CN113078651B - 一种考虑配电网调压需求的输配协同自动电压控制方法 - Google Patents

一种考虑配电网调压需求的输配协同自动电压控制方法 Download PDF

Info

Publication number
CN113078651B
CN113078651B CN202110239264.2A CN202110239264A CN113078651B CN 113078651 B CN113078651 B CN 113078651B CN 202110239264 A CN202110239264 A CN 202110239264A CN 113078651 B CN113078651 B CN 113078651B
Authority
CN
China
Prior art keywords
voltage
bus
feeder
load node
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110239264.2A
Other languages
English (en)
Other versions
CN113078651A (zh
Inventor
谢江
陈旭锋
杨磊
陈柏杉
李兴利
龚雪
张欣
陈城
周锐
王鹏
汤磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yibin Power Supply Co Of Sichuan Electric Power Corp
Beijing King Star Hi Tech System Control Co Ltd
Original Assignee
Yibin Power Supply Co Of Sichuan Electric Power Corp
Beijing King Star Hi Tech System Control Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yibin Power Supply Co Of Sichuan Electric Power Corp, Beijing King Star Hi Tech System Control Co Ltd filed Critical Yibin Power Supply Co Of Sichuan Electric Power Corp
Priority to CN202110239264.2A priority Critical patent/CN113078651B/zh
Publication of CN113078651A publication Critical patent/CN113078651A/zh
Application granted granted Critical
Publication of CN113078651B publication Critical patent/CN113078651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

本发明提出了一种考虑配电网调压需求的输配协同自动电压控制方法,获取输、配电网模型和实时数据构建输配一体电网模型;对变电站的各10kV母线下所带馈线的所有负荷节点电压,分别判断各负荷节点电压是否越限,计算馈线下负荷节点电压接近或越上限率、负荷节点电压接近或越下限率;若某馈线下负荷节点电压接近或越上限率大于接近或越上限率门槛值,则更新对应10kV母线的电压上限;若某馈线下负荷节点电压接近或越下限率大于接近或越下限率门槛值,则更新对应10kV母线电压下限;若10kV母线电压越上限,则选择其所在变电站的分接头降档或容抗器投切;若10kV母线电压越下限,则选择其所在变电站的分接头升档或容抗器投切。

Description

一种考虑配电网调压需求的输配协同自动电压控制方法
技术领域
本发明涉及电力领域,特别是涉及一种考虑配电网调压需求的输配协同自动电压控制方法。
背景技术
自动电压控制(以下简称AVC,Automatic Voltage Control)系统是实现输电网安全(提高电压稳定裕度)、经济(降低网络损耗)、优质(提高电压合格率)运行的重要手段。AVC系统架构在电网能量管理系统(EMS)之上,能够利用输电网实时运行数据,从输电网全局优化的角度科学决策出最佳的无功电压调整方案,自动下发给电厂、变电站以及下级电网调度机构执行。孙宏斌、张伯明、郭庆来在《基于软分区的全局电压优化控制系统设计》(电力系统自动化,2003年,第27卷第8期,16-20页)中说明了大电网自动电压控制的体系结构。其中变电站的自动电压控制能力与效果直接影响了电力系统自动电压控制的整体控制结果。变电站配有一定容量的离散无功设备(电容器,电抗器),电容器和电抗器的投切主要用于消除母线电压越限,同时也用于提高变电站的电压水平以降低系统的网损。
在电力系统中,配电网处于整个系统的末端,其电压质量直接关系到用户电气设备能否稳定运行,当系统提供电压低于用户电气设备的额定电压时,用户电气设备将不能正常运行,反之,当系统提供电压高于用户电气设备额定电压时,将会造成用户电气设备的使用寿命缩短,甚至造成电气设备损坏。配电网电压问题原因主要有线路截面积小、供电半径大、无功补偿配置容量不足、设备老化等,而调压方法是在线路上加装单台无功补偿设备,设备间无通讯,不能统一控制且成本高,电压治理效果不明显。
发明内容
基于此,有必要在配电网自身调压能力普遍不足、调压效果不明显的现实情况下,利用输电网调压能力,针对自动电压控制提出考虑配电网调压需求的方法。
为了实现上述目的,本发明采用以下技术方案:
本发明提出的一种考虑配电网调压需求的输配协同自动电压控制方法,包括如下步骤:
(1)获取输电网模型、母线电压量测、开关刀闸状态、以及变压器的有功功率和无功功率;
(2)获取配电网设备信息、设备状态以及量测数据,并结合所述输电网模型构建输配一体电网模型;
(3)对变电站的各10kV母线下所带馈线的所有负荷节点电压,分别判断各负荷节点电压是否越限,计算馈线下负荷节点电压接近或越上限率、负荷节点电压接近或越下限率;若某馈线下负荷节点电压接近或越上限率大于接近或越上限率门槛值,则更新对应10kV母线的电压上限;若某馈线下负荷节点电压接近或越下限率大于接近或越下限率门槛值,则更新对应10kV母线电压下限;
(4)判定10kV母线电压是否越限,若10kV母线电压越上限,则选择其所在变电站的分接头降档或容抗器投切;若10kV母线电压越下限,则选择其所在变电站的分接头升档或容抗器投切。
本发明方法的特点及有益效果在于:
本发明利用输电网调压能力,在配电网自身调压能力不足、调压效果不明显的情况下,通过获取输、配电网模型、量测数据,构建输配一体电网模型,充分考虑输、配电网电压运行状况,调节配电网的10kV母线电压,解决配电网电压越限问题,实现用户电气设备安全稳定运行。
附图说明
图1是本发明实施例的对一个110kV变电站S1及其连接配电网的自动电压控制示意图。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明提出的一种考虑配电网调压需求的输配协同自动电压控制方法,包括如下步骤:
(1)设定自动电压控制周期为Tc
(2)在每个自动电压控制周期Tc到来时,从能量管理系统(EMS)获得输电网模型、母线电压量测、开关刀闸状态、以及变压器的有功功率和无功功率,读取输电网变电站中第m条母线Bm的当前电压
Figure GDA0003065866440000021
电压上限
Figure GDA0003065866440000022
和电压下限
Figure GDA0003065866440000023
其中m∈[1,M],M为输电网变电站母线总数;
(3)从配网自动化系统读取配电网设备信息、设备状态以及量测数据,并结合输电网模型构建输配一体电网模型用
Figure GDA0003065866440000031
表示,其中
Figure GDA0003065866440000032
表示110kV或35kV变电站的1条10kV母线;Fi表示母线
Figure GDA0003065866440000033
连接配电网的馈线,共计Ih条,i∈[1,Ih];Lp表示母线
Figure GDA0003065866440000034
连接馈线Fi下配电网负荷,共计Ph个,p∈[1,Ph];Tk表示母线
Figure GDA0003065866440000035
连接馈线Fi下配电网台变,共计Kh个,k∈[1,Kh];
(4)在当前自动电压控制时刻t0,统计计算馈线Fi的电压情况,包括:最高节点电压
Figure GDA0003065866440000036
最低节点电压
Figure GDA0003065866440000037
越电压上限节点数
Figure GDA0003065866440000038
越电压下限节点数
Figure GDA0003065866440000039
接近电压上限节点数
Figure GDA00030658664400000310
接近电压下限节点数
Figure GDA00030658664400000311
接近或越上限率fi RateH、接近或越下限率fi RateL、无效量测节点数
Figure GDA00030658664400000312
期望电压上限
Figure GDA00030658664400000328
和期望电压下限
Figure GDA00030658664400000329
步骤如下:
(4-1)初始化馈线Fi的最高节点电压
Figure GDA00030658664400000330
最低节点电压
Figure GDA00030658664400000313
越电压上限节点数
Figure GDA00030658664400000314
越电压下限节点数
Figure GDA00030658664400000315
接近电压上限节点数
Figure GDA00030658664400000316
接近电压下限节点数
Figure GDA00030658664400000317
无效量测节点数
Figure GDA00030658664400000318
期望电压上限
Figure GDA00030658664400000331
期望电压下限
Figure GDA00030658664400000332
电压量测误差为fi Err(fi Err>0)、电压偏高阈值为
Figure GDA00030658664400000319
Figure GDA00030658664400000320
和电压偏低阈值为
Figure GDA00030658664400000321
VVdMin为电压有效范围最小值,VVdMax为电压有效范围最大值,VHigh为电压运行上限,VLow为电压运行下限;
(4-2)对馈线Fi的负荷节点Lj进行校验,j∈[1,Ji],Ji为馈线Fi连接负荷节点总数,包括:
(4-2-1)初始化负荷节点Lj的电压有效上限Vj VdMax=VVdMax、有效电压下限Vj VdMin=VVdMin
(4-2-2)若负荷节点Lj的量测状态Sj=1,则进入步骤(4-2-3);若负荷节点Lj的量测状态Sj=0,则令
Figure GDA00030658664400000322
进入步骤(4-3);
(4-2-3)若负荷节点Lj的电压Vj满足:Vj VdMin-fi Err≤Vj≤Vj VdMax+fi Err,则进入步骤(4-2-4),否则令
Figure GDA00030658664400000323
进入步骤(4-3);
(4-2-4)若负荷节点Lj的电压Vj满足:
Figure GDA00030658664400000324
则令
Figure GDA00030658664400000325
若负荷节点Lj的电压Vj满足:
Figure GDA00030658664400000326
则令
Figure GDA00030658664400000327
进入步骤(4-2-5);
(4-2-5)若负荷节点Lj的电压Vj满足:
Figure GDA0003065866440000041
则令
Figure GDA0003065866440000042
若负荷节点Lj的电压Vj满足:
Figure GDA0003065866440000043
则令
Figure GDA0003065866440000044
进入步骤(4-2-6);
(4-2-6)若负荷节点Lj的电压Vj满足:
Figure GDA0003065866440000045
则令
Figure GDA0003065866440000046
若负荷节点Lj的电压Vj满足:
Figure GDA0003065866440000047
Figure GDA0003065866440000048
则令
Figure GDA0003065866440000049
(4-3)令j=j+1,重新返回步骤(4-2),继续校验下一个负荷节点,直至馈线Fi的所有负荷节点全部校验完成;
(4-4)计算馈线Fi的接近或越上限率
Figure GDA00030658664400000410
计算馈线Fi的接近或越下限率
Figure GDA00030658664400000411
(4-5)若馈线Fi的接近或越上限率fi RateH≥fH,fH为接近或越上限率门槛值,且馈线Fi的最低节点电压
Figure GDA00030658664400000412
则更新馈线Fi的期望电压上限,令
Figure GDA00030658664400000413
若馈线Fi的接近或越上限率fi RateL≥fL,fL为接近或越下限率门槛值,且馈线Fi的最高节点电压
Figure GDA00030658664400000414
则更新馈线Fi的期望电压下限,令
Figure GDA00030658664400000415
(4-6)校验馈线Fi所连母线
Figure GDA00030658664400000416
的电压上限
Figure GDA00030658664400000417
Figure GDA00030658664400000418
则令
Figure GDA00030658664400000419
校验馈线Fi所连母线
Figure GDA00030658664400000420
的电压下限
Figure GDA00030658664400000421
Figure GDA00030658664400000422
则令
Figure GDA00030658664400000423
(4-7)令i=i+1,返回步骤(4-1),继续校验下一个馈线,直至母线
Figure GDA00030658664400000424
连接配电网的所有馈线Fi全部校验完成;
(4-8)重新返回步骤(3),继续校验下一条10kV母线,直至所有10kV母线全部校验完成;
(5)判断变电站母线当前电压
Figure GDA00030658664400000425
是否越限,若
Figure GDA00030658664400000426
则选择其所在变电站的分接头降档或容抗器投切(电容器切除、电抗器投入),以解决其所带配电网馈线节点越上限问题;若
Figure GDA00030658664400000427
则选择其所在变电站的分接头升档或容抗器投切(电抗器切除、电容器投入),以解决其所带配电网馈线节点越下限问题。
以下为本发明实施例:
参见图1,本实施例为对一个110kV变电站S1及其连接配电网的自动电压控制,S1的高中低压侧电压等级分别为110kV、35kV、10kV,10kV母线连接3条配电网馈线F1、F2、F3
本实施例的方法包括以下步骤:
(1)设定控制周期为5分钟;
(2)控制周期到来时,读取输电网模型数据,读取变电站S1高中低压侧电压当前值分别为
Figure GDA0003065866440000051
电压上限分别为
Figure GDA0003065866440000052
Figure GDA0003065866440000053
电压下限分别为
Figure GDA0003065866440000054
Figure GDA0003065866440000055
(3)读取配电网设备信息、设备状态以及量测数据,并结合输电网模型构造输配一体电网模型
Figure GDA0003065866440000056
表示,其中
Figure GDA0003065866440000057
表示变电站S1的10kV母线;Fi表示
Figure GDA0003065866440000058
连接配电网馈线,共计3条;Lp表示
Figure GDA0003065866440000059
连接馈线下配电网负荷,共5个;Tk表示
Figure GDA00030658664400000510
连接馈线下配电网台变,共5个;
(4)统计计算配电网馈线F1的电压情况,包括:最高节点电压
Figure GDA00030658664400000511
最低节点电压
Figure GDA00030658664400000512
越电压上限节点数
Figure GDA00030658664400000513
越电压下限节点数
Figure GDA00030658664400000514
接近电压上限节点数
Figure GDA00030658664400000515
接近电压下限节点数
Figure GDA00030658664400000516
接近或越上限率
Figure GDA00030658664400000517
接近或越下限率
Figure GDA00030658664400000518
无效量测节点数
Figure GDA00030658664400000519
期望电压上限
Figure GDA00030658664400000520
期望电压步骤如下:
(4-1)初始化母线
Figure GDA00030658664400000521
连接配电网馈线F1的电压上限
Figure GDA00030658664400000522
电压下限
Figure GDA00030658664400000523
电压量测误差
Figure GDA00030658664400000524
电压偏高阈值
Figure GDA00030658664400000525
电压偏低阈值
Figure GDA00030658664400000526
初始化馈线F1的最高节点电压
Figure GDA00030658664400000527
最低节点电压
Figure GDA00030658664400000528
越电压上限节点数
Figure GDA00030658664400000529
越电压下限节点数
Figure GDA00030658664400000530
接近电压上限节点数
Figure GDA00030658664400000531
接近电压下限节点数
Figure GDA00030658664400000532
无效量测节点数
Figure GDA00030658664400000533
期望电压上限
Figure GDA00030658664400000534
期望电压下限
Figure GDA00030658664400000535
(4-2)对馈线F1的负荷节点L1进行校验,包括:
(4-2-1)初始化节点L1电压有效上限
Figure GDA00030658664400000536
有效电压下限
Figure GDA00030658664400000537
(4-2-2)节点L1的量测状态
Figure GDA00030658664400000538
进入步骤(4-2-3);
(4-2-3)节点L1的电压
Figure GDA00030658664400000539
满足
Figure GDA00030658664400000540
进入步骤(4-2-4);
(4-2-4)节点L1电压
Figure GDA0003065866440000061
Figure GDA0003065866440000062
节点L1电压
Figure GDA0003065866440000063
满足
Figure GDA0003065866440000064
Figure GDA0003065866440000065
(4-2-5)节点L1电压
Figure GDA0003065866440000066
满足
Figure GDA0003065866440000067
Figure GDA0003065866440000068
(4-3)重新返回步骤(4-1),继续校验下一个负荷节点,直至馈线Fi的所有负荷节点全部校验完成;
(4-4)计算馈线F1的接近或越上限率
Figure GDA0003065866440000069
计算馈线F1的接近或越下限率
Figure GDA00030658664400000610
(4-5)
Figure GDA00030658664400000611
Figure GDA00030658664400000612
更新馈线Fi的期望电压下限,令
Figure GDA00030658664400000613
(4-6)此时
Figure GDA00030658664400000614
满足
Figure GDA00030658664400000615
Figure GDA00030658664400000616
(4-7)重新返回步骤(4-1),继续校验下一个馈线,直至母线
Figure GDA00030658664400000617
连接所有馈线全部校验完成;
(4-8)重新返回步骤(2),继续校验下一条10kV母线,直至所有10kV母线全部校验完成;
(5)判断变电站S1各母线电压是否越限,
Figure GDA00030658664400000618
Figure GDA00030658664400000619
即10kV母线电压越下限,生成所在变电站的升压策略并执行,以解决其所带配电网馈线节点越下限问题。

Claims (3)

1.一种考虑配电网调压需求的输配协同自动电压控制方法,其特征在于,包括:
(1)获取输电网模型、母线电压量测、开关刀闸状态、以及变压器的有功功率和无功功率;
(2)获取配电网设备信息、设备状态以及量测数据,并结合所述输电网模型构建输配一体电网模型;
(3)对变电站的各10kV母线下所带馈线的所有负荷节点电压,分别判断各负荷节点电压是否越限,计算馈线下负荷节点电压接近或越上限率、负荷节点电压接近或越下限率;若某馈线下负荷节点电压接近或越上限率大于接近或越上限率门槛值,则更新对应10kV母线的电压上限;若某馈线下负荷节点电压接近或越下限率大于接近或越下限率门槛值,则更新对应10kV母线电压下限;
(4)判定10kV母线电压是否越限,若10kV母线电压越上限,则选择其所在变电站的分接头降档或容抗器投切;若10kV母线电压越下限,则选择其所在变电站的分接头升档或容抗器投切。
2.根据权利要求1所述的输配协同自动电压控制方法,其特征在于,步骤(2)中构建的所述输配一体电网模型,记为
Figure FDA0003824510700000011
其中
Figure FDA0003824510700000012
表示110kV或35kV变电站的1条10kV母线;Fi表示母线
Figure FDA0003824510700000013
连接配电网的馈线,共计Ih条,i∈[1,Ih];Lp表示母线
Figure FDA0003824510700000014
连接馈线Fi下配电网负荷,共计Ph个,p∈[1,Ph];Tk表示母线
Figure FDA0003824510700000015
连接馈线Fi下配电网台变,共计Kh个,k∈[1,Kh]。
3.根据权利要求2所述的输配协同自动电压控制方法,其特征在于,步骤(3)具体包括以下步骤:
(3-1)初始化馈线Fi的最高节点电压
Figure FDA0003824510700000016
最低节点电压
Figure FDA0003824510700000017
越电压上限节点数
Figure FDA0003824510700000018
越电压下限节点数
Figure FDA0003824510700000019
接近电压上限节点数
Figure FDA00038245107000000110
接近电压下限节点数
Figure FDA00038245107000000111
无效量测节点数
Figure FDA00038245107000000112
期望电压上限
Figure FDA00038245107000000113
和期望电压下限
Figure FDA00038245107000000114
电压量测误差为
Figure FDA00038245107000000115
电压偏高阈值为
Figure FDA00038245107000000116
和电压偏低阈值为
Figure FDA00038245107000000117
VVdMin为电压有效范围最小值,VVdMax为电压有效范围最大值,VHigh为电压运行上限,VLow为电压运行下限;
(3-2)对馈线Fi的负荷节点Lj进行校验,j∈[1,Ji],Ji为馈线Fi连接负荷节点总数,具体包括:
(3-2-1)初始化负荷节点Lj的电压有效上限
Figure FDA0003824510700000021
有效电压下限
Figure FDA0003824510700000022
Figure FDA0003824510700000023
(3-2-2)若负荷节点Lj的量测状态Sj=1,则进入步骤(3-2-3);若负荷节点Lj的量测状态Sj=0,则令
Figure FDA0003824510700000024
进入步骤(3-3);
(3-2-3)若负荷节点Lj的电压Vj满足:
Figure FDA0003824510700000025
则进入步骤(3-2-4),否则令
Figure FDA0003824510700000026
进入步骤(3-3);
(3-2-4)若负荷节点Lj的电压Vj满足:
Figure FDA0003824510700000027
则令
Figure FDA0003824510700000028
若负荷节点Lj的电压Vj满足:
Figure FDA0003824510700000029
则令
Figure FDA00038245107000000210
(3-2-5)若负荷节点Lj的电压Vj满足:
Figure FDA00038245107000000211
则令
Figure FDA00038245107000000212
若负荷节点Lj的电压Vj满足:
Figure FDA00038245107000000213
则令
Figure FDA00038245107000000214
(3-2-6)若负荷节点Lj的电压Vj满足:
Figure FDA00038245107000000215
则令
Figure FDA00038245107000000216
若负荷节点Lj的电压Vj满足:
Figure FDA00038245107000000217
则令
Figure FDA00038245107000000218
(3-3)令j=j+1,返回步骤(3-2),继续校验下一个负荷节点,直至馈线Fi的所有负荷节点全部校验完成;
(3-4)计算馈线Fi的接近或越上限率
Figure FDA00038245107000000219
计算馈线Fi的接近或越下限率
Figure FDA00038245107000000220
(3-5)若馈线Fi的接近或越上限率
Figure FDA00038245107000000221
fH为接近或越上限率门槛值,且馈线Fi的最低节点电压
Figure FDA00038245107000000222
则更新馈线Fi的期望电压上限,令
Figure FDA00038245107000000223
Figure FDA00038245107000000224
若馈线Fi的接近或越下限率
Figure FDA00038245107000000225
fL为接近或越下限率门槛值,且馈线Fi的最高节点电压
Figure FDA00038245107000000226
则更新馈线Fi的期望电压下限,令
Figure FDA00038245107000000227
Figure FDA00038245107000000228
表示输电网变电站中第m条母线Bm的当前电压;
(3-6)校验馈线Fi所连母线
Figure FDA0003824510700000031
的电压上限
Figure FDA0003824510700000032
Figure FDA0003824510700000033
则令
Figure FDA0003824510700000034
校验馈线Fi所连母线
Figure FDA0003824510700000035
的电压下限
Figure FDA0003824510700000036
Figure FDA0003824510700000037
则令
Figure FDA0003824510700000038
(3-7)令i=i+1,返回步骤(3-1),继续校验下一个馈线,直至母线
Figure FDA0003824510700000039
连接配电网的所有馈线Fi全部校验完成;
(3-8)重新返回步骤(2),继续校验下一条10kV母线,直至所有10kV母线全部校验完成。
CN202110239264.2A 2021-03-04 2021-03-04 一种考虑配电网调压需求的输配协同自动电压控制方法 Active CN113078651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110239264.2A CN113078651B (zh) 2021-03-04 2021-03-04 一种考虑配电网调压需求的输配协同自动电压控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110239264.2A CN113078651B (zh) 2021-03-04 2021-03-04 一种考虑配电网调压需求的输配协同自动电压控制方法

Publications (2)

Publication Number Publication Date
CN113078651A CN113078651A (zh) 2021-07-06
CN113078651B true CN113078651B (zh) 2022-10-21

Family

ID=76609876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110239264.2A Active CN113078651B (zh) 2021-03-04 2021-03-04 一种考虑配电网调压需求的输配协同自动电压控制方法

Country Status (1)

Country Link
CN (1) CN113078651B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105429128A (zh) * 2016-01-08 2016-03-23 江苏省电力公司电力科学研究院 基于混合储能的直流微网母线电压控制策略
CN108011377A (zh) * 2017-12-19 2018-05-08 中国能源建设集团江苏省电力设计院有限公司 基于自治控制区域的主动配电网自动电压控制方法
CN110854870A (zh) * 2019-11-14 2020-02-28 国网江苏省电力有限公司电力科学研究院 一种计及静止同步补偿器的母线电压自动校正控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180275A1 (en) * 2018-03-23 2019-09-26 Electricity North West Property Limited System for frequency regulation on a power distribution network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105429128A (zh) * 2016-01-08 2016-03-23 江苏省电力公司电力科学研究院 基于混合储能的直流微网母线电压控制策略
CN108011377A (zh) * 2017-12-19 2018-05-08 中国能源建设集团江苏省电力设计院有限公司 基于自治控制区域的主动配电网自动电压控制方法
CN110854870A (zh) * 2019-11-14 2020-02-28 国网江苏省电力有限公司电力科学研究院 一种计及静止同步补偿器的母线电压自动校正控制方法

Also Published As

Publication number Publication date
CN113078651A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
Elmitwally et al. A fuzzy-multiagent self-healing scheme for a distribution system with distributed generations
CN110490376B (zh) 面向配电网可靠性和经济性提升的智能软开关规划方法
US7990743B2 (en) System and method for decreasing solar collector system losses
EP3707798A1 (de) Verfahren und regelvorrichtung zur regelung eines elektrischen leistungstransfers sowie stromnetz
CN103326348B (zh) 一种提高地区电网供电能力分析及全过程在线监测的系统
Gao et al. Automatic compensation voltage control strategy for on-load tap changer transformers with distributed generations
CN103746368A (zh) 一种电力系统静态安全稳定运行极限优化方法
CN107516903B (zh) 一种考虑经济性及多时间尺度安全稳定性的精准负荷控制方法
CN104283222A (zh) 一种地区电网无功电压控制系统
CN112467753A (zh) 一种无功置换方法及装置
CN113078651B (zh) 一种考虑配电网调压需求的输配协同自动电压控制方法
CN110336296B (zh) 一种基于分区无功平衡指标的电网无功设备配置方法
CN109066824B (zh) 一种主动配电网负载柔性均衡控制方法
CN113629766A (zh) 降低新能源汇集区电压波动的自动电压控制方法及装置
CN106651136B (zh) 一种双边交易的日前发电计划编制方法及装置
CN109936142B (zh) 输配一体化电网电压自动控制方法和装置
Gao et al. Advanced voltage control strategy for on-load tap-changer transformers with distributed generations
Ye et al. Improved droop control strategy for an MMC-MTDC connected to offshore wind farms with dynamic correction of the actual operating point
CN115395509A (zh) 一种省地一体化电网故障处置方法
CN104319779A (zh) 一种地区电网无功电压控制方法
CN111756075B (zh) 一种含分布式电源的配电系统算例设计与测试方法
KR20190051212A (ko) 분산발전 자원의 전압 및 무효전력 보조서비스에 따른 보상방법
CN110661268B (zh) 一种新能源汇集站点的动态无功补偿需求确定方法及系统
CN108736483B (zh) 一种电网运行方式的确定方法及确定系统
Zhang et al. Optimal Planning of Hybrid AC/DC Low-Voltage Distribution Networks Considering DC Conversion of Three-Phase Four-Wire Low-Voltage AC Systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant