CN113076808A - 一种通过图像算法精准获取双向人流量的方法 - Google Patents
一种通过图像算法精准获取双向人流量的方法 Download PDFInfo
- Publication number
- CN113076808A CN113076808A CN202110261105.2A CN202110261105A CN113076808A CN 113076808 A CN113076808 A CN 113076808A CN 202110261105 A CN202110261105 A CN 202110261105A CN 113076808 A CN113076808 A CN 113076808A
- Authority
- CN
- China
- Prior art keywords
- personnel
- image
- detection
- frame
- detection frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000002457 bidirectional effect Effects 0.000 title claims abstract description 19
- 238000004422 calculation algorithm Methods 0.000 title claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 51
- 238000012549 training Methods 0.000 claims abstract description 13
- 238000012360 testing method Methods 0.000 claims abstract description 7
- 238000005457 optimization Methods 0.000 claims description 13
- 238000009877 rendering Methods 0.000 claims description 7
- 239000013598 vector Substances 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/53—Recognition of crowd images, e.g. recognition of crowd congestion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Multimedia (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110261105.2A CN113076808B (zh) | 2021-03-10 | 2021-03-10 | 一种通过图像算法精准获取双向人流量的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110261105.2A CN113076808B (zh) | 2021-03-10 | 2021-03-10 | 一种通过图像算法精准获取双向人流量的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113076808A true CN113076808A (zh) | 2021-07-06 |
CN113076808B CN113076808B (zh) | 2023-05-26 |
Family
ID=76612329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110261105.2A Active CN113076808B (zh) | 2021-03-10 | 2021-03-10 | 一种通过图像算法精准获取双向人流量的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113076808B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113628165A (zh) * | 2021-07-12 | 2021-11-09 | 杨龙 | 一种牲畜转栏盘点方法、装置及存储介质 |
CN113988111A (zh) * | 2021-12-03 | 2022-01-28 | 深圳佑驾创新科技有限公司 | 公共地点人流量统计方法及计算机可读存储介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110334602A (zh) * | 2019-06-06 | 2019-10-15 | 武汉市公安局视频侦查支队 | 一种基于卷积神经网络的人流量统计方法 |
CN110378931A (zh) * | 2019-07-10 | 2019-10-25 | 成都数之联科技有限公司 | 一种基于多摄像头的行人目标移动轨迹获取方法及系统 |
WO2020155873A1 (zh) * | 2019-02-02 | 2020-08-06 | 福州大学 | 一种基于深度表观特征和自适应聚合网络的多人脸跟踪方法 |
CN111640135A (zh) * | 2020-05-25 | 2020-09-08 | 台州智必安科技有限责任公司 | 一种基于硬件前端的tof摄像头行人计数方法 |
US10867217B1 (en) * | 2017-09-01 | 2020-12-15 | Objectvideo Labs, Llc | Fusion of visual and non-visual information for training deep learning models |
CN112307921A (zh) * | 2020-10-22 | 2021-02-02 | 桂林电子科技大学 | 一种车载端多目标识别跟踪预测方法 |
CN112396658A (zh) * | 2020-11-30 | 2021-02-23 | 同济人工智能研究院(苏州)有限公司 | 一种基于视频的室内人员定位方法及定位系统 |
-
2021
- 2021-03-10 CN CN202110261105.2A patent/CN113076808B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10867217B1 (en) * | 2017-09-01 | 2020-12-15 | Objectvideo Labs, Llc | Fusion of visual and non-visual information for training deep learning models |
WO2020155873A1 (zh) * | 2019-02-02 | 2020-08-06 | 福州大学 | 一种基于深度表观特征和自适应聚合网络的多人脸跟踪方法 |
CN110334602A (zh) * | 2019-06-06 | 2019-10-15 | 武汉市公安局视频侦查支队 | 一种基于卷积神经网络的人流量统计方法 |
CN110378931A (zh) * | 2019-07-10 | 2019-10-25 | 成都数之联科技有限公司 | 一种基于多摄像头的行人目标移动轨迹获取方法及系统 |
CN111640135A (zh) * | 2020-05-25 | 2020-09-08 | 台州智必安科技有限责任公司 | 一种基于硬件前端的tof摄像头行人计数方法 |
CN112307921A (zh) * | 2020-10-22 | 2021-02-02 | 桂林电子科技大学 | 一种车载端多目标识别跟踪预测方法 |
CN112396658A (zh) * | 2020-11-30 | 2021-02-23 | 同济人工智能研究院(苏州)有限公司 | 一种基于视频的室内人员定位方法及定位系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113628165A (zh) * | 2021-07-12 | 2021-11-09 | 杨龙 | 一种牲畜转栏盘点方法、装置及存储介质 |
CN113988111A (zh) * | 2021-12-03 | 2022-01-28 | 深圳佑驾创新科技有限公司 | 公共地点人流量统计方法及计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113076808B (zh) | 2023-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110472531B (zh) | 视频处理方法、装置、电子设备及存储介质 | |
CN110147743B (zh) | 一种复杂场景下的实时在线行人分析与计数系统及方法 | |
Chavdarova et al. | Wildtrack: A multi-camera hd dataset for dense unscripted pedestrian detection | |
CN110070074B (zh) | 一种构建行人检测模型的方法 | |
CN111476827B (zh) | 目标跟踪方法、系统、电子装置及存储介质 | |
CN108764167B (zh) | 一种时空关联的目标重识别方法和系统 | |
CN103164706B (zh) | 基于视频信号分析的对象计数方法与装置 | |
EP3445044A1 (en) | Video recording method, server, system, and storage medium | |
CN112990310A (zh) | 服务于电力机器人的人工智能系统及方法 | |
Ren et al. | A novel squeeze YOLO-based real-time people counting approach | |
CN110633610A (zh) | 一种基于yolo的学员状态检测算法 | |
CN104166841A (zh) | 一种视频监控网络中指定行人或车辆的快速检测识别方法 | |
CN110781964A (zh) | 一种基于视频图像的人体目标检测方法及系统 | |
CN113592905B (zh) | 基于单目摄像头的车辆行驶轨迹预测方法 | |
CN113076808A (zh) | 一种通过图像算法精准获取双向人流量的方法 | |
CN111079507B (zh) | 一种行为识别方法及装置、计算机装置及可读存储介质 | |
Fan et al. | Real time power equipment meter recognition based on deep learning | |
CN116229052B (zh) | 一种基于孪生网络的变电站设备状态变化检测方法 | |
WO2008139399A2 (en) | Method of determining motion-related features and method of performing motion classification | |
CN113781519A (zh) | 目标跟踪方法和目标跟踪装置 | |
CN110610210A (zh) | 一种多目标检测方法 | |
CN116027743A (zh) | 一种生产线的智能监控方法、装置及系统 | |
Bai et al. | Automated construction site monitoring based on improved YOLOv8-seg instance segmentation algorithm | |
CN110503014B (zh) | 基于多尺度掩码感知回馈卷积神经网络的人数统计方法 | |
CN112183431A (zh) | 实时行人数量统计方法、装置、相机和服务器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 266103 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao Applicant after: Hainayun IOT Technology Co.,Ltd. Address before: 266103 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao Applicant before: Qingdao hainayun Technology Holding Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230511 Address after: 266100 Haier Industrial Park, No. 1 Haier Road, Laoshan District, Qingdao, Shandong Applicant after: Hainayun IOT Technology Co.,Ltd. Applicant after: Qingdao hainayun Intelligent System Co.,Ltd. Applicant after: Qingdao hainayun Digital Technology Co.,Ltd. Address before: 266103 Haier Industrial Park, 1 Haier Road, Laoshan District, Shandong, Qingdao Applicant before: Hainayun IOT Technology Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |