |
---|
基于Recurdyn的蛇形机器人的蜿蜒运动仿真;庞博等;《河北工程大学学报(自然科学版)》;20130325(第01期);全文 * |
蛇形机器人模块化结构设计与蜿蜒运动研究;王生栋等;《机械与电子》;20160124(第01期);76-80页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113084787A (en) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113084787B (en) | Bionic snake-shaped robot motion gait planning method, system, equipment and medium | |
CN112629542B (en) | Map-free robot path navigation method and system based on DDPG and LSTM | |
Palmer et al. | Real-time method for tip following navigation of continuum snake arm robots | |
CN110383298B (en) | Data efficient reinforcement learning for continuous control tasks | |
US10860927B2 (en) | Stacked convolutional long short-term memory for model-free reinforcement learning | |
CN112119409A (en) | Neural network with relational memory | |
CN103692440B (en) | Spatial path tracking method of continuous robot | |
CN109676606A (en) | A kind of method, mechanical arm and the robot of calculating machine arm arm angular region | |
CN114815840A (en) | Multi-agent path planning method based on deep reinforcement learning | |
CN110561421A (en) | Mechanical arm indirect dragging demonstration method and device | |
JP4760732B2 (en) | Route creation device | |
Gentilini et al. | Cycle time based multi-goal path optimization for redundant robotic systems | |
CN114943182B (en) | Robot cable shape control method and equipment based on graph neural network | |
Zhao et al. | Efficient inverse kinematics for redundant manipulators with collision avoidance in dynamic scenes | |
CN117260701A (en) | Method for training machine learning model to implement control rules | |
Huang et al. | Toward learning context-dependent tasks from demonstration for tendon-driven surgical robots | |
Liu et al. | A reinforcement learning path following strategy for snake robots based on transferable constrained-residual gait generator | |
Lowman et al. | Imitation learning with approximated behavior cloning loss | |
CN109531626B (en) | Intelligent robot singular configuration prediction method and device and storage medium | |
Ge et al. | Learning from demonstration using GMM, CHMM and DHMM: A comparison | |
JP2020119551A (en) | Information processing method and information processing device | |
Cao et al. | Mamba Policy: Towards Efficient 3D Diffusion Policy with Hybrid Selective State Models | |
Qi et al. | Stability Analysis of Obstacle Avoidance Ability and Environment Adaptation Modeling of Snake Robot based on Deep Learning and Binocular Vision | |
Wang et al. | Human–robot kinematic mapping method based on index constraint | |
CN116652940B (en) | Human hand imitation precision control method and device, electronic equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |