CN113078375B - Battery monitoring system and monitoring method - Google Patents
Battery monitoring system and monitoring method Download PDFInfo
- Publication number
- CN113078375B CN113078375B CN202110182616.5A CN202110182616A CN113078375B CN 113078375 B CN113078375 B CN 113078375B CN 202110182616 A CN202110182616 A CN 202110182616A CN 113078375 B CN113078375 B CN 113078375B
- Authority
- CN
- China
- Prior art keywords
- wavelength
- light guide
- division multiplexer
- wavelength division
- guide fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000013307 optical fiber Substances 0.000 claims abstract description 118
- 238000001228 spectrum Methods 0.000 claims abstract description 52
- 239000000835 fiber Substances 0.000 claims abstract description 46
- 230000003287 optical effect Effects 0.000 claims abstract description 40
- 238000001514 detection method Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 7
- 210000001787 dendrite Anatomy 0.000 claims description 23
- 238000011065 in-situ storage Methods 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000013078 crystal Substances 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 17
- 230000003595 spectral effect Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000000253 optical time-domain reflectometry Methods 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及电池领域,特别是涉及一种电池监测系统和监测方法。The invention relates to the battery field, in particular to a battery monitoring system and a monitoring method.
背景技术Background technique
锂电池是下一代绿色新能源发展的主要方向,现有的商用电池多为锂离子电池,为获得更高的电池效率,锂电池是下一代电池的优选对象。然而,锂电池在经较多循环次数后或在工作环境不稳定的极端环境下极易生长枝晶,枝晶一旦刺破隔膜将造成电池短路,甚至能造成电池爆炸,存在较大的安全隐患。Lithium batteries are the main direction for the development of next-generation green new energy. Most of the existing commercial batteries are lithium-ion batteries. In order to obtain higher battery efficiency, lithium batteries are the preferred object of the next-generation batteries. However, lithium batteries are prone to grow dendrites after a large number of cycles or in extreme environments where the working environment is unstable. Once the dendrites pierce the separator, the battery will short-circuit and even cause the battery to explode, posing a greater safety hazard. .
隔膜是电池内部的一个关键部分,位于电池的正、负极之间,其功能为:一方面是将正、负极的材料隔开,防止因正负极接触而短路;另一方面是使电解液中的离子通过隔膜,完成充、放电的过程。而目前尚未实现对枝晶及其生长过程的原位监测。The separator is a key part inside the battery, located between the positive and negative electrodes of the battery. Its function is: on the one hand, it separates the materials of the positive and negative electrodes to prevent short circuit due to the contact between the positive and negative electrodes; on the other hand, it keeps the electrolyte The ions in the battery pass through the diaphragm to complete the charging and discharging process. However, in situ monitoring of dendrites and their growth process has not been realized yet.
发明内容Contents of the invention
发明目的:本发明的目的是提供一种电池的监测系统和监测方法,可实现对电池内部环境的高精度、原位、实时监测。Purpose of the invention: The purpose of the invention is to provide a battery monitoring system and monitoring method, which can realize high-precision, in-situ and real-time monitoring of the internal environment of the battery.
技术方案:本发明的一种电池监测系统,其包括多波长光源、波分复用器、导光纤维单元、光谱扫描仪,多波长光源用于提供多波长探测光信号,光谱扫描仪用于接收并处理导光纤维输出的响应光信号;多波长探测光信号经波分复用器注入至导光纤维单元,导光纤维输出的响应光信号经光谱扫描仪进行处理。Technical solution: A battery monitoring system of the present invention, which includes a multi-wavelength light source, a wavelength division multiplexer, an optical fiber unit, and a spectrum scanner. The multi-wavelength light source is used to provide multi-wavelength detection optical signals, and the spectrum scanner is used to provide Receiving and processing the response optical signal output by the optical fiber; the multi-wavelength detection optical signal is injected into the optical fiber unit through the wavelength division multiplexer, and the response optical signal output by the optical fiber is processed by the spectrum scanner.
本发明的监测系统采用多波长光源,将光源接入波分复用器,波分复用器将多个波长信号分别耦合到多根导光纤维,以便将各个波长的信号分别用于安全预警监测。将该系统嵌入电池隔膜,这一方案可提高传感器的空间分辨率,更全面地监测电池内部的枝晶生长过程和温度、压强等参量在电池内部的区域分布状况。本发明提高空间分辨率和电池内部参数测量精度的原理为:一方面多根导光纤维平行或呈网格形嵌入隔膜,导光纤维布满整个隔膜覆盖区域,因此可监测导光纤维所覆盖的全部区域;另一方面导光纤维本身中所嵌的结构单元,使导光纤维对周围环境的变化非常敏感,可以监测温度、压强、枝晶生长过程等多种待测参量。The monitoring system of the present invention adopts a multi-wavelength light source, and the light source is connected to a wavelength division multiplexer, and the wavelength division multiplexer couples multiple wavelength signals to multiple optical fibers, so that the signals of each wavelength are used for safety warnings monitor. Embedding the system in the battery diaphragm can improve the spatial resolution of the sensor and more comprehensively monitor the dendrite growth process inside the battery and the regional distribution of parameters such as temperature and pressure inside the battery. The principle of the present invention to improve the spatial resolution and the measurement accuracy of the internal parameters of the battery is as follows: on the one hand, multiple light guide fibers are embedded in the diaphragm in parallel or in a grid shape, and the light guide fibers cover the entire diaphragm coverage area, so the covered area of the light guide fibers can be monitored. On the other hand, the structural units embedded in the optical fiber itself make the optical fiber very sensitive to changes in the surrounding environment, and can monitor various parameters to be measured such as temperature, pressure, and dendrite growth process.
本发明采用以下技术方案提高空间分辨率和电池内部参数测量精度:该方法使用导光纤维和制作在导光纤维上的微结构作为传感系统中的物理量传感元件,同时导光纤维也是信号传输介质,前端信号源输出多波长激光信号,使用波分复用器(WDM)将各个波长的信号分别注入多根导光纤维并实现对不同区域的状态进行监测,各响应信号又分别经WDM输出致光谱仪,以实时获取监测结果。The present invention adopts the following technical solutions to improve the spatial resolution and the measurement accuracy of the internal parameters of the battery: the method uses the optical fiber and the microstructure made on the optical fiber as the physical quantity sensing element in the sensing system, and the optical fiber is also used for signal transmission Medium, the front-end signal source outputs multi-wavelength laser signals, and the wavelength division multiplexer (WDM) is used to inject the signals of each wavelength into multiple optical fibers to monitor the status of different areas, and each response signal is output through WDM respectively to the spectrometer to obtain monitoring results in real time.
其中,将导光纤维单元布设于待监测部位,导光纤维单元包括若干平行或交叉设置的导光纤维;交叉设置可采用井字形的网络结构,其中井字型网络结构中不同方向的导光纤维间的夹角可以在0-180度之间,根据实际应用场景适当选择。Among them, the light guide fiber unit is arranged at the position to be monitored, and the light guide fiber unit includes a number of parallel or crossed light guide fibers; the cross arrangement can adopt a well-shaped network structure, wherein the light guides in different directions in the well-shaped network structure The angle between the fibers can be between 0-180 degrees, which is properly selected according to the actual application scenario.
优选地,导光纤维单元包括多根导光纤维,每根导光纤维的直径小于125μm,即导光纤维尺寸在微纳尺寸领域,其直径<125μm,微纳导光纤维对周围折射率敏感,一旦出现枝晶生长,导光纤维折射率环境将发生变化,因此可实现对枝晶生长过程的原位实时监测。Preferably, the optical fiber unit includes a plurality of optical fibers, the diameter of each optical fiber is less than 125 μm, that is, the size of the optical fiber is in the field of micro-nano size, and its diameter is less than 125 μm, and the micro-nano optical fiber is sensitive to the surrounding refractive index , once dendrite growth occurs, the refractive index environment of the optical fiber will change, so in-situ real-time monitoring of the dendrite growth process can be realized.
可选的,导光纤维上制作有微结构(光栅、FP腔、V型槽、倾斜槽等结构,结构表面可镀增敏材料),导光纤维上的微结构可用于温度、压强、应变等参量的监测。Optionally, there are microstructures (grating, FP cavity, V-shaped groove, inclined groove and other structures on the optical fiber, and the surface of the structure can be plated with sensitizing materials), and the microstructure on the optical fiber can be used for temperature, pressure, strain Monitoring of other parameters.
所述导光纤维的表面覆有防腐层,以防光导纤维被电解液腐蚀;另可在导光导纤维上涂增敏材料,提高参数测量的精度。The surface of the optical fiber is covered with an anti-corrosion layer to prevent the optical fiber from being corroded by the electrolyte; in addition, a sensitizing material can be coated on the optical fiber to improve the accuracy of parameter measurement.
其中,上述导光纤维单元包括若干平行设置的导光纤维,波分复用器包括第一波分复用器和第二波分复用器;多波长光源的输出端与第一波分复用器的输入端相连,第一波分复用器的输出端与导光纤维的一端相连,导光纤维的另一端与第二波分复用器的输入端相连,第二波分复用器的输出端与光谱扫描仪的输入端相连。Wherein, the above-mentioned optical fiber unit includes several optical fibers arranged in parallel, and the wavelength division multiplexer includes a first wavelength division multiplexer and a second wavelength division multiplexer; the output end of the multi-wavelength light source is connected to the first wavelength division multiplexer connected to the input end of the device, the output end of the first wavelength division multiplexer is connected to one end of the optical fiber, the other end of the optical fiber is connected to the input end of the second wavelength division multiplexer, and the second wavelength division multiplexer The output of the detector is connected to the input of the spectrum scanner.
可选的,上述监测系统还包括环形器,导光纤维单元包括若干平行设置的导光纤维,多波长光源的输出端与环形器的a端口相连,环形器的b端口与波分复用器相连,波分复用器的另一端与导光纤维相连,环形器的c端口与光谱扫描仪相连。Optionally, the above-mentioned monitoring system also includes a circulator, the optical fiber unit includes several optical fibers arranged in parallel, the output end of the multi-wavelength light source is connected to the a port of the circulator, and the b port of the circulator is connected to the wavelength division multiplexer The other end of the wavelength division multiplexer is connected with the optical fiber, and the c port of the circulator is connected with the spectrum scanner.
监测系统可选用如下四种类型的结构:The monitoring system can choose the following four types of structures:
(1)监测系统包括多波长光源、波分复用器、光谱扫描仪、数据采集与分析单元,且导光纤维呈平行分布的结构;具体光路为:多波长光源的输出接第一波分复用器的输入端,第一波分复用器将多个波长分别分解开来接导光纤维F1~Fm,导光纤维F1~Fm上制作有离散的微结构,各导光纤维的输出接第二波分复用器的输入端口,第二波分复用器的输出端口接光谱扫描仪,光谱扫描仪接数据采集与分析单元。(1) The monitoring system includes a multi-wavelength light source, a wavelength division multiplexer, a spectral scanner, a data acquisition and analysis unit, and the optical fiber is distributed in parallel; the specific optical path is: the output of the multi-wavelength light source is connected to the first wavelength division At the input end of the multiplexer, the first wavelength division multiplexer decomposes multiple wavelengths respectively to connect to the optical fibers F 1 ~F m , and discrete microstructures are made on the optical fibers F 1 ~F m , each The output of the optical fiber is connected to the input port of the second wavelength division multiplexer, the output port of the second wavelength division multiplexer is connected to the spectrum scanner, and the spectrum scanner is connected to the data acquisition and analysis unit.
监测方法具体包括以下步骤:The monitoring method specifically includes the following steps:
步骤1、多波长探测光信号经第一波分复用器解复用分别注入各个导光纤维,各个导光纤维输出的响应光信号经第二波分复用器合波输出至光谱扫描仪;
步骤2、光谱扫描仪对所接收的信号进行处理,分别解析出各波长信号携带的事件信息。如压强、温度、应变、枝晶长度等事件;
步骤3、综合分析多个波长信号的测量结果,确定各事件的发生位置、信号大小、事件所覆盖的区域大小等。
(2)基于第一多波长光源、第一波分复用器、第二波分复用器、第一光谱扫描仪、第二波长光源、第三波分复用器、第四波分复用器、第二光谱扫描仪、数据采集与分析单元且导光纤维呈网格分布的结构;具体光路为:水平方向上,第一多波长光源的输出接第一波分复用器的输入端,第一波分复用器将多个波长分别分解开来接导光纤维 F1~Fm,导光纤维F1~Fm上制作有离散的微结构,各导光纤维的输出接第二波分复用器的输入端口,第二波分复用器的输出端口接第一光谱扫描仪;竖直方向上:第二多波长光源的输出接第三波分复用器的输入端,第三波分复用器将多个波长分别分解开来接导光纤维F1~Fn,导光纤维F1~Fn上制作有离散的微结构,各导光纤维的输出接第四波分复用器的输入端口,第四波分复用器的输出端口接第二光谱扫描仪,第一光谱扫描仪和第二光谱扫描仪均接数据采集与分析单元。水平方向和竖直方向的导光纤维呈网格型分布。(2) Based on the first multi-wavelength light source, the first wavelength division multiplexer, the second wavelength division multiplexer, the first spectral scanner, the second wavelength light source, the third wavelength division multiplexer, and the fourth wavelength division multiplexer A user, a second spectrum scanner, a data acquisition and analysis unit, and a structure in which the optical fiber is distributed in a grid; the specific optical path is: in the horizontal direction, the output of the first multi-wavelength light source is connected to the input of the first wavelength division multiplexer At the end, the first wavelength division multiplexer decomposes multiple wavelengths to connect to the optical fibers F 1 ~F m . Discrete microstructures are made on the optical fibers F 1 ~F m , and the output of each optical fiber Connect the input port of the second wavelength division multiplexer, the output port of the second wavelength division multiplexer is connected to the first spectrum scanner; on the vertical direction: the output of the second multi-wavelength light source is connected to the third wavelength division multiplexer At the input end, the third wavelength division multiplexer decomposes multiple wavelengths respectively to connect to the optical fibers F 1 ~ F n . Discrete microstructures are made on the optical fibers F 1 ~ F n , and each optical fiber The output is connected to the input port of the fourth wavelength division multiplexer, the output port of the fourth wavelength division multiplexer is connected to the second spectrum scanner, and both the first spectrum scanner and the second spectrum scanner are connected to the data acquisition and analysis unit. The light guide fibers in the horizontal and vertical directions are distributed in a grid pattern.
(3)基于多波长光源、环形器、波分复用器、光谱扫描仪、数据采集与分析单元的结构;具体光路为:多波长光源的输出接环形器a端口,环形器b端口接波分复用器的输入端,波分复用器将多个波长分别分解开来接导光纤维F1~Fm,导光纤维F1~Fm上制作有离散的微结构,环形器c端口接光谱扫描仪,光谱扫描仪接数据采集与分析单元。(3) Based on the structure of multi-wavelength light source, circulator, wavelength division multiplexer, spectral scanner, and data acquisition and analysis unit; the specific optical path is: the output of the multi-wavelength light source is connected to the a port of the circulator, and the b port of the circulator is connected to the wave The input end of the division multiplexer, the wavelength division multiplexer decomposes multiple wavelengths to connect to the optical fiber F 1 ~F m , and the optical fiber F 1 ~F m is made with discrete microstructures, and the circulator The c port is connected to the spectrum scanner, and the spectrum scanner is connected to the data acquisition and analysis unit.
(4)系统结构包括第一多波长光源、第一环形器、第一波分复用器、第一光谱扫描仪、第二多波长光源、第二环形器、第二波分复用器、第二光谱扫描仪、数据采集与分析单元的结构,具体光路为:第一多波长光源的输出接第一环形器a端口,第一环形器b 端口接第一波分复用器的输入端,第一波分复用器将多个波长分别分解开来接导光纤维 F1~Fm,导光纤维F1~Fm上制作有离散的微结构,第一环形器c端口接第一光谱扫描仪;第二多波长光源的输出接第二环形器a端口,第二环形器b端口接第二波分复用器的输入端,第二波分复用器将多个波长分别分解开来接导光纤维F1~Fn,导光纤维F1~Fn上制作有离散的微结构,第二环形器c端口接第二光谱扫描仪;第一光谱扫描仪和第二光谱扫描仪同时接数据采集与分析单元。水平方向和竖直方向的导光纤维呈网格型分布。(4) The system structure includes a first multi-wavelength light source, a first circulator, a first wavelength division multiplexer, a first spectral scanner, a second multi-wavelength light source, a second circulator, a second wavelength division multiplexer, The structure of the second spectral scanner, data acquisition and analysis unit, the specific optical path is: the output of the first multi-wavelength light source is connected to the a port of the first circulator, and the b port of the first circulator is connected to the input end of the first wavelength division multiplexer , the first wavelength division multiplexer decomposes multiple wavelengths to connect to the optical fibers F 1 ~F m , and discrete microstructures are made on the optical fibers F 1 ~F m , and the c-port of the first circulator is connected to The first spectral scanner; the output of the second multi-wavelength light source is connected to the a port of the second circulator, and the b port of the second circulator is connected to the input end of the second wavelength division multiplexer, and the second wavelength division multiplexer combines multiple wavelengths Disassembled to connect to the optical fibers F 1 ~ F n respectively, discrete microstructures are made on the optical fibers F 1 ~ F n , the c port of the second circulator is connected to the second spectrum scanner; the first spectrum scanner and The second spectrum scanner is simultaneously connected to the data acquisition and analysis unit. The light guide fibers in the horizontal and vertical directions are distributed in a grid pattern.
其中,数据采集与分析单元,可根据各波长信号的强度变化判断导光纤维周围折射率的变化,确定枝晶生长的厚度,同时可根据波长的漂移量判断压强和温度的变化;并可通过综合分析多根导光纤维的测量结果,对各测量信号进行分辨,可确认信号类型,如压强、温度或枝晶等,同时可实时且分布式的监测电池内部的工作过程。Among them, the data acquisition and analysis unit can judge the change of the refractive index around the optical fiber according to the intensity change of each wavelength signal, determine the thickness of the dendrite growth, and judge the change of pressure and temperature according to the drift of the wavelength; and can pass Comprehensively analyze the measurement results of multiple optical fibers, distinguish each measurement signal, and confirm the signal type, such as pressure, temperature, or dendrite, and monitor the internal working process of the battery in real time and in a distributed manner.
本发明还提供了上述电池监测系统的监测方法,包括以下步骤:The present invention also provides a monitoring method for the above-mentioned battery monitoring system, comprising the following steps:
(1)将导光纤维单元设置于电池的隔膜区域或嵌入隔膜内部,导光纤维输出至光谱扫描仪;(1) The optical fiber unit is arranged in the diaphragm area of the battery or embedded inside the diaphragm, and the optical fiber is output to the spectrum scanner;
(2)光谱扫描仪对接收的每个响应光信号进行处理,分别解析出各波长信号携带的事件信息;(2) The spectrum scanner processes each received response optical signal, and separately analyzes the event information carried by each wavelength signal;
(3)将多根导光纤维的响应光信号进行对比分析,确定各事件的发生位置、事件所覆盖的区域大小。(3) Comparatively analyze the response optical signals of multiple optical fibers to determine the location where each event occurs and the size of the area covered by the event.
优选地,根据各波长响应光信号的强度变化得到导光纤维周围折射率的变化,确定枝晶生长的厚度;根据波长的漂移量得到压强和温度的变化。并可通过综合分析多根导光纤维的测量结果,对各测量信号进行分辨,可确认信号类型,如压强、温度或枝晶等,同时可实时且分布式的监测电池内部的工作过程。Preferably, the change of the refractive index around the optical fiber is obtained according to the change of the intensity of the optical signal in response to each wavelength, and the thickness of the dendrite growth is determined; the change of pressure and temperature is obtained according to the shift of the wavelength. And by comprehensively analyzing the measurement results of multiple optical fibers, each measurement signal can be distinguished, and the signal type can be confirmed, such as pressure, temperature or dendrite, etc. At the same time, the internal working process of the battery can be monitored in real time and distributed.
本发明利用多波长光源、波分复用器、并行排列或交叉分布的多根导光纤维、环形器及以上器件所涉及的相关光电配件,可实现电池内部工作状态实时监测,可及时给出预警信号。本发明所设计的传感系统可嵌入电池隔膜,提高电池监测的空间分辨率,更全面的监测电池内部的温度、压强、应变、枝晶生长过程等多种待测参量。The present invention utilizes a multi-wavelength light source, a wavelength division multiplexer, a plurality of optical fibers arranged in parallel or intersecting, a circulator, and related optoelectronic accessories involved in the above devices, to realize real-time monitoring of the internal working state of the battery, and to timely provide warning sign. The sensing system designed in the present invention can be embedded in the battery diaphragm, improve the spatial resolution of battery monitoring, and more comprehensively monitor various parameters to be measured, such as temperature, pressure, strain, and dendrite growth process inside the battery.
本发明将导光纤维传感技术应用于电池的监测预警上,是一种基于波分利用技术的导光纤维传感系统在电池安全监测,通过在隔膜处嵌入传感系统,以实现电池内部原位监测。本发明的技术难点在于电池内部的原位监测,需要在不影响电池效率的情况下,实时反馈电池内部的数据,电池本身是密封结构,不易植入传感器,若植入传感器会影响电池本身的性能。本发明采用的微纳导光纤维具有体积小、质量轻、无源、抗电磁干扰等特点,如将其嵌入电池隔膜对电池效率影响非常弱,并且微纳导光纤维对周围折射率变化响应非常灵敏,非常适用于嵌入隔膜实现电池的安全预警。因此,本发明创新性地提出将微纳导光纤维编制成井字形网络,嵌入隔膜,再使用波分复用技术对电池隔膜进行原位监测,以实现电池安全预警。In the present invention, the optical fiber sensing technology is applied to the monitoring and early warning of the battery. It is a kind of optical fiber sensing system based on the wavelength division utilization technology to monitor the safety of the battery. In situ monitoring. The technical difficulty of the present invention lies in the in-situ monitoring of the inside of the battery. It is necessary to feed back the data inside the battery in real time without affecting the efficiency of the battery. The battery itself is a sealed structure, and it is not easy to implant sensors. performance. The micro-nano optical fiber used in the present invention has the characteristics of small size, light weight, passive, and anti-electromagnetic interference. If it is embedded in the battery separator, the effect on battery efficiency is very weak, and the micro-nano optical fiber responds to changes in the surrounding refractive index. Very sensitive, very suitable for embedding the separator to realize the safety warning of the battery. Therefore, the present invention innovatively proposes to weave the micro-nano optical fiber into a well-shaped network, embed it in the diaphragm, and then use wavelength division multiplexing technology to monitor the battery diaphragm in situ to realize battery safety warning.
有益效果:Beneficial effect:
本发明将微纳光纤探测技术引入电池安全预警领域,实现电池内部压强、温度、应变、枝晶生长过程等多个参量的原位监测。本发明提出的特殊结构形式决定了其可实现电池内部的全分布式测量,并且不影响隔膜自身的离子穿透功能。The invention introduces the micro-nano optical fiber detection technology into the field of battery safety early warning, and realizes in-situ monitoring of multiple parameters such as internal pressure, temperature, strain, and dendrite growth process of the battery. The special structural form proposed by the present invention determines that it can realize fully distributed measurement inside the battery without affecting the ion penetration function of the diaphragm itself.
本发明系统使用多波长光源,光源的多波长信号被波分复用器分解开来并分别耦合到多根导光纤维,以便将各个波长的信号分别用于安全预警监测。将该系统嵌入电池隔膜,这一方案可提高隔膜监测的空间分辨率,更全面的监测电池内部的工作过程。本发明在电池安全预警中具有重大意义。The system of the invention uses a multi-wavelength light source, and the multi-wavelength signals of the light source are decomposed by a wavelength division multiplexer and coupled to a plurality of optical fibers, so that the signals of each wavelength are used for safety early warning and monitoring. The system is embedded in the battery diaphragm, which can improve the spatial resolution of diaphragm monitoring and more comprehensively monitor the working process inside the battery. The invention has great significance in battery safety early warning.
附图说明Description of drawings
图1是导光纤维呈平行分布的波分复用传感系统结构图。Figure 1 is a structural diagram of a wavelength division multiplexing sensing system in which optical fibers are distributed in parallel.
图2是导光纤维呈网格型分布的波分复用传感系统结构图。Fig. 2 is a structural diagram of a wavelength division multiplexing sensing system in which optical fibers are distributed in a grid pattern.
图3是单端探测式导光纤维呈平行分布的波分复用传感系统结构图。Fig. 3 is a structural diagram of a wavelength division multiplexing sensing system in which single-ended detection optical fibers are distributed in parallel.
图4是单端探测式导光纤维呈网格型分布的波分复用传感系统结构图。Fig. 4 is a structural diagram of a wavelength division multiplexing sensing system in which single-ended detection optical fibers are distributed in a grid pattern.
具体实施方式detailed description
下面结合实施例对本发明进一步地详细描述。The present invention will be further described in detail below in conjunction with the examples.
以下实施例中所用导光纤维的的直径小于125微米,所用多波长光源的波长范围在260nm-4000nm之间。The diameter of the optical fiber used in the following embodiments is less than 125 microns, and the wavelength range of the multi-wavelength light source used is between 260nm-4000nm.
实施例1:Example 1:
本实施例的监测系统适用于电池原位监测,如图1所示,本实施例的监测系统包括多波长光源1、波分复用器2、导光纤维单元3、波分复用器4、光谱扫描仪5、数据采集与分析单元6,导光纤维单元3包括m个平行排列的导光纤维,m为正整数。The monitoring system of this embodiment is suitable for in-situ monitoring of batteries. As shown in Figure 1, the monitoring system of this embodiment includes a multi-wavelength
本实施例采用波分复用传感系统,系统光路连接方式如下:多波长光源1的输出接波分复用器2的输入端,波分复用器2将多个波长分别分解开连接导光纤维3(F1~Fm),导光纤维3(F1~Fm)上制作有离散的微结构,各导光纤维的输出接波分复用器4的输入端口,波分复用器4的输出端口接光谱扫描仪5,光谱扫描仪5接数据采集与分析单元6,具体光路如图1所示。This embodiment adopts the wavelength division multiplexing sensing system, and the optical path connection mode of the system is as follows: the output of the multi-wavelength
具体的监测过程包括如下步骤:The specific monitoring process includes the following steps:
步骤1、多波长光源1输出的含多个波长的光信号被波分复用器1分别后分别导入各个导光纤维3,导光纤维输出的含有传感信息的信号输出到波分复用器4,波分复用器4将各个导光纤维的传感信息汇总到光谱扫描仪5,最后,光谱扫描仪5将信号送入数据采集与分析单元6进行处理分析;
步骤2、数据采集与分析单元6可一方面根据各波长信号的强度变化判断导光纤维周围折射率的变化,近而确定枝晶生长的高度,另一方面根据波长的漂移量判断压强和温度的变化。
步骤3、综合多根导光纤维的测量结果,对各测量信号进行分辨出信号点(压强、温度或枝晶)所处的位置,可实时且分布式的监测电池内部的工作过程。
实施例2:Example 2:
如图2所示,本实施例的监测系统包括第一多波长光源7、第一波分复用器8、第一导光纤维单元9、第二波分复用器10、第一光谱扫描仪11、第二多波长光源12、第三波分复用器13、第二导光纤维单元14、第四波分复用器15、第二光谱扫描仪16、数据采集与分析单元17。第一导光纤维单元9包括m根沿水平方向平行排列的导光纤维,第二导光纤维单元14包括n根沿竖直方向平行排列的导光纤维,m、n为正整数。As shown in Figure 2, the monitoring system of this embodiment includes a first multi-wavelength
本实施例用于传感时的系统光路连接方式如下:The connection mode of the system optical path for sensing in this embodiment is as follows:
水平方向上,第一多波长光源7的输出端接第一波分复用器8的输入端,第二波分复用器10将多个波长分别分解开来接导光纤维9(F1~Fm),导光纤维(F1~Fm)上制作有离散的微结构,各导光纤维F1~Fm的输出接第二波分复用器10的输入端口,第二波分复用器10的输出端口接第一光谱扫描仪11,第一光谱扫描仪11接数据采集与分析单元17。In the horizontal direction, the output terminal of the first multi-wavelength
竖直方向上:第二多波长光源12的输出接第三波分复用器13的输入端,第三波分复用器13将多个波长分别分解开来接导光纤维14(F1~Fn),导光纤维14(F1~Fn)上制作有离散的微结构,各导光纤维(F1~Fn)的输出接第四波分复用器15的输入端口,第四波分复用器15的输出端口接第二光谱扫描仪16,第二光谱扫描仪16接数据采集与分析单元17,具体光路如图2所示。水平方向和竖直方向的导光纤维呈网格型分布。In the vertical direction: the output of the second multi-wavelength
传感过程步骤如下:The sensing process steps are as follows:
步骤1、水平方向上:第一多波长光源7输出的含多个波长的光信号被第一波分复用器8分别后分别导入各个导光纤维9(F1~Fm),导光纤维9(F1~Fm)输出的含有传感信息的信号输出到第二波分复用器10,第二波分复用器10将各个导光纤维的传感信息汇总到光谱扫描仪11;第二多波长光源12输出的含多个波长的光信号被第三波分复用器13 分别后分别导入各个导光纤维14(F1~Fn),导光纤维14(F1~Fn)输出的含有传感信息的信号输出到第四波分复用器15,第四波分复用器15将各个导光纤维的传感信息汇总到第二光谱扫描仪16;最后,第一光谱扫描仪11和第二光谱扫描仪16同时将信号送入数据采集与分析单元17进行处理分析。
步骤2、数据采集与分析单元17可一方面根据各波长信号的强度变化判断导光纤维周围折射率的变化,近而确定枝晶生长的高度,另一方面根据波长的漂移量判断压强和温度的变化。
步骤3、综合多根导光纤维的测量结果,对各测量信号进行分辨出信号点(压强、温度或枝晶)所处的位置,可实时且分布式的监测电池内部的工作过程。
实施例3:Example 3:
本案例的系统结构包括第三多波长光源18、第一环形器19、第五波分复用器20、第三导光纤维单元21、第三光谱扫描仪22、数据采集与分析单元23。第三导光纤维单元包括m根沿水平方向平行排列的导光纤维。The system structure of this case includes a third multi-wavelength
本案例用于传感时的具体实施步骤如下:The specific implementation steps of this case for sensing are as follows:
系统光路连接方式如下:第三多波长光源18的输出接第一环形器19的a端口,环形器 19的b端口接第五波分复用器20的输入端,第五波分复用器20将多个波长分别分解开来接导光纤维21(F1~Fm),导光纤维21(F1~Fm)上制作有离散的微结构,环形器19的c端口接第三光谱扫描仪22,第三光谱扫描仪22接数据采集与分析单元23,具体光路如图3 所示。The system optical path connection mode is as follows: the output of the third multi-wavelength
传感过程步骤如下:The sensing process steps are as follows:
步骤1、第三多波长光源18输出的含多个波长的光信号送到环形器19的a端口,信号经环形器19的b端口被第五波分复用器20分解后分别导入各个导光纤维21(F1~Fm),各导光纤维(F1~Fm)内部的背向反射/散射信号经环形器19的b、c端口输出到光谱扫描仪22,最后,光谱扫描仪22将信号送入数据采集与分析单元23进行处理分析;
步骤2、数据采集与分析单元23可一方面根据各波长信号的强度变化判断导光纤维周围折射率的变化,近而确定枝晶生长的高度,另一方面根据波长的漂移量判断压强和温度的变化。
步骤3、利用光时域反射技术,综合多根导光纤维的测量结果,对各测量信号进行分辨出信号点(压强、温度或枝晶)所处的位置,可实时且分布式的监测电池内部的工作过程。
实施例4:Example 4:
本实施例的系统结构包括第四多波长光源24、第二环形器25、第六波分复用器26、第四导光纤维单元27、第四光谱扫描仪28、第五多波长光源29、第三环形器30、第七波分复用器31、第五导光纤维单元32、第五光谱扫描仪33、数据采集与分析单元34。第四导光纤维单元27包括m根沿水平方向平行排列的导光纤维,第五导光纤维单元32 包括n根沿竖直方向平行排列的导光纤维。The system structure of this embodiment includes a fourth multi-wavelength
本案例用于传感时的具体实施步骤如下:The specific implementation steps of this case for sensing are as follows:
系统光路连接方式如下:第四多波长光源24的输出接第二环形器25的a端口,第二环形器25的b端口接第六波分复用器26的输入端,第六波分复用器26将多个波长分别分解开来接导光纤维27(F1~Fm),导光纤维27(F1~Fm)上制作有离散的微结构,第二环形器25的c端口接第四光谱扫描仪28;第五多波长光源29的输出接环形器30的a端口,第三环形器30的b端口接波分复用器31的输入端,第七波分复用器31将多个波长分别分解开来接导光纤维32(F1~Fn),导光纤维32(F1~Fn)上制作有离散的微结构,第三环形器30的c 端口接第五光谱扫描仪33;第四光谱扫描仪28和第五光谱扫描仪33同时接数据采集与分析单元34,具体光路如图4所示。水平方向和竖直方向的导光纤维呈网格型分布。The system optical path connection mode is as follows: the output of the fourth multi-wavelength
传感过程步骤如下:The sensing process steps are as follows:
步骤1、第四多波长光源24输出的含多个波长的光信号送到第二环形器25的a端口,信号经第二环形器25的b端口被第六波分复用器26分解后分别导入各个导光纤维27,各导光纤维内部的背向反射/散射信号经第二环形器25的b、c端口输出到第四光谱扫描仪28;第五多波长光源29输出的含多个波长的光信号送到环形器30的a端口,信号经第三环形器30的b端口被第七波分复用器31分解后分别导入各个导光纤维32(F1~Fn),各导光纤维 32(F1~Fn)内部的背向反射/散射信号经第三环形器30的b、c端口输出到第五光谱扫描仪 33;最后,第四光谱扫描仪28和第五光谱扫描仪33同时将信号送入数据采集与分析单元34进行处理分析;
步骤2、数据采集与分析单元34可一方面根据各波长信号的强度变化判断导光纤维周围折射率的变化,近而确定枝晶生长的高度,另一方面根据波长的漂移量判断压强和温度的变化。
步骤3、利用光时域反射技术,综合多根导光纤维的测量结果,对各测量信号进行分辨出信号点(压强、温度或枝晶)所处的位置,可实时且分布式的监测电池内部的工作过程。
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110182616.5A CN113078375B (en) | 2021-02-09 | 2021-02-09 | Battery monitoring system and monitoring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110182616.5A CN113078375B (en) | 2021-02-09 | 2021-02-09 | Battery monitoring system and monitoring method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113078375A CN113078375A (en) | 2021-07-06 |
CN113078375B true CN113078375B (en) | 2022-12-27 |
Family
ID=76609566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110182616.5A Active CN113078375B (en) | 2021-02-09 | 2021-02-09 | Battery monitoring system and monitoring method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113078375B (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201885826U (en) * | 2010-11-18 | 2011-06-29 | 山东省科学院激光研究所 | Electromechanical equipment optical fiber online monitoring system |
CN103969217A (en) * | 2014-05-06 | 2014-08-06 | 中国工程物理研究院流体物理研究所 | Wavelength division multiplexing optical fiber hydrogen sensing system capable of achieving multi-point monitoring |
CN204718707U (en) * | 2015-06-10 | 2015-10-21 | 贵州电网公司信息通信分公司 | A kind of distributed fiber optic temperature alarm |
CN105953919B (en) * | 2016-04-01 | 2018-03-13 | 哈尔滨工程大学 | A kind of all -fiber Fourier spectrum analyzer |
CN111829584B (en) * | 2020-07-06 | 2023-08-01 | 山东省科学院 | Continuous space synchronous monitoring device for ocean temperature and pressure |
CN112054254B (en) * | 2020-08-18 | 2022-02-18 | 暨南大学 | Battery optical fiber in-situ detection system and method |
CN112179519B (en) * | 2020-08-31 | 2022-07-01 | 北京航空航天大学 | Electric vehicle battery temperature monitoring and alarming system and using method thereof |
CN112097971A (en) * | 2020-09-30 | 2020-12-18 | 江苏集萃华科智能装备科技有限公司 | A method and system for in-situ detection of lithium dendrites based on optical fiber sensor |
-
2021
- 2021-02-09 CN CN202110182616.5A patent/CN113078375B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN113078375A (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112054254B (en) | Battery optical fiber in-situ detection system and method | |
KR102172737B1 (en) | Method for monitoring/managing electrochemical energy device by detecting intercalation stage changes | |
CN207095615U (en) | Tunnel monitoring system based on fiber grating | |
JP6414501B2 (en) | Battery management based on internal optical sensing | |
EP3779483A1 (en) | Energy storage device charging state fiber online monitoring system and method | |
Ghannoum et al. | Development of embedded fiber-optic evanescent wave sensors for optical characterization of graphite anodes in lithium-ion batteries | |
Hedman et al. | Fibre Optic Sensor for Characterisation of Lithium‐Ion Batteries | |
Zhang et al. | Health monitoring by optical fiber sensing technology for rechargeable batteries | |
CN114994545A (en) | Hybrid monitoring battery structure health system based on optical fiber SPR and FBG sensors | |
CN115143893A (en) | Method for detecting internal strain in-situ of solid-state lithium battery through fiber grating sensor | |
CN208366796U (en) | Series distributed optical fiber geological stability safety monitoring sensor and system | |
CN113078375B (en) | Battery monitoring system and monitoring method | |
Xue et al. | Operando Battery Monitoring: Lab‐on‐Fiber Electrochemical Sensing Technologies | |
Ghashghaie et al. | Towards long-term monitoring of commercial lithium-ion batteries enabled by externally affixed fiber sensors and strain-based prognostic strategies | |
Liu et al. | Advanced Functional Optical Fiber Sensors for Smart Battery Monitoring | |
Tan et al. | In situ monitoring of cycling characteristics in lithium-ion battery based on a two-cavity cascade fiber-optic Fabry-Perot interferometer | |
CN103604528A (en) | Temperature measurement method and temperature measurement system using optical fiber sensing technology | |
CN206340633U (en) | A kind of automobile batteries device for detecting temperature | |
Huang et al. | Real-time monitoring of internal temperature of a lithium-ion battery using embedded fiber Bragg gratings | |
CN113972413B (en) | Solid-state battery capable of monitoring electrolyte temperature in real time and temperature monitoring method | |
CN117824752A (en) | Lithium-ion battery multi-parameter in-situ detection system and method based on Michelson fiber optic probe | |
CN202869693U (en) | Battery temperature multi-point measuring apparatus | |
EP3517938B1 (en) | Optical detector and method for detection of a chemical compound | |
CN110243548A (en) | A kind of optical cable connecting box infiltration detection system | |
Liu et al. | Simultaneous measurement of temperature and pressure sensing technology based on double cavity matching in batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |