CN113072645A - Cancer vaccine targeting EphA2 antigen - Google Patents

Cancer vaccine targeting EphA2 antigen Download PDF

Info

Publication number
CN113072645A
CN113072645A CN202110624607.7A CN202110624607A CN113072645A CN 113072645 A CN113072645 A CN 113072645A CN 202110624607 A CN202110624607 A CN 202110624607A CN 113072645 A CN113072645 A CN 113072645A
Authority
CN
China
Prior art keywords
val
gly
leu
ser
ala
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110624607.7A
Other languages
Chinese (zh)
Inventor
孙忠杰
齐海龙
赵宏
陈立功
谢皇帆
刘德芳
王晓芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Newish Technology Beijing Co Ltd
Original Assignee
Nuowei Technology Beijing Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuowei Technology Beijing Co ltd filed Critical Nuowei Technology Beijing Co ltd
Priority to CN202110624607.7A priority Critical patent/CN113072645A/en
Publication of CN113072645A publication Critical patent/CN113072645A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/521Chemokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001116Receptors for cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies

Abstract

The present invention relates to the field of immunotherapy and prevention of cancer, in particular to a tumor vaccine targeting EPHA 2. The invention improves the efficiency of the EPHA2 protein phagocytosis, processing and presentation by DC cells and improves the effect of inhibiting the tumor growth by fusing and expressing the EPHA2 protein and the DC cell ligand XCL 1. Experiments prove that the protein expressed by the nucleic acid vaccine can effectively induce an EPHA2 specific T cell response and obviously inhibit the growth of a tumor with high expression of EPHA2 in an animal tumor model.

Description

Cancer vaccine targeting EphA2 antigen
Technical Field
The invention relates to the technical field of immunotherapy, and particularly relates to an antigen vaccine targeting EphA2 and a preparation method thereof.
Background
Cancer is a major public health problem worldwide, and the incidence rate thereof is increasing, and by 2025, there are 4.2 billion new cancer cases each year around the world. Despite the great progress made in the clinical treatment of cancer, millions of people die from cancer every year worldwide, and improvements in cancer treatment remain elusive.
EphA2 is abundantly expressed in a variety of cancers, such as prostate, lung, oesophageal, colorectal, cervical, ovarian, breast and skin cancers, but is relatively poorly expressed in most normal adult tissues, and thus EphA2 is an ideal potential therapeutic target for cancer. The EphA2 receptor is a 130 kDa transmembrane glycoprotein, and EphA2-ephrin A1 signaling plays an important role in tumorigenesis. Furthermore, expression of EphA2 is associated with poor prognosis, increased metastatic potential and decreased survival in tumor patients. The mechanism of action of EphA2 has become clear after more than 30 years of research, and some drugs targeting EphA2 have been used in clinical studies of cancer treatment. Current treatments for EphA2 are: reducing EphA2 expression, promoting EphA2 degradation, blocking endogenous EphA2 activation, EphA2 as a drug delivery target, EphA 2-based immunotherapy and EphA 2-based combination therapy. Among them, immunotherapy against tumor cells by means of enhancing the immune defenses of patients has become a promising new therapy in the treatment of cancer. For example, when an animal model of colorectal cancer is immunized with a Dendritic Cell (DC) carrying an EphA 2-derived short peptide, the activity and antitumor activity of EphA 2-specific cytotoxic T Cell (CTL) can be improved; adoptive infusion of EphA 2-specific T cells killed EphA 2-positive tumor cells and inhibited the development of lung cancer in vivo. Although the above therapies are capable of activating anti-tumor immune responses, their efficacy is limited and insufficient to provide effective anti-tumor protection.
Most immunotherapeutic approaches rely on mature DCs presenting tumor-associated antigens for CTL activation. Among them, conventional DC of type I (convental DC1, cDC 1) can take up antigen from dead cells by cross-presentation and present it via MHC-I molecules, thereby activating and amplifying specific CTLs. CD103+ DC1 is a very important cDC1, which has migratory capacity, carries tumor antigens to the draining lymph nodes for cross presentation, and expresses XCL1 receptor (XCR1) on its surface, which is attracted to XCL1 molecule. Therefore, the fusion of EphA2 protein with XCL1 can increase the contact of CD103+ DC and EphA2 antigen, thereby enhancing the antigen presentation and immune activation of cDC1 to natural killer cells (NK) and CD8+ CTL, enhancing immune response and providing more effective anti-tumor protection.
Disclosure of Invention
In view of the above, the present invention provides a novel antigen vaccine targeting EPHA2 and a preparation method thereof; specifically, the invention provides a nucleic acid and protein vaccine targeting EPHA2, which improves the phagocytosis and presentation efficiency of the EPHA2 protein by DC, enhances the specific CD8+ CTL response of EPHA2 and improves the inhibition effect of tumors highly expressing EPHA2 by fusing and expressing cDC1 ligand XCL1 and EPHA2 protein.
The invention provides a fusion protein comprising the amino acid sequence of the extracellular region of EPHA2 capable of eliciting a specific CD8+ T response or an optimized form of its mhc class i molecule binding epitope; a joint; and human or murine XCL1 protein that specifically binds DC cells with cross-antigen presentation capability;
wherein:
the extracellular region of EPHA2 capable of inducing a specific CD8+ T response or an optimized form of its MHC class I molecule binding epitope has an amino acid sequence as shown in SEQ ID No.1 or 2; the human or mouse XCL1 specifically binding DC cells with antigen cross-presentation capability is shown as SEQ ID No.3 or 4;
or
(II) an amino acid sequence obtained by substituting, deleting or adding one or two amino acid residues in the amino acid sequence shown in the (I), and the amino acid sequence has the same or similar functions with the amino acid sequence shown in the (I);
or
(III) an amino acid sequence which has at least 90% sequence identity with the sequence of (I) or (II) and which is functionally identical or similar to the amino acid sequence of (I).
In some embodiments of the invention, the fusion protein comprises an amino acid sequence as shown in SEQ ID No.9 or SEQ ID No. 10.
Based on the above, the present invention also provides a nucleic acid molecule encoding the fusion protein, wherein the nucleic acid molecule comprises DNA and/or mRNA, and the sequence of the nucleic acid molecule has:
(I) a nucleotide sequence as shown in any of SEQ ID Nos. 17-32;
or
(II) as shown in the complementary nucleotide sequence of the nucleotide sequence shown in any SEQ ID No. 15-30; or
(III) as represented by a nucleotide sequence which encodes the same protein as the nucleotide sequence of (I) or (II) but differs from the nucleotide sequence of (I) or (II) due to the degeneracy of the genetic code;
or
(IV) a nucleotide sequence obtained by substituting, deleting or adding one or two nucleotide sequences with the nucleotide sequence shown in the (I), (II) or (III), and the nucleotide sequence has the same or similar functions with the nucleotide sequence shown in the (I), (II) or (III);
or
(V) a nucleotide sequence having at least 90% sequence identity to the nucleotide sequence of (I), (II), (III) or (IV).
The invention also provides a recombinant expression vector, which comprises a vector and the fusion protein or the nucleic acid molecule.
In some embodiments of the invention, the vector comprises pcDNA3.1(+), pcDNA3.1(-), pFastbac1-dual-MBP, pVAX 1.
The invention also provides a recombinant strain or cell comprising said fusion protein or said nucleic acid molecule.
The invention also provides application of the fusion protein, the nucleic acid molecule, the recombinant expression vector or the recombinant strain or cell in preparation of a vaccine for a tumor with high expression of EPHA2 and/or in preparation of a medicament for preventing and/or treating the tumor with high expression of EPHA 2.
In some embodiments of the invention, the metastatic cancer comprises a tumor that highly expresses EPHA2, including prostate cancer, lung cancer, esophageal cancer, colorectal cancer, cervical cancer, ovarian cancer, breast cancer, and skin cancer.
The invention also provides a tumor vaccine targeting EPHA2, which comprises the fusion protein, the nucleic acid molecule, the recombinant expression vector or the recombinant strain or cell and a pharmaceutically acceptable carrier, excipient and/or adjuvant.
The invention also provides a medicament for preventing and/or treating tumors with high expression of EPHA2, which comprises the fusion protein, the nucleic acid molecule, the recombinant expression vector or the recombinant strain or cell and pharmaceutically acceptable auxiliary materials.
The invention provides a tumor vaccine targeting EPHA2, which consists of an amino acid sequence of an extracellular region of EPHA2 and human or mouse XCL1 protein of which the N end is fused and expressed by a linker and is specifically combined with DC cells with antigen cross presentation capacity, nucleic acid containing the fusion protein and a carrier containing the nucleic acid, and application of the fusion protein, the nucleic acid and the carrier in preventing and treating tumors with high expression of EPHA 2. The invention improves the efficiency of the EPHA2 protein phagocytosis, processing and presentation by DC cells and improves the effect of inhibiting the tumor growth by fusing and expressing the EPHA2 protein and the DC cell ligand XCL 1. Experiments prove that the protein expressed by the nucleic acid vaccine can effectively induce an EPHA2 specific T cell response and obviously inhibit the growth of a tumor with high expression of EPHA2 in a tumor animal model.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below.
FIG. 1 shows a map of a vector encoding a fusion protein nucleotide; wherein FIG. 1A shows the CMV promoter followed by the XCL1 secretion signal peptide and then the EPHA2 extracellular region of the nucleic acid vaccine coding sequence; FIG. 1B shows the coding sequence for a nucleic acid vaccine with the CMV promoter followed by the XCL1 sequence and then linked to the extracellular region of EPHA 2;
FIG. 2 is a graph showing the results of prediction of the three-dimensional structure of a fusion protein; inputting a nucleotide sequence for coding the fusion protein into http:// raptorx. uchicago. edu/website to predict the three-dimensional spatial structure of the fusion protein, and the spatial structure diagram of the XCL1-EPHA2 fusion protein is shown;
FIG. 3 shows the detection of expression of a nucleic acid encoding a fusion protein in HEK293T cells; transfecting HEK292T cells by a plasmid vector carrying nucleic acid for encoding the fusion protein for 48 hours, and detecting the expression condition of the fusion protein encoding nucleotide with Flag tag at the C end by using a western blot technology (Westernblot);
FIG. 4 is a graph showing the ratio of EPHA2 specific tetramer + CD8a + T cells in peripheral blood of mice immunized with the fusion gene encoding the extracellular domain of EPHA2 or the XCL1-EPHA2 fusion protein;
FIG. 5 shows the growth of mouse Hepa1-6 after immunization of mice with the fusion gene encoding the extracellular domain of EPHA2 or the XCL1-EPHA2 fusion protein; FIG. 5A shows a diagram of the immunization method and the immunization process of the fusion gene; FIG. 5B shows a tumor growth plot of tumor volume measurements taken after inoculation with Hepa 1-6.
Detailed Description
The invention discloses a tumor vaccine targeting EPHA2, which can be realized by appropriately modifying process parameters by the skilled person with reference to the content in the specification. It is expressly intended that all such similar substitutes and modifications which would be obvious to one skilled in the art are deemed to be included in the invention. While the methods and applications of this invention have been described in terms of preferred embodiments, it will be apparent to those of ordinary skill in the art that variations and modifications in the methods and applications described herein, as well as other suitable variations and combinations, may be made to implement and use the techniques of this invention without departing from the spirit and scope of the invention.
The invention adopts the amino acid sequence of the EPHA2 extracellular region as immunogen to facilitate the purification of soluble protein vaccine, the vaccine of the invention can effectively induce specific T cell immunoreaction aiming at EPHA2 in mice or human bodies, and breaks the immune tolerance of the original tumor-associated antigen EPHA2, thereby effectively playing a role of directly eliminating tumor cells expressing EPHA2, and inhibiting the growth of tumor.
The invention relates to a fusion protein vaccine of a tumor highly expressing EPHA2, which consists of 1) an amino acid sequence of an EPHA2 extracellular region and 2) human or mouse XCL1 protein of which the N end is fused and expressed by a linker and is specifically combined with DC cells with antigen cross presentation capacity. For example, mouse or human EPHA2, which is composed of the sequences shown in SEQ ID No.1 and SEQ ID No.2, and whose N-terminal is fused by a linker to express human or mouse XCL1 that specifically binds to DC cells having antigen cross-presenting ability, and is composed of the sequences shown in amino acids 1 to 114 of SEQ ID No.3 and SEQ ID No. 4.
In some embodiments, the vaccine for a tumor that highly expresses EPHA2 comprises any of SEQ ID No.9 and SEQ ID No. 10.
Another aspect of the invention relates to a nucleic acid encoding the fusion protein vaccine, which consists of 1) the amino acid sequence of the extracellular domain of EPHA2, and 2) a nucleotide sequence of human or murine XCL1 protein, which expresses specific binding to DC cells having cross-antigen presenting ability at the N-terminus by linker fusion. Namely, the amino acid sequences shown in SEQ ID No.1 and SEQ ID No.2 and the human or mouse XCL1 sequence which is specifically combined with DC cells with antigen cross-presentation capacity, namely the amino acid sequences from 1 to 114 in SEQ ID No.3 and SEQ ID No. 4.
In some embodiments, the amino acid sequence encoding the extracellular region of EPHA2 and the sequence of human or murine XCL1 that specifically binds DC cells with cross-antigen presentation capability comprise the nucleotide sequences of SEQ ID No.23 and SEQ ID No. 24.
The invention also provides a recombinant expression vector loaded with the nucleic acid vaccine, which comprises the fusion protein vaccine and the nucleotide sequence and the vector of the corresponding nucleic acid vaccine. The vector can be a mammalian cell expression vector or an insect rod cell expression vector, and concretely can be pcDNA3.1(+), pcDNA3.1(-), pFastbac1-dual-MBP and pVAX 1.
The invention finally provides a vaccine for tumors with high expression of EPHA2, which comprises the fusion protein vaccine, the nucleic acid vaccine and the recombinant expression vector.
The vaccine of the invention provides a method for preventing relapse or treating tumors with high EPHA2 expression. Including administering the vaccines of the invention for other indications.
The invention also provides application of the vaccine, the nucleic acid vaccine and the vector in preparing a vaccine for a tumor with high expression of EPHA 2.
The invention also provides the vaccine, the nucleic acid vaccine and the vector for treating tumors with high expression of EPHA2, including prostate cancer, lung cancer, esophageal cancer, colorectal cancer, cervical cancer, ovarian cancer, breast cancer and skin cancer.
The vaccine or medicament of the invention comprises the fusion protein, the nucleic acid, the recombinant expression vector and optionally pharmaceutically acceptable carriers, excipients and/or adjuvants.
In conclusion, the invention provides a tumor vaccine targeting EPHA2, which consists of an amino acid sequence of an extracellular region of EPHA2, human or mouse XCL1 protein of which the N end is fused and expressed by a linker and is specifically combined with DC cells with antigen cross-presentation capacity, nucleic acid containing the fusion protein, a carrier containing the nucleic acid, and application of the fusion protein, the nucleic acid and the carrier in preventing and treating tumors with high expression of EPHA 2. The invention improves the efficiency of the EPHA2 protein phagocytosis, processing and presentation by DC cells and improves the effect of inhibiting the tumor growth by fusing and expressing the EPHA2 protein and the DC cell ligand XCL 1. Experiments prove that the protein expressed by the nucleic acid vaccine can effectively induce an EPHA2 specific T cell response and obviously inhibit the growth of a tumor with high expression of EPHA2 in a tumor animal model.
The raw materials and reagents involved in the present invention are all commercially available.
The invention is further illustrated by the following examples:
example 1 design of fusion protein vaccine antigens and construction and preparation of mammalian cell expression plasmids
(1) Construction of mammalian cell expression vector of fusion gene:
the fusion protein XCL1-EPHA2 is constructed from the amino acid sequences of mouse or human EPHA2 (SEQ ID No.1 and SEQ ID No.2) and mouse or human XCL1 (SEQ ID No.3 and SEQ ID No.4) proteins, and we retained the secretory signal peptides of XCL1 protein (SEQ ID No.5 and SEQ ID No.6) while selecting the extracellular domains of EPHA2 (SEQ ID No.7 and SEQ ID No.8) after removal of the transmembrane-localized signal peptides in order to promote efficient secretion of the fusion protein by nucleic acids expressing the fusion protein outside the cells and chemotaxis of MHC-II + CD11c + CD8A + antigen cross-presenting DC cells in vivo. The amino acid sequences of the resulting fusion proteins (SEQ ID No.9 and SEQ ID No. 10). For the single EPHA2 protein, the self-secretion signal peptide (SEQ ID No.11 and SEQ ID No.12) is reserved to be connected with the EPHA2 extracellular region (SEQ ID No.7 and SEQ ID No.8) so as to ensure that the EPHA2 protein expressed by the single EPHA2 expression vector can be secreted outside the cell. The nucleotide sequence corresponding to the amino acid sequence was codon optimized for mammalian cell expression preference, synthesized by Oncomelania, and ligated into pVAX1 expression vectors (SEQ ID No.13 and SEQ ID No. 14).
The nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.1 has the nucleotide sequence shown in SEQ ID No. 15;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.2 has the nucleotide sequence shown in SEQ ID No. 16;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.3 has the nucleotide sequence shown in SEQ ID No. 17;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.4 has the nucleotide sequence shown in SEQ ID No. 18;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.5 has the nucleotide sequence shown in SEQ ID No. 19;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.6 has the nucleotide sequence shown in SEQ ID No. 20;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.7 has the nucleotide sequence shown in SEQ ID No. 21;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.8 has the nucleotide sequence shown in SEQ ID No. 22;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.9 has the nucleotide sequence shown in SEQ ID No. 23;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.10 has the nucleotide sequence shown in SEQ ID No. 24;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.11 has the nucleotide sequence shown in SEQ ID No. 25;
the nucleic acid molecule which codes the amino acid sequence shown in SEQ ID No.12 has the nucleotide sequence shown in SEQ ID No. 26;
FIG. 1 shows a map of a vector encoding a fusion protein nucleotide; wherein FIG. 1A shows the CMV promoter followed by the XCL1 secretion signal peptide and then the EPHA2 extracellular region of the nucleic acid vaccine coding sequence; FIG. 1B shows the coding sequence for a nucleic acid vaccine with the CMV promoter followed by the XCL1 sequence and then linked to the extracellular region of EPHA 2.
(2) Amplification of fusion gene mammalian cell expression vectors
And (3) transforming bacteria, namely putting the competent bacteria frozen at the temperature of-80 ℃ on ice for thawing, adding 100 ng of plasmid when the competent bacteria are nearly completely thawed, gently and uniformly mixing, and putting the competent bacteria on ice for 30 mins. The competence was placed in a 42 ℃ water bath for 60 s with heat shock and immediately after removal placed on ice for 2 mins. And adding 500 mu L of LB culture medium without antibiotics into the tube, and carrying out shaking culture in a shaking table at 37 ℃ for 1 h. The bacteria were centrifuged at 4000 rpm for 2 mins at room temperature, a portion of the supernatant (about 450 μ L) was discarded and the bacteria were resuspended, and an appropriate amount of the bacterial suspension was spread onto a petri dish containing the corresponding antibiotic. The petri dish was placed face down and incubated overnight in an incubator at 37 ℃. After the clone size was appropriate (about 16 h), the clone was picked up with a gun tip into LB medium supplemented with antibiotics and shake-cultured in a shaker at 37 ℃ until turbid. Taking 15 mL of bacterial liquid cultured to a proper concentration, centrifuging at 4000 rpm for 5mins at room temperature, and discarding the supernatant. Bacterial DNA was extracted according to the instructions of the plasmid Mini kit (DP 103) of Beijing Tiangen. First, 250 μ L of RNase-containing cell resuspension P1 was added to thoroughly resuspend the bacterial pellet and the pellet was transferred to a 1.5 mL EP tube. Adding 250 mu L of alkaline cell lysate P2, and gently inverting and mixing until the liquid is clear. 350 mu L of neutralizing liquid P3 is added, and the mixture is inverted and mixed evenly until flocculent precipitates appear. The suspension was centrifuged at 12000 rpm for 10 mins at room temperature. And putting the DNA adsorption column into a recovery tube, adding 500 muL of equilibrium liquid to activate the adsorption membrane, centrifuging at 12000 rpm for 1min, and then discarding the liquid. The supernatant obtained by centrifugation in step 4 was transferred to a DNA adsorption column, centrifuged at 12000 rpm for 1min, and the liquid was discarded. And adding 600 mu L of cleaning solution into the adsorption column, centrifuging at 12000 rpm for 1min, then discarding the solution, and repeatedly washing once. The tube was evacuated at 12000 rpm for 2 mins. The collection tube was replaced with a new 1.5 mL EP tube and the column was allowed to air dry at room temperature for 5 mins. Adding 70 mu L of elution buffer preheated at 65 ℃ or purified water subjected to high pressure, standing at room temperature for 5mins to fully dissolve DNA, centrifuging at 12000 rpm at room temperature for 3 mins, and collecting liquid. And (5) after the adsorption column is discarded, carrying out concentration measurement on the plasmids in the tube and marking the name, the concentration and the extraction date of the plasmids.
Example 2 prediction of three-dimensional Structure of fusion protein
Based on the nucleotide sequence of the fusion protein, we used http:// raptorx. uchicago. edu/website to predict the three-dimensional structure of XCL1 and EPHA2 fusion proteins. XCL1 belongs to the chemokine, and its chemotactic function needs to maintain an intact spatial structure. In order to ensure that XCL1 still has a spatial structure after the fusion of XCL1 and EPHA2, the three-dimensional structure of the fused amino acid sequence is predicted on http:// raptorx. uchicago. edu/website, and the result is shown in FIG. 2, after the fusion of XCL1 and EPHA2, the XCL1 and EPHA2 still have the original spatial structures respectively and do not influence the chemotactic function of XCL 1.
Example 3 detection of expression Effect of mammalian cell expression vector encoding XCL1-EPHA2 fusion protein
24 hours prior to transfection, 6-well cell culture plates were inoculated with 1 x 106HEK293T cells, the transfection assay was started when the cell density reached 70% -80%. Cell culture medium and serum-free Opti-MEM medium were pre-warmed in a 37 ℃ water bath at the time of transfection. 5 micrograms of empty Vector (Vector), EPHA2 expression Vector alone, XCL1-EPHA2 wild-type fusion gene plasmid, and 20. mu.L PEI transfection reagent were added to 200. mu.L of serum-free Opti-MEM in sequence for transfection, mixed well, and then allowed to stand at room temperature for 10 minutes. The cells to be transfected are replaced by fresh culture medium, and the cells are added into the transfection system gently and shaken up. The cells were returned to the cell incubator and incubated for 6 hours before changing the medium. Cells are harvested after 48 hours of transfer, and expression effect of XCL1-EPHA2 fusion gene plasmid HEK293T cells is detected by Western Blot.
To facilitate detection of expression effect of fusion gene, a Flag tag consisting of 5 amino acids of DDDDK is connected to C end of fusion protein, so as to detect expression of fusion protein by using Flag tag antibody. Cells were harvested and 60 μ L of 0.5% NP40 lysis buffer containing PMSF or Cocktail protease inhibitor was added. Resuspend the cells well and spin lyse the cells at 4 ℃ for 30 min. The lysate was centrifuged at 12000 rpm for 10min at 4 ℃ and the supernatant was collected in a fresh 1.5 mL EP tube and the pellet discarded. Adding a 5 xSDS-PAGE protein loading buffer according to the actual volume of a sample, uniformly mixing, placing the sample in an air bath at 100 ℃ for heating for 10 minutes, immediately carrying out Western blot, and detecting by using a Flag tag antibody (Sigma, F3165), wherein the result is shown in figure 3 that an empty Vector (Vector) has no protein expression, an EPHA2 expression Vector alone and an XCL1-EPHA2 wild-type fusion gene plasmid can effectively express and have equivalent expression quantity.
Example 4 exploration of whether fusion gene immunization induced a stronger cell-specific T cell response
We extracted EPHA2 and XCL1-EPHA2 wild-type plasmids alone and injected the mice with the immunizing plasmid using the gene gun (GDS-80) from Wealtec. Mouse peripheral blood EPHA 2-specific T cell responses were detected after 14 days using EPHA 2-specific tetramer flow antibodies.
Specifically, the inner and outer peripheral blood of the canthus of the mouse are taken firstly, added with heparin sodium anticoagulant and mixed evenly, centrifuged for 10 minutes at 200g, the supernatant is discarded, and the peripheral blood is treated with the red blood cell lysate (Cat. No. WL 2000) of the company R & D. Diluting the lysate A by 10 times with distilled water to prepare working solution, adding 2mL of working solution into each peripheral blood sample for resuspension, standing at room temperature for 10min, and diluting the neutralizing solution B by 10 times with distilled water to prepare the working solution. Ten minutes later, 10mL of the neutralization solution B was added to the lysate for neutralization, followed by centrifugation at 200g for 10 min. The cell pellet was washed once with 1% inactivated FBS in PBS buffer and flow stained: EPHA2-tetramer antibody-FITC, CD8 α -PE. After 2 hours, flow detection was carried out. The results are shown in fig. 4, the specific T cells of mice immunized by XCL1-EPHA2 wild-type plasmid against EPHA2 in peripheral blood are significantly increased compared with the group immunized by EPHA2 alone, which indicates that the XCL1-EPHA2 wild-type plasmid immunization really induces the specific response of CD8A cytotoxic T lymphocytes.
Table 1 figure 4 data
Figure 537457DEST_PATH_IMAGE002
Example 5 Effect of the fusion Gene on intervention in transplantation tumorigenesis of CT26 cells overexpressing EPHA2
We extracted EPHA2 and XCL1-EPHA2 wild-type plasmids alone and injected the mice with the immunizing plasmid using the gene gun (GDS-80) from Wealtec. After the hepa1-6 high expression EPHA2 cells are transplanted into the same species, the inhibition of the fusion gene immunity on the growth of CT26 tumor cells over expressing EPHA2 is observed.
We performed particle gun plasmid injection into mice following the immunization strategy outlined by the time axis of fig. 5A. C57B6 (purchased from Wintolite, China) 6-week-old male mice were divided into a control group, 3 groups injected with EPHA2 and XCL1-EPHA2 wild-type plasmid, and five mice per group were depilatory-treated with depilatory cream at the right side of the mice near the inguinal lymph node. Then, 50 μ g of plasmid was injected into the site of hair removal using a gene gun, once a week, four times a total, and the CT26 cells overexpressing EPHA2 were investigated for tumor formation conditions one week after the last injection and prior to inoculation, and the tumor formation time was observed and the major and minor diameters a and b of the tumor were measured every two days, and tumor volume calculation was performed according to a b/2 to plot the tumor growth curve. As shown in FIGS. 5A and 5B, the injection of XCL1-EPHA2 wild-type plasmid was effective in delaying the onset and growth rate of tumors. The therapeutic effect of the fusion gene immunity is proved to be obvious and effective.
TABLE 2 FIG. 5B data
Figure 441215DEST_PATH_IMAGE004
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.
Sequence listing
<110> Nouchi Tech (Beijing) Ltd
<120> a cancer vaccine targeting EphA2 antigen
<130> MP21007548
<160> 26
<170> SIPOSequenceListing 1.0
<210> 1
<211> 977
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 1
Met Glu Leu Arg Ala Val Gly Phe Cys Leu Ala Leu Leu Trp Gly Cys
1 5 10 15
Ala Leu Ala Ala Ala Ala Ala Gln Gly Lys Glu Val Val Leu Leu Asp
20 25 30
Phe Ala Ala Met Lys Gly Glu Leu Gly Trp Leu Thr His Pro Tyr Gly
35 40 45
Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asp Asp Met Pro Ile Tyr
50 55 60
Met Tyr Ser Val Cys Asn Val Val Ser Gly Asp Gln Asp Asn Trp Leu
65 70 75 80
Arg Thr Asn Trp Val Tyr Arg Glu Glu Ala Glu Arg Ile Phe Ile Glu
85 90 95
Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser
100 105 110
Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Val Asp
115 120 125
Tyr Gly Thr Asn Phe Gln Lys Arg Gln Phe Thr Lys Ile Asp Thr Ile
130 135 140
Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg Asn Val
145 150 155 160
Lys Leu Asn Val Glu Glu Arg Met Val Gly Pro Leu Thr Arg Lys Gly
165 170 175
Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu Ser
180 185 190
Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Met Leu Gln Ser Leu Ala
195 200 205
Arg Phe Pro Glu Thr Ile Ala Val Ala Val Ser Asp Thr Gln Pro Leu
210 215 220
Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Tyr Gly
225 230 235 240
Gly Glu Gly Pro Leu Met His Cys Thr Val Asp Gly Glu Trp Leu Val
245 250 255
Pro Ile Gly Gln Cys Leu Cys Gln Glu Gly Tyr Glu Lys Val Glu Asp
260 265 270
Ala Cys Arg Ala Cys Ser Pro Gly Phe Phe Lys Ser Glu Ala Ser Glu
275 280 285
Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro Ser Thr Glu Gly
290 295 300
Ala Thr Ser Cys Gln Cys Glu Glu Gly Tyr Phe Arg Ala Pro Glu Asp
305 310 315 320
Pro Leu Ser Met Ser Cys Thr Arg Pro Pro Ser Ala Pro Asn Tyr Leu
325 330 335
Thr Ala Ile Gly Met Gly Ala Lys Val Glu Leu Arg Trp Thr Ala Pro
340 345 350
Lys Asp Thr Gly Gly Arg Gln Asp Ile Val Tyr Ser Val Thr Cys Glu
355 360 365
Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val
370 375 380
Arg Tyr Ser Glu Pro Pro His Ala Leu Thr Arg Thr Ser Val Thr Val
385 390 395 400
Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe Ala Val Glu Ala Arg
405 410 415
Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser
420 425 430
Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Asp Arg
435 440 445
Ser Thr Thr Ser Leu Ser Val Thr Trp Ser Ile Pro Val Ser Gln Gln
450 455 460
Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ala
465 470 475 480
Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp
485 490 495
Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr
500 505 510
Gln Glu Gly Gln Gly Ala Gly Ser Lys Val His Glu Phe Gln Thr Leu
515 520 525
Ser Thr Glu Gly Ser Ala Asn Met Ala Val Ile Gly Gly Val Ala Val
530 535 540
Gly Val Val Leu Leu Leu Val Leu Ala Gly Val Gly Leu Phe Ile His
545 550 555 560
Arg Arg Arg Arg Asn Leu Arg Ala Arg Gln Ser Ser Glu Asp Val Arg
565 570 575
Phe Ser Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro
580 585 590
His Thr Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu
595 600 605
Ile His Pro Ser Cys Val Ala Arg Gln Lys Val Ile Gly Ala Gly Glu
610 615 620
Phe Gly Glu Val Tyr Lys Gly Thr Leu Lys Ala Ser Ser Gly Lys Lys
625 630 635 640
Glu Ile Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys
645 650 655
Gln Arg Val Asp Phe Leu Ser Glu Ala Ser Ile Met Gly Gln Phe Ser
660 665 670
His His Asn Ile Ile Arg Leu Glu Gly Val Val Ser Lys Tyr Lys Pro
675 680 685
Met Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe
690 695 700
Leu Arg Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met
705 710 715 720
Leu Arg Gly Ile Ala Ser Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr
725 730 735
Val His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu
740 745 750
Val Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp
755 760 765
Pro Glu Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp
770 775 780
Thr Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp
785 790 795 800
Val Trp Ser Tyr Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu
805 810 815
Arg Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn
820 825 830
Asp Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr
835 840 845
Gln Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ser Arg Arg Pro Lys
850 855 860
Phe Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp
865 870 875 880
Ser Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu
885 890 895
Pro Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu
900 905 910
Trp Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Val
915 920 925
Ala Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met Ser Asn Glu Asp
930 935 940
Ile Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala
945 950 955 960
Tyr Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro
965 970 975
Ile
<210> 2
<211> 976
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 2
Met Glu Leu Gln Ala Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys
1 5 10 15
Ala Leu Ala Ala Ala Ala Ala Ala Gln Gly Lys Glu Val Val Leu Leu
20 25 30
Asp Phe Ala Ala Ala Gly Gly Glu Leu Gly Trp Leu Thr His Pro Tyr
35 40 45
Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asn Asp Met Pro Ile
50 55 60
Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly Asp Gln Asp Asn Trp
65 70 75 80
Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala Glu Arg Ile Phe Ile
85 90 95
Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro Gly Gly Ala
100 105 110
Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu Ser Asp Leu
115 120 125
Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe Thr Lys Ile Asp Thr
130 135 140
Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu Ala Arg His
145 150 155 160
Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly Pro Leu Thr Arg Lys
165 170 175
Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val Ala Leu Leu
180 185 190
Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Leu Leu Gln Gly Leu
195 200 205
Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp Ala Pro Ser Leu Ala
210 215 220
Thr Val Ala Gly Thr Cys Val Asp His Ala Val Val Pro Pro Gly Gly
225 230 235 240
Glu Glu Pro Arg Met His Cys Ala Val Asp Gly Glu Trp Leu Val Pro
245 250 255
Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu Lys Val Glu Asp Ala
260 265 270
Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe Glu Ala Ser Glu Ser
275 280 285
Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro Ser Pro Glu Gly Ala
290 295 300
Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg Ala Pro Gln Asp Pro
305 310 315 320
Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala Pro His Tyr Leu Thr
325 330 335
Ala Val Gly Met Gly Ala Lys Val Glu Leu Arg Trp Thr Pro Pro Gln
340 345 350
Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr Ser Val Thr Cys Glu Gln
355 360 365
Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys Glu Ala Ser Val Arg
370 375 380
Tyr Ser Glu Pro Pro His Gly Leu Thr Arg Thr Ser Val Thr Val Ser
385 390 395 400
Asp Leu Glu Pro His Met Asn Tyr Thr Phe Thr Val Glu Ala Arg Asn
405 410 415
Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe Arg Thr Ala Ser Val
420 425 430
Ser Ile Asn Gln Thr Glu Pro Pro Lys Val Arg Leu Glu Gly Arg Ser
435 440 445
Thr Thr Ser Leu Ser Val Ser Trp Ser Ile Pro Pro Pro Gln Gln Ser
450 455 460
Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys Lys Gly Asp Ser Asn
465 470 475 480
Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser Val Thr Leu Asp Asp
485 490 495
Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val Gln Ala Leu Thr Gln
500 505 510
Glu Gly Gln Gly Ala Gly Ser Lys Val His Glu Phe Gln Thr Leu Ser
515 520 525
Pro Glu Gly Ser Gly Asn Leu Ala Val Ile Gly Gly Val Ala Val Gly
530 535 540
Val Val Leu Leu Leu Val Leu Ala Gly Val Gly Phe Phe Ile His Arg
545 550 555 560
Arg Arg Lys Asn Gln Arg Ala Arg Gln Ser Pro Glu Asp Val Tyr Phe
565 570 575
Ser Lys Ser Glu Gln Leu Lys Pro Leu Lys Thr Tyr Val Asp Pro His
580 585 590
Thr Tyr Glu Asp Pro Asn Gln Ala Val Leu Lys Phe Thr Thr Glu Ile
595 600 605
His Pro Ser Cys Val Thr Arg Gln Lys Val Ile Gly Ala Gly Glu Phe
610 615 620
Gly Glu Val Tyr Lys Gly Met Leu Lys Thr Ser Ser Gly Lys Lys Glu
625 630 635 640
Val Pro Val Ala Ile Lys Thr Leu Lys Ala Gly Tyr Thr Glu Lys Gln
645 650 655
Arg Val Asp Phe Leu Gly Glu Ala Gly Ile Met Gly Gln Phe Ser His
660 665 670
His Asn Ile Ile Arg Leu Glu Gly Val Ile Ser Lys Tyr Lys Pro Met
675 680 685
Met Ile Ile Thr Glu Tyr Met Glu Asn Gly Ala Leu Asp Lys Phe Leu
690 695 700
Arg Glu Lys Asp Gly Glu Phe Ser Val Leu Gln Leu Val Gly Met Leu
705 710 715 720
Arg Gly Ile Ala Ala Gly Met Lys Tyr Leu Ala Asn Met Asn Tyr Val
725 730 735
His Arg Asp Leu Ala Ala Arg Asn Ile Leu Val Asn Ser Asn Leu Val
740 745 750
Cys Lys Val Ser Asp Phe Gly Leu Ser Arg Val Leu Glu Asp Asp Pro
755 760 765
Glu Ala Thr Tyr Thr Thr Ser Gly Gly Lys Ile Pro Ile Arg Trp Thr
770 775 780
Ala Pro Glu Ala Ile Ser Tyr Arg Lys Phe Thr Ser Ala Ser Asp Val
785 790 795 800
Trp Ser Phe Gly Ile Val Met Trp Glu Val Met Thr Tyr Gly Glu Arg
805 810 815
Pro Tyr Trp Glu Leu Ser Asn His Glu Val Met Lys Ala Ile Asn Asp
820 825 830
Gly Phe Arg Leu Pro Thr Pro Met Asp Cys Pro Ser Ala Ile Tyr Gln
835 840 845
Leu Met Met Gln Cys Trp Gln Gln Glu Arg Ala Arg Arg Pro Lys Phe
850 855 860
Ala Asp Ile Val Ser Ile Leu Asp Lys Leu Ile Arg Ala Pro Asp Ser
865 870 875 880
Leu Lys Thr Leu Ala Asp Phe Asp Pro Arg Val Ser Ile Arg Leu Pro
885 890 895
Ser Thr Ser Gly Ser Glu Gly Val Pro Phe Arg Thr Val Ser Glu Trp
900 905 910
Leu Glu Ser Ile Lys Met Gln Gln Tyr Thr Glu His Phe Met Ala Ala
915 920 925
Gly Tyr Thr Ala Ile Glu Lys Val Val Gln Met Thr Asn Asp Asp Ile
930 935 940
Lys Arg Ile Gly Val Arg Leu Pro Gly His Gln Lys Arg Ile Ala Tyr
945 950 955 960
Ser Leu Leu Gly Leu Lys Asp Gln Val Asn Thr Val Gly Ile Pro Ile
965 970 975
<210> 3
<211> 115
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 3
Met Arg Leu Leu Leu Leu Thr Phe Leu Gly Val Cys Cys Leu Thr Pro
1 5 10 15
Trp Val Val Glu Gly Val Gly Thr Glu Val Leu Glu Glu Ser Ser Cys
20 25 30
Val Asn Leu Gln Thr Gln Arg Leu Pro Val Gln Lys Ile Lys Thr Tyr
35 40 45
Ile Ile Trp Glu Gly Ala Met Arg Ala Val Ile Phe Val Thr Lys Arg
50 55 60
Gly Leu Lys Ile Cys Ala Asp Pro Glu Ala Lys Trp Val Lys Ala Ala
65 70 75 80
Ile Lys Thr Val Asp Gly Arg Ala Ser Thr Arg Lys Asn Met Ala Glu
85 90 95
Thr Val Pro Thr Gly Ala Gln Arg Ser Thr Ser Thr Ala Ile Thr Leu
100 105 110
Thr Gly Gly
115
<210> 4
<211> 114
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 4
Met Arg Leu Leu Ile Leu Ala Leu Leu Gly Ile Cys Ser Leu Thr Ala
1 5 10 15
Tyr Ile Val Glu Gly Val Gly Ser Glu Val Ser Asp Lys Arg Thr Cys
20 25 30
Val Ser Leu Thr Thr Gln Arg Leu Pro Val Ser Arg Ile Lys Thr Tyr
35 40 45
Thr Ile Thr Glu Gly Ser Leu Arg Ala Val Ile Phe Ile Thr Lys Arg
50 55 60
Gly Leu Lys Val Cys Ala Asp Pro Gln Ala Thr Trp Val Arg Asp Val
65 70 75 80
Val Arg Ser Met Asp Arg Lys Ser Asn Thr Arg Asn Asn Met Ile Gln
85 90 95
Thr Lys Pro Thr Gly Thr Gln Gln Ser Thr Asn Thr Ala Val Thr Leu
100 105 110
Thr Gly
<210> 5
<211> 21
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 5
Met Arg Leu Leu Leu Leu Thr Phe Leu Gly Val Cys Cys Leu Thr Pro
1 5 10 15
Trp Val Val Glu Gly
20
<210> 6
<211> 21
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 6
Met Arg Leu Leu Ile Leu Ala Leu Leu Gly Ile Cys Ser Leu Thr Ala
1 5 10 15
Tyr Ile Val Glu Gly
20
<210> 7
<211> 513
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 7
Lys Glu Val Val Leu Leu Asp Phe Ala Ala Met Lys Gly Glu Leu Gly
1 5 10 15
Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile
20 25 30
Met Asp Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Val Ser
35 40 45
Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Glu Glu
50 55 60
Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn
65 70 75 80
Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr
85 90 95
Tyr Ala Glu Ser Asp Val Asp Tyr Gly Thr Asn Phe Gln Lys Arg Gln
100 105 110
Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser
115 120 125
Asp Phe Glu Ala Arg Asn Val Lys Leu Asn Val Glu Glu Arg Met Val
130 135 140
Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly
145 150 155 160
Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro
165 170 175
Glu Met Leu Gln Ser Leu Ala Arg Phe Pro Glu Thr Ile Ala Val Ala
180 185 190
Val Ser Asp Thr Gln Pro Leu Ala Thr Val Ala Gly Thr Cys Val Asp
195 200 205
His Ala Val Val Pro Tyr Gly Gly Glu Gly Pro Leu Met His Cys Thr
210 215 220
Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Glu
225 230 235 240
Gly Tyr Glu Lys Val Glu Asp Ala Cys Arg Ala Cys Ser Pro Gly Phe
245 250 255
Phe Lys Ser Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His
260 265 270
Thr Leu Pro Ser Thr Glu Gly Ala Thr Ser Cys Gln Cys Glu Glu Gly
275 280 285
Tyr Phe Arg Ala Pro Glu Asp Pro Leu Ser Met Ser Cys Thr Arg Pro
290 295 300
Pro Ser Ala Pro Asn Tyr Leu Thr Ala Ile Gly Met Gly Ala Lys Val
305 310 315 320
Glu Leu Arg Trp Thr Ala Pro Lys Asp Thr Gly Gly Arg Gln Asp Ile
325 330 335
Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys
340 345 350
Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Ala Leu
355 360 365
Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr
370 375 380
Thr Phe Ala Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser
385 390 395 400
Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro
405 410 415
Lys Val Arg Leu Glu Asp Arg Ser Thr Thr Ser Leu Ser Val Thr Trp
420 425 430
Ser Ile Pro Val Ser Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr
435 440 445
Tyr Arg Lys Lys Gly Asp Ala Asn Ser Tyr Asn Val Arg Arg Thr Glu
450 455 460
Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu
465 470 475 480
Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Lys
485 490 495
Val His Glu Phe Gln Thr Leu Ser Thr Glu Gly Ser Ala Asn Met Ala
500 505 510
Val
<210> 8
<211> 514
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 8
Ala Gln Gly Lys Glu Val Val Leu Leu Asp Phe Ala Ala Ala Gly Gly
1 5 10 15
Glu Leu Gly Trp Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met
20 25 30
Gln Asn Ile Met Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn
35 40 45
Val Met Ser Gly Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr
50 55 60
Arg Gly Glu Ala Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg
65 70 75 80
Asp Cys Asn Ser Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe
85 90 95
Asn Leu Tyr Tyr Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln
100 105 110
Lys Arg Leu Phe Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr
115 120 125
Val Ser Ser Asp Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu
130 135 140
Arg Ser Val Gly Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln
145 150 155 160
Asp Ile Gly Ala Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys
165 170 175
Lys Cys Pro Glu Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile
180 185 190
Ala Gly Ser Asp Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val
195 200 205
Asp His Ala Val Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys
210 215 220
Ala Val Asp Gly Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln
225 230 235 240
Ala Gly Tyr Glu Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly
245 250 255
Phe Phe Lys Phe Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu
260 265 270
His Thr Leu Pro Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu
275 280 285
Gly Phe Phe Arg Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg
290 295 300
Pro Pro Ser Ala Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys
305 310 315 320
Val Glu Leu Arg Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp
325 330 335
Ile Val Tyr Ser Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu
340 345 350
Cys Gly Pro Cys Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly
355 360 365
Leu Thr Arg Thr Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn
370 375 380
Tyr Thr Phe Thr Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr
385 390 395 400
Ser Arg Ser Phe Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro
405 410 415
Pro Lys Val Arg Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser
420 425 430
Trp Ser Ile Pro Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val
435 440 445
Thr Tyr Arg Lys Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr
450 455 460
Glu Gly Phe Ser Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr
465 470 475 480
Leu Val Gln Val Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser
485 490 495
Lys Val His Glu Phe Gln Thr Leu Ser Pro Glu Gly Ser Gly Asn Leu
500 505 510
Ala Val
<210> 9
<211> 638
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 9
Met Arg Leu Leu Leu Leu Thr Phe Leu Gly Val Cys Cys Leu Thr Pro
1 5 10 15
Trp Val Val Glu Gly Val Gly Thr Glu Val Leu Glu Glu Ser Ser Cys
20 25 30
Val Asn Leu Gln Thr Gln Arg Leu Pro Val Gln Lys Ile Lys Thr Tyr
35 40 45
Ile Ile Trp Glu Gly Ala Met Arg Ala Val Ile Phe Val Thr Lys Arg
50 55 60
Gly Leu Lys Ile Cys Ala Asp Pro Glu Ala Lys Trp Val Lys Ala Ala
65 70 75 80
Ile Lys Thr Val Asp Gly Arg Ala Ser Thr Arg Lys Asn Met Ala Glu
85 90 95
Thr Val Pro Thr Gly Ala Gln Arg Ser Thr Ser Thr Ala Ile Thr Leu
100 105 110
Thr Gly Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Lys Glu Val
115 120 125
Val Leu Leu Asp Phe Ala Ala Met Lys Gly Glu Leu Gly Trp Leu Thr
130 135 140
His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met Asp Asp
145 150 155 160
Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Val Ser Gly Asp Gln
165 170 175
Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Glu Glu Ala Glu Arg
180 185 190
Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser Phe Pro
195 200 205
Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr Ala Glu
210 215 220
Ser Asp Val Asp Tyr Gly Thr Asn Phe Gln Lys Arg Gln Phe Thr Lys
225 230 235 240
Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp Phe Glu
245 250 255
Ala Arg Asn Val Lys Leu Asn Val Glu Glu Arg Met Val Gly Pro Leu
260 265 270
Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala Cys Val
275 280 285
Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu Met Leu
290 295 300
Gln Ser Leu Ala Arg Phe Pro Glu Thr Ile Ala Val Ala Val Ser Asp
305 310 315 320
Thr Gln Pro Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val
325 330 335
Val Pro Tyr Gly Gly Glu Gly Pro Leu Met His Cys Thr Val Asp Gly
340 345 350
Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Glu Gly Tyr Glu
355 360 365
Lys Val Glu Asp Ala Cys Arg Ala Cys Ser Pro Gly Phe Phe Lys Ser
370 375 380
Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro
385 390 395 400
Ser Thr Glu Gly Ala Thr Ser Cys Gln Cys Glu Glu Gly Tyr Phe Arg
405 410 415
Ala Pro Glu Asp Pro Leu Ser Met Ser Cys Thr Arg Pro Pro Ser Ala
420 425 430
Pro Asn Tyr Leu Thr Ala Ile Gly Met Gly Ala Lys Val Glu Leu Arg
435 440 445
Trp Thr Ala Pro Lys Asp Thr Gly Gly Arg Gln Asp Ile Val Tyr Ser
450 455 460
Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys
465 470 475 480
Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Ala Leu Thr Arg Thr
485 490 495
Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe Ala
500 505 510
Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe
515 520 525
Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val Arg
530 535 540
Leu Glu Asp Arg Ser Thr Thr Ser Leu Ser Val Thr Trp Ser Ile Pro
545 550 555 560
Val Ser Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys
565 570 575
Lys Gly Asp Ala Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser
580 585 590
Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val
595 600 605
Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Lys Val His Glu
610 615 620
Phe Gln Thr Leu Ser Thr Glu Gly Ser Ala Asn Met Ala Val
625 630 635
<210> 10
<211> 638
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 10
Met Arg Leu Leu Ile Leu Ala Leu Leu Gly Ile Cys Ser Leu Thr Ala
1 5 10 15
Tyr Ile Val Glu Gly Val Gly Ser Glu Val Ser Asp Lys Arg Thr Cys
20 25 30
Val Ser Leu Thr Thr Gln Arg Leu Pro Val Ser Arg Ile Lys Thr Tyr
35 40 45
Thr Ile Thr Glu Gly Ser Leu Arg Ala Val Ile Phe Ile Thr Lys Arg
50 55 60
Gly Leu Lys Val Cys Ala Asp Pro Gln Ala Thr Trp Val Arg Asp Val
65 70 75 80
Val Arg Ser Met Asp Arg Lys Ser Asn Thr Arg Asn Asn Met Ile Gln
85 90 95
Thr Lys Pro Thr Gly Thr Gln Gln Ser Thr Asn Thr Ala Val Thr Leu
100 105 110
Thr Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Ala Gln Gly Lys
115 120 125
Glu Val Val Leu Leu Asp Phe Ala Ala Ala Gly Gly Glu Leu Gly Trp
130 135 140
Leu Thr His Pro Tyr Gly Lys Gly Trp Asp Leu Met Gln Asn Ile Met
145 150 155 160
Asn Asp Met Pro Ile Tyr Met Tyr Ser Val Cys Asn Val Met Ser Gly
165 170 175
Asp Gln Asp Asn Trp Leu Arg Thr Asn Trp Val Tyr Arg Gly Glu Ala
180 185 190
Glu Arg Ile Phe Ile Glu Leu Lys Phe Thr Val Arg Asp Cys Asn Ser
195 200 205
Phe Pro Gly Gly Ala Ser Ser Cys Lys Glu Thr Phe Asn Leu Tyr Tyr
210 215 220
Ala Glu Ser Asp Leu Asp Tyr Gly Thr Asn Phe Gln Lys Arg Leu Phe
225 230 235 240
Thr Lys Ile Asp Thr Ile Ala Pro Asp Glu Ile Thr Val Ser Ser Asp
245 250 255
Phe Glu Ala Arg His Val Lys Leu Asn Val Glu Glu Arg Ser Val Gly
260 265 270
Pro Leu Thr Arg Lys Gly Phe Tyr Leu Ala Phe Gln Asp Ile Gly Ala
275 280 285
Cys Val Ala Leu Leu Ser Val Arg Val Tyr Tyr Lys Lys Cys Pro Glu
290 295 300
Leu Leu Gln Gly Leu Ala His Phe Pro Glu Thr Ile Ala Gly Ser Asp
305 310 315 320
Ala Pro Ser Leu Ala Thr Val Ala Gly Thr Cys Val Asp His Ala Val
325 330 335
Val Pro Pro Gly Gly Glu Glu Pro Arg Met His Cys Ala Val Asp Gly
340 345 350
Glu Trp Leu Val Pro Ile Gly Gln Cys Leu Cys Gln Ala Gly Tyr Glu
355 360 365
Lys Val Glu Asp Ala Cys Gln Ala Cys Ser Pro Gly Phe Phe Lys Phe
370 375 380
Glu Ala Ser Glu Ser Pro Cys Leu Glu Cys Pro Glu His Thr Leu Pro
385 390 395 400
Ser Pro Glu Gly Ala Thr Ser Cys Glu Cys Glu Glu Gly Phe Phe Arg
405 410 415
Ala Pro Gln Asp Pro Ala Ser Met Pro Cys Thr Arg Pro Pro Ser Ala
420 425 430
Pro His Tyr Leu Thr Ala Val Gly Met Gly Ala Lys Val Glu Leu Arg
435 440 445
Trp Thr Pro Pro Gln Asp Ser Gly Gly Arg Glu Asp Ile Val Tyr Ser
450 455 460
Val Thr Cys Glu Gln Cys Trp Pro Glu Ser Gly Glu Cys Gly Pro Cys
465 470 475 480
Glu Ala Ser Val Arg Tyr Ser Glu Pro Pro His Gly Leu Thr Arg Thr
485 490 495
Ser Val Thr Val Ser Asp Leu Glu Pro His Met Asn Tyr Thr Phe Thr
500 505 510
Val Glu Ala Arg Asn Gly Val Ser Gly Leu Val Thr Ser Arg Ser Phe
515 520 525
Arg Thr Ala Ser Val Ser Ile Asn Gln Thr Glu Pro Pro Lys Val Arg
530 535 540
Leu Glu Gly Arg Ser Thr Thr Ser Leu Ser Val Ser Trp Ser Ile Pro
545 550 555 560
Pro Pro Gln Gln Ser Arg Val Trp Lys Tyr Glu Val Thr Tyr Arg Lys
565 570 575
Lys Gly Asp Ser Asn Ser Tyr Asn Val Arg Arg Thr Glu Gly Phe Ser
580 585 590
Val Thr Leu Asp Asp Leu Ala Pro Asp Thr Thr Tyr Leu Val Gln Val
595 600 605
Gln Ala Leu Thr Gln Glu Gly Gln Gly Ala Gly Ser Lys Val His Glu
610 615 620
Phe Gln Thr Leu Ser Pro Glu Gly Ser Gly Asn Leu Ala Val
625 630 635
<210> 11
<211> 25
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 11
Met Glu Leu Arg Ala Val Gly Phe Cys Leu Ala Leu Leu Trp Gly Cys
1 5 10 15
Ala Leu Ala Ala Ala Ala Ala Gln Gly
20 25
<210> 12
<211> 24
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 12
Met Glu Leu Gln Ala Ala Arg Ala Cys Phe Ala Leu Leu Trp Gly Cys
1 5 10 15
Ala Leu Ala Ala Ala Ala Ala Ala
20
<210> 13
<211> 4910
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
gactcttcgc gatgtacggg ccagatatac gcgttgacat tgattattga ctagttatta 60
atagtaatca attacggggt cattagttca tagcccatat atggagttcc gcgttacata 120
acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 180
aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 240
ctatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 300
ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 360
atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtgat 420
gcggttttgg cagtacatca atgggcgtgg atagcggttt gactcacggg gatttccaag 480
tctccacccc attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc 540
aaaatgtcgt aacaactccg ccccattgac gcaaatgggc ggtaggcgtg tacggtggga 600
ggtctatata agcagagctc tctggctaac tagagaaccc actgcttact ggcttatcga 660
aattaatacg actcactata gggagaccca agctggctag cgtttaaact taagcttggt 720
accgagctcg gatccgaatt cgccaccatg agacttctcc tcctgacttt cctgggagtc 780
tgctgcctca ccccatgggt tgtggaaggt gtggggactg aagtcctaga agagagtagc 840
tgtgtgaact tacaaaccca gcggctgcca gttcaaaaaa tcaagaccta tatcatctgg 900
gagggggcca tgagagctgt aatttttgtc accaaacgag gactaaaaat ttgtgctgat 960
ccagaagcca aatgggtgaa agcagcgatc aagactgtgg atggcagggc cagtaccaga 1020
aagaacatgg ctgaaactgt tcccacagga gcccagaggt ccaccagcac agcgataacc 1080
ctgactgggg gcggaggcgg aggatcaggg ggagggggag gaaaggaagt tgttttgttg 1140
gacttcgcag caatgaaggg agagctcggc tggctcacgc acccctatgg caaagggtgg 1200
gacctgatgc agaacatcat ggacgacatg cctatctaca tgtactcggt gtgcaacgtg 1260
gtatccggcg accaggacaa ctggctccgc accaactggg tgtaccggga ggaggccgag 1320
cgcatcttta ttgagctcaa gttcacggtg cgagactgta acagcttccc gggtggcgcc 1380
agctcatgca aagagacctt caacctctac tatgcagagt cagatgtgga ctatggcacc 1440
aacttccaga agcgccagtt caccaagatt gacaccatcg cccctgacga gatcacggtc 1500
agcagtgact tcgaggctcg caatgtcaag ctgaacgtag aggagcgcat ggtggggccc 1560
cttacccgga agggcttcta cctggccttc caggacatcg gcgcctgcgt ggcgctgctc 1620
tccgttcgcg tctactacaa gaagtgtccc gagatgctgc agagcttggc tcgcttcccc 1680
gagaccattg ctgtcgctgt ctccgataca caacccctgg ccacggtggc cggtacctgc 1740
gtggaccatg ccgtggtgcc ttatgggggc gaggggcctc tcatgcactg cacggtggat 1800
ggcgagtggc tggtgcccat cgggcagtgc ctgtgccagg aaggctacga gaaggtcgag 1860
gatgcctgcc gagcctgttc tccaggattc ttcaagtctg aggcatctga gagcccttgc 1920
ctggagtgtc cagagcatac cctgccatcc acagagggtg ccacctcctg ccagtgtgaa 1980
gaaggctatt tcagggcacc tgaggaccca ctgtccatgt cttgcacacg tccaccctct 2040
gcccccaact acctcacggc cattggcatg ggtgccaaag tagaactgcg ttggacagct 2100
cccaaggaca ctggtggccg ccaggacatt gtctacagtg tcacttgcga acagtgctgg 2160
ccagagtctg gcgagtgtgg gccctgtgag gcgagcgtgc gctattcaga acctcctcac 2220
gccctgaccc gcacgagtgt gacagtcagt gacctggagc cccacatgaa ctataccttc 2280
gctgtcgaag cacgcaatgg tgtctcaggc ctggtgacta gccgaagctt ccggactgcc 2340
agcgtcagta ttaaccaaac agagcccccc aaagtgaggc tggaggaccg aagcaccacc 2400
tccctgagtg tcacctggag catcccggtg tcacagcaga gccgtgtgtg gaagtacgaa 2460
gtcacctacc gcaagaaggg ggatgccaac agctataatg tgcgccgcac ggaaggcttc 2520
tccgtgaccc tggatgacct tgctccggat accacgtacc tggtgcaggt gcaggcgctg 2580
acgcaggagg gccagggagc cggcagcaaa gtgcacgagt tccagacact gtccacggaa 2640
ggatctgcca acatggcggt ggattacaag gatgacgacg ataagtaagc ggccgcctcg 2700
agtctagagg gcccgtttaa acccgctgat cagcctcgac tgtgccttct agttgccagc 2760
catctgttgt ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc actcccactg 2820
tcctttccta ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc 2880
tggggggtgg ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg 2940
ctggggatgc ggtgggctct atggcttcta ctgggcggtt ttatggacag caagcgaacc 3000
ggaattgcca gctggggcgc cctctggtaa ggttgggaag ccctgcaaag taaactggat 3060
ggctttctcg ccgccaagga tctgatggcg caggggatca agctctgatc aagagacagg 3120
atgaggatcg tttcgcatga ttgaacaaga tggattgcac gcaggttctc cggccgcttg 3180
ggtggagagg ctattcggct atgactgggc acaacagaca atcggctgct ctgatgccgc 3240
cgtgttccgg ctgtcagcgc aggggcgccc ggttcttttt gtcaagaccg acctgtccgg 3300
tgccctgaat gaactgcaag acgaggcagc gcggctatcg tggctggcca cgacgggcgt 3360
tccttgcgca gctgtgctcg acgttgtcac tgaagcggga agggactggc tgctattggg 3420
cgaagtgccg gggcaggatc tcctgtcatc tcaccttgct cctgccgaga aagtatccat 3480
catggctgat gcaatgcggc ggctgcatac gcttgatccg gctacctgcc cattcgacca 3540
ccaagcgaaa catcgcatcg agcgagcacg tactcggatg gaagccggtc ttgtcgatca 3600
ggatgatctg gacgaagagc atcaggggct cgcgccagcc gaactgttcg ccaggctcaa 3660
ggcgagcatg cccgacggcg aggatctcgt cgtgacccat ggcgatgcct gcttgccgaa 3720
tatcatggtg gaaaatggcc gcttttctgg attcatcgac tgtggccggc tgggtgtggc 3780
ggaccgctat caggacatag cgttggctac ccgtgatatt gctgaagagc ttggcggcga 3840
atgggctgac cgcttcctcg tgctttacgg tatcgccgct cccgattcgc agcgcatcgc 3900
cttctatcgc cttcttgacg agttcttctg aattattaac gcttacaatt tcctgatgcg 3960
gtattttctc cttacgcatc tgtgcggtat ttcacaccgc atacaggtgg cacttttcgg 4020
ggaaatgtgc gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg 4080
ctcatgagac aataaccctg ataaatgctt caataatagc acgtgctaaa acttcatttt 4140
taatttaaaa ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa 4200
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 4260
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 4320
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 4380
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 4440
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 4500
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 4560
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 4620
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 4680
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 4740
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 4800
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 4860
gcctttttac ggttcctggg cttttgctgg ccttttgctc acatgttctt 4910
<210> 14
<211> 4910
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
gactcttcgc gatgtacggg ccagatatac gcgttgacat tgattattga ctagttatta 60
atagtaatca attacggggt cattagttca tagcccatat atggagttcc gcgttacata 120
acttacggta aatggcccgc ctggctgacc gcccaacgac ccccgcccat tgacgtcaat 180
aatgacgtat gttcccatag taacgccaat agggactttc cattgacgtc aatgggtgga 240
ctatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc caagtacgcc 300
ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tatgcccagt acatgacctt 360
atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta ccatggtgat 420
gcggttttgg cagtacatca atgggcgtgg atagcggttt gactcacggg gatttccaag 480
tctccacccc attgacgtca atgggagttt gttttggcac caaaatcaac gggactttcc 540
aaaatgtcgt aacaactccg ccccattgac gcaaatgggc ggtaggcgtg tacggtggga 600
ggtctatata agcagagctc tctggctaac tagagaaccc actgcttact ggcttatcga 660
aattaatacg actcactata gggagaccca agctggctag cgtttaaact taagcttggt 720
accgagctcg gatccgaatt cgccaccatg agacttctca tcctggccct ccttggcatc 780
tgctctctca ctgcatacat tgtggaaggt gtagggagtg aagtctcaga taagaggacc 840
tgtgtgagcc tcactaccca gcgactgccg gttagcagaa tcaagaccta caccatcacg 900
gaaggctcct tgagagcagt aatttttatt accaaacgtg gcctaaaagt ctgtgctgat 960
ccacaagcca catgggtgag agacgtggtc aggagcatgg acaggaaatc caacaccaga 1020
aataacatga tccagaccaa gccaacagga acccagcaat cgaccaatac agctgtgact 1080
ctgactggcg gaggcggagg atcaggggga gggggaggag cgcagggcaa ggaagtggta 1140
ctgctggact ttgctgcagc tggaggggag ctcggctggc tcacacaccc gtatggcaaa 1200
gggtgggacc tgatgcagaa catcatgaat gacatgccga tctacatgta ctccgtgtgc 1260
aacgtgatgt ctggcgacca ggacaactgg ctccgcacca actgggtgta ccgaggagag 1320
gctgagcgta tcttcattga gctcaagttt actgtacgtg actgcaacag cttccctggt 1380
ggcgccagct cctgcaagga gactttcaac ctctactatg ccgagtcgga cctggactac 1440
ggcaccaact tccagaagcg cctgttcacc aagattgaca ccattgcgcc cgatgagatc 1500
accgtcagca gcgacttcga ggcacgccac gtgaagctga acgtggagga gcgctccgtg 1560
gggccgctca cccgcaaagg cttctacctg gccttccagg atatcggtgc ctgtgtggcg 1620
ctgctctccg tccgtgtcta ctacaagaag tgccccgagc tgctgcaggg cctggcccac 1680
ttccctgaga ccatcgccgg ctctgatgca ccttccctgg ccactgtggc cggcacctgt 1740
gtggaccatg ccgtggtgcc accggggggt gaagagcccc gtatgcactg tgcagtggat 1800
ggcgagtggc tggtgcccat tgggcagtgc ctgtgccagg caggctacga gaaggtggag 1860
gatgcctgcc aggcctgctc gcctggattt tttaagtttg aggcatctga gagcccctgc 1920
ttggagtgcc ctgagcacac gctgccatcc cctgagggtg ccacctcctg cgagtgtgag 1980
gaaggcttct tccgggcacc tcaggaccca gcgtcgatgc cttgcacacg acccccctcc 2040
gccccacact acctcacagc cgtgggcatg ggtgccaagg tggagctgcg ctggacgccc 2100
cctcaggaca gcgggggccg cgaggacatt gtctacagcg tcacctgcga acagtgctgg 2160
cccgagtctg gggaatgcgg gccgtgtgag gccagtgtgc gctactcgga gcctcctcac 2220
ggactgaccc gcaccagtgt gacagtgagc gacctggagc cccacatgaa ctacaccttc 2280
accgtggagg cccgcaatgg cgtctcaggc ctggtaacca gccgcagctt ccgtactgcc 2340
agtgtcagca tcaaccagac agagcccccc aaggtgaggc tggagggccg cagcaccacc 2400
tcgcttagcg tctcctggag catccccccg ccgcagcaga gccgagtgtg gaagtacgag 2460
gtcacttacc gcaagaaggg agactccaac agctacaatg tgcgccgcac cgagggtttc 2520
tccgtgaccc tggacgacct ggccccagac accacctacc tggtccaggt gcaggcactg 2580
acgcaggagg gccagggggc cggcagcaag gtgcacgaat tccagacgct gtccccggag 2640
ggatctggca acttggcggt ggattacaag gatgacgacg ataagtaagc ggccgcctcg 2700
agtctagagg gcccgtttaa acccgctgat cagcctcgac tgtgccttct agttgccagc 2760
catctgttgt ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc actcccactg 2820
tcctttccta ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc 2880
tggggggtgg ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg 2940
ctggggatgc ggtgggctct atggcttcta ctgggcggtt ttatggacag caagcgaacc 3000
ggaattgcca gctggggcgc cctctggtaa ggttgggaag ccctgcaaag taaactggat 3060
ggctttctcg ccgccaagga tctgatggcg caggggatca agctctgatc aagagacagg 3120
atgaggatcg tttcgcatga ttgaacaaga tggattgcac gcaggttctc cggccgcttg 3180
ggtggagagg ctattcggct atgactgggc acaacagaca atcggctgct ctgatgccgc 3240
cgtgttccgg ctgtcagcgc aggggcgccc ggttcttttt gtcaagaccg acctgtccgg 3300
tgccctgaat gaactgcaag acgaggcagc gcggctatcg tggctggcca cgacgggcgt 3360
tccttgcgca gctgtgctcg acgttgtcac tgaagcggga agggactggc tgctattggg 3420
cgaagtgccg gggcaggatc tcctgtcatc tcaccttgct cctgccgaga aagtatccat 3480
catggctgat gcaatgcggc ggctgcatac gcttgatccg gctacctgcc cattcgacca 3540
ccaagcgaaa catcgcatcg agcgagcacg tactcggatg gaagccggtc ttgtcgatca 3600
ggatgatctg gacgaagagc atcaggggct cgcgccagcc gaactgttcg ccaggctcaa 3660
ggcgagcatg cccgacggcg aggatctcgt cgtgacccat ggcgatgcct gcttgccgaa 3720
tatcatggtg gaaaatggcc gcttttctgg attcatcgac tgtggccggc tgggtgtggc 3780
ggaccgctat caggacatag cgttggctac ccgtgatatt gctgaagagc ttggcggcga 3840
atgggctgac cgcttcctcg tgctttacgg tatcgccgct cccgattcgc agcgcatcgc 3900
cttctatcgc cttcttgacg agttcttctg aattattaac gcttacaatt tcctgatgcg 3960
gtattttctc cttacgcatc tgtgcggtat ttcacaccgc atacaggtgg cacttttcgg 4020
ggaaatgtgc gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg 4080
ctcatgagac aataaccctg ataaatgctt caataatagc acgtgctaaa acttcatttt 4140
taatttaaaa ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa 4200
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 4260
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 4320
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 4380
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 4440
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 4500
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 4560
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 4620
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 4680
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 4740
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 4800
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 4860
gcctttttac ggttcctggg cttttgctgg ccttttgctc acatgttctt 4910
<210> 15
<211> 2931
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
atggagctcc gggcagtcgg tttctgcctg gcgctgctgt ggggttgcgc gctggcggcc 60
gcggcggcac agggaaagga agttgttttg ttggacttcg cagcaatgaa gggagagctc 120
ggctggctca cgcaccccta tggcaaaggg tgggacctga tgcagaacat catggacgac 180
atgcctatct acatgtactc ggtgtgcaac gtggtatccg gcgaccagga caactggctc 240
cgcaccaact gggtgtaccg ggaggaggcc gagcgcatct ttattgagct caagttcacg 300
gtgcgagact gtaacagctt cccgggtggc gccagctcat gcaaagagac cttcaacctc 360
tactatgcag agtcagatgt ggactatggc accaacttcc agaagcgcca gttcaccaag 420
attgacacca tcgcccctga cgagatcacg gtcagcagtg acttcgaggc tcgcaatgtc 480
aagctgaacg tagaggagcg catggtgggg ccccttaccc ggaagggctt ctacctggcc 540
ttccaggaca tcggcgcctg cgtggcgctg ctctccgttc gcgtctacta caagaagtgt 600
cccgagatgc tgcagagctt ggctcgcttc cccgagacca ttgctgtcgc tgtctccgat 660
acacaacccc tggccacggt ggccggtacc tgcgtggacc atgccgtggt gccttatggg 720
ggcgaggggc ctctcatgca ctgcacggtg gatggcgagt ggctggtgcc catcgggcag 780
tgcctgtgcc aggaaggcta cgagaaggtc gaggatgcct gccgagcctg ttctccagga 840
ttcttcaagt ctgaggcatc tgagagccct tgcctggagt gtccagagca taccctgcca 900
tccacagagg gtgccacctc ctgccagtgt gaagaaggct atttcagggc acctgaggac 960
ccactgtcca tgtcttgcac acgtccaccc tctgccccca actacctcac ggccattggc 1020
atgggtgcca aagtagaact gcgttggaca gctcccaagg acactggtgg ccgccaggac 1080
attgtctaca gtgtcacttg cgaacagtgc tggccagagt ctggcgagtg tgggccctgt 1140
gaggcgagcg tgcgctattc agaacctcct cacgccctga cccgcacgag tgtgacagtc 1200
agtgacctgg agccccacat gaactatacc ttcgctgtcg aagcacgcaa tggtgtctca 1260
ggcctggtga ctagccgaag cttccggact gccagcgtca gtattaacca aacagagccc 1320
cccaaagtga ggctggagga ccgaagcacc acctccctga gtgtcacctg gagcatcccg 1380
gtgtcacagc agagccgtgt gtggaagtac gaagtcacct accgcaagaa gggggatgcc 1440
aacagctata atgtgcgccg cacggaaggc ttctccgtga ccctggatga ccttgctccg 1500
gataccacgt acctggtgca ggtgcaggcg ctgacgcagg agggccaggg agccggcagc 1560
aaagtgcacg agttccagac actgtccacg gaaggatctg ccaacatggc ggtgatcggc 1620
ggtgtggctg taggtgttgt tttgcttctg gtactggcag gagttggcct cttcatccat 1680
cgaaggagga ggaacctgcg ggctcgccag tcctctgagg atgtccgttt ttccaagtca 1740
gaacaactaa agcccctgaa gacctatgtg gatcctcaca cttacgaaga ccccaaccag 1800
gctgtactca agtttaccac cgagatccac ccatcctgtg tggcaaggca gaaggtcatt 1860
ggagcaggag agtttggaga ggtctataaa gggacgctga aggcatcctc ggggaagaag 1920
gagataccgg tggccatcaa gacactgaaa gcgggctaca ctgagaagca gcgggtggac 1980
ttcctgagcg aggccagcat catgggccag tttagccacc acaatatcat ccgcctggag 2040
ggcgtggtct ctaaatacaa acccatgatg attatcacag agtacatgga gaatggagcg 2100
ctagacaagt tccttaggga gaaggatggt gagttcagtg tacttcagtt ggtgggcatg 2160
ctgaggggta tcgcatccgg catgaagtac ctggccaaca tgaactacgt gcaccgggac 2220
ctggccgccc gcaacatcct cgtcaacagc aacctggtgt gcaaggtgtc cgattttggc 2280
ctgtcgcgtg tgctggaaga tgaccccgag gccacctaca ccacaagtgg cggcaagatc 2340
cctattcgat ggacagcccc agaggccatt tcctaccgca agttcacctc agccagcgat 2400
gtgtggagct acggcattgt catgtgggaa gtgatgactt atggcgaacg gccctactgg 2460
gaactgtcaa accacgaggt catgaaagcc atcaacgacg gcttccggct ccctacgccc 2520
atggactgcc cttcagccat ttaccagctc atgatgcagt gctggcagca agagcgctcc 2580
cgccgaccca agtttgccga catcgttagc atcctggaca agctcatccg agcccccgac 2640
tccctcaaga cgctggctga ctttgatccc cgagtgtcca tccggctgcc cagcaccagc 2700
ggctcggagg gagtcccctt ccgtacggtg tccgagtggc tggagagcat caagatgcaa 2760
cagtacacgg aacacttcat ggtggctggc tacacggcca tcgagaaggt ggtacagatg 2820
tccaacgaag acatcaaaag gatcggagtg cgtcttcctg gccaccagaa gcgtattgcc 2880
tacagcctgc tgggactcaa ggaccaggtc aacacagtgg ggattcctat c 2931
<210> 16
<211> 2928
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
atggagctcc aggcagcccg cgcctgcttc gccctgctgt ggggctgtgc gctggccgcg 60
gccgcggcgg cgcagggcaa ggaagtggta ctgctggact ttgctgcagc tggaggggag 120
ctcggctggc tcacacaccc gtatggcaaa gggtgggacc tgatgcagaa catcatgaat 180
gacatgccga tctacatgta ctccgtgtgc aacgtgatgt ctggcgacca ggacaactgg 240
ctccgcacca actgggtgta ccgaggagag gctgagcgta tcttcattga gctcaagttt 300
actgtacgtg actgcaacag cttccctggt ggcgccagct cctgcaagga gactttcaac 360
ctctactatg ccgagtcgga cctggactac ggcaccaact tccagaagcg cctgttcacc 420
aagattgaca ccattgcgcc cgatgagatc accgtcagca gcgacttcga ggcacgccac 480
gtgaagctga acgtggagga gcgctccgtg gggccgctca cccgcaaagg cttctacctg 540
gccttccagg atatcggtgc ctgtgtggcg ctgctctccg tccgtgtcta ctacaagaag 600
tgccccgagc tgctgcaggg cctggcccac ttccctgaga ccatcgccgg ctctgatgca 660
ccttccctgg ccactgtggc cggcacctgt gtggaccatg ccgtggtgcc accggggggt 720
gaagagcccc gtatgcactg tgcagtggat ggcgagtggc tggtgcccat tgggcagtgc 780
ctgtgccagg caggctacga gaaggtggag gatgcctgcc aggcctgctc gcctggattt 840
tttaagtttg aggcatctga gagcccctgc ttggagtgcc ctgagcacac gctgccatcc 900
cctgagggtg ccacctcctg cgagtgtgag gaaggcttct tccgggcacc tcaggaccca 960
gcgtcgatgc cttgcacacg acccccctcc gccccacact acctcacagc cgtgggcatg 1020
ggtgccaagg tggagctgcg ctggacgccc cctcaggaca gcgggggccg cgaggacatt 1080
gtctacagcg tcacctgcga acagtgctgg cccgagtctg gggaatgcgg gccgtgtgag 1140
gccagtgtgc gctactcgga gcctcctcac ggactgaccc gcaccagtgt gacagtgagc 1200
gacctggagc cccacatgaa ctacaccttc accgtggagg cccgcaatgg cgtctcaggc 1260
ctggtaacca gccgcagctt ccgtactgcc agtgtcagca tcaaccagac agagcccccc 1320
aaggtgaggc tggagggccg cagcaccacc tcgcttagcg tctcctggag catccccccg 1380
ccgcagcaga gccgagtgtg gaagtacgag gtcacttacc gcaagaaggg agactccaac 1440
agctacaatg tgcgccgcac cgagggtttc tccgtgaccc tggacgacct ggccccagac 1500
accacctacc tggtccaggt gcaggcactg acgcaggagg gccagggggc cggcagcaag 1560
gtgcacgaat tccagacgct gtccccggag ggatctggca acttggcggt gattggcggc 1620
gtggctgtcg gtgtggtcct gcttctggtg ctggcaggag ttggcttctt tatccaccgc 1680
aggaggaaga accagcgtgc ccgccagtcc ccggaggacg tttacttctc caagtcagaa 1740
caactgaagc ccctgaagac atacgtggac ccccacacat atgaggaccc caaccaggct 1800
gtgttgaagt tcactaccga gatccatcca tcctgtgtca ctcggcagaa ggtgatcgga 1860
gcaggagagt ttggggaggt gtacaagggc atgctgaaga catcctcggg gaagaaggag 1920
gtgccggtgg ccatcaagac gctgaaagcc ggctacacag agaagcagcg agtggacttc 1980
ctcggcgagg ccggcatcat gggccagttc agccaccaca acatcatccg cctagagggc 2040
gtcatctcca aatacaagcc catgatgatc atcactgagt acatggagaa tggggccctg 2100
gacaagttcc ttcgggagaa ggatggcgag ttcagcgtgc tgcagctggt gggcatgctg 2160
cggggcatcg cagctggcat gaagtacctg gccaacatga actatgtgca ccgtgacctg 2220
gctgcccgca acatcctcgt caacagcaac ctggtctgca aggtgtctga ctttggcctg 2280
tcccgcgtgc tggaggacga ccccgaggcc acctacacca ccagtggcgg caagatcccc 2340
atccgctgga ccgccccgga ggccatttcc taccggaagt tcacctctgc cagcgacgtg 2400
tggagctttg gcattgtcat gtgggaggtg atgacctatg gcgagcggcc ctactgggag 2460
ttgtccaacc acgaggtgat gaaagccatc aatgatggct tccggctccc cacacccatg 2520
gactgcccct ccgccatcta ccagctcatg atgcagtgct ggcagcagga gcgtgcccgc 2580
cgccccaagt tcgctgacat cgtcagcatc ctggacaagc tcattcgtgc ccctgactcc 2640
ctcaagaccc tggctgactt tgacccccgc gtgtctatcc ggctccccag cacgagcggc 2700
tcggaggggg tgcccttccg cacggtgtcc gagtggctgg agtccatcaa gatgcagcag 2760
tatacggagc acttcatggc ggccggctac actgccatcg agaaggtggt gcagatgacc 2820
aacgacgaca tcaagaggat tggggtgcgg ctgcccggcc accagaagcg catcgcctac 2880
agcctgctgg gactcaagga ccaggtgaac actgtgggga tccccatc 2928
<210> 17
<211> 345
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
atgagacttc tcctcctgac tttcctggga gtctgctgcc tcaccccatg ggttgtggaa 60
ggtgtgggga ctgaagtcct agaagagagt agctgtgtga acttacaaac ccagcggctg 120
ccagttcaaa aaatcaagac ctatatcatc tgggaggggg ccatgagagc tgtaattttt 180
gtcaccaaac gaggactaaa aatttgtgct gatccagaag ccaaatgggt gaaagcagcg 240
atcaagactg tggatggcag ggccagtacc agaaagaaca tggctgaaac tgttcccaca 300
ggagcccaga ggtccaccag cacagcgata accctgactg ggggc 345
<210> 18
<211> 342
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
atgagacttc tcatcctggc cctccttggc atctgctctc tcactgcata cattgtggaa 60
ggtgtaggga gtgaagtctc agataagagg acctgtgtga gcctcactac ccagcgactg 120
ccggttagca gaatcaagac ctacaccatc acggaaggct ccttgagagc agtaattttt 180
attaccaaac gtggcctaaa agtctgtgct gatccacaag ccacatgggt gagagacgtg 240
gtcaggagca tggacaggaa atccaacacc agaaataaca tgatccagac caagccaaca 300
ggaacccagc aatcgaccaa tacagctgtg actctgactg gc 342
<210> 19
<211> 63
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
atgagacttc tcctcctgac tttcctggga gtctgctgcc tcaccccatg ggttgtggaa 60
ggt 63
<210> 20
<211> 63
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
atgagacttc tcatcctggc cctccttggc atctgctctc tcactgcata cattgtggaa 60
ggt 63
<210> 21
<211> 1539
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
aaggaagttg ttttgttgga cttcgcagca atgaagggag agctcggctg gctcacgcac 60
ccctatggca aagggtggga cctgatgcag aacatcatgg acgacatgcc tatctacatg 120
tactcggtgt gcaacgtggt atccggcgac caggacaact ggctccgcac caactgggtg 180
taccgggagg aggccgagcg catctttatt gagctcaagt tcacggtgcg agactgtaac 240
agcttcccgg gtggcgccag ctcatgcaaa gagaccttca acctctacta tgcagagtca 300
gatgtggact atggcaccaa cttccagaag cgccagttca ccaagattga caccatcgcc 360
cctgacgaga tcacggtcag cagtgacttc gaggctcgca atgtcaagct gaacgtagag 420
gagcgcatgg tggggcccct tacccggaag ggcttctacc tggccttcca ggacatcggc 480
gcctgcgtgg cgctgctctc cgttcgcgtc tactacaaga agtgtcccga gatgctgcag 540
agcttggctc gcttccccga gaccattgct gtcgctgtct ccgatacaca acccctggcc 600
acggtggccg gtacctgcgt ggaccatgcc gtggtgcctt atgggggcga ggggcctctc 660
atgcactgca cggtggatgg cgagtggctg gtgcccatcg ggcagtgcct gtgccaggaa 720
ggctacgaga aggtcgagga tgcctgccga gcctgttctc caggattctt caagtctgag 780
gcatctgaga gcccttgcct ggagtgtcca gagcataccc tgccatccac agagggtgcc 840
acctcctgcc agtgtgaaga aggctatttc agggcacctg aggacccact gtccatgtct 900
tgcacacgtc caccctctgc ccccaactac ctcacggcca ttggcatggg tgccaaagta 960
gaactgcgtt ggacagctcc caaggacact ggtggccgcc aggacattgt ctacagtgtc 1020
acttgcgaac agtgctggcc agagtctggc gagtgtgggc cctgtgaggc gagcgtgcgc 1080
tattcagaac ctcctcacgc cctgacccgc acgagtgtga cagtcagtga cctggagccc 1140
cacatgaact ataccttcgc tgtcgaagca cgcaatggtg tctcaggcct ggtgactagc 1200
cgaagcttcc ggactgccag cgtcagtatt aaccaaacag agccccccaa agtgaggctg 1260
gaggaccgaa gcaccacctc cctgagtgtc acctggagca tcccggtgtc acagcagagc 1320
cgtgtgtgga agtacgaagt cacctaccgc aagaaggggg atgccaacag ctataatgtg 1380
cgccgcacgg aaggcttctc cgtgaccctg gatgaccttg ctccggatac cacgtacctg 1440
gtgcaggtgc aggcgctgac gcaggagggc cagggagccg gcagcaaagt gcacgagttc 1500
cagacactgt ccacggaagg atctgccaac atggcggtg 1539
<210> 22
<211> 1542
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
gcgcagggca aggaagtggt actgctggac tttgctgcag ctggagggga gctcggctgg 60
ctcacacacc cgtatggcaa agggtgggac ctgatgcaga acatcatgaa tgacatgccg 120
atctacatgt actccgtgtg caacgtgatg tctggcgacc aggacaactg gctccgcacc 180
aactgggtgt accgaggaga ggctgagcgt atcttcattg agctcaagtt tactgtacgt 240
gactgcaaca gcttccctgg tggcgccagc tcctgcaagg agactttcaa cctctactat 300
gccgagtcgg acctggacta cggcaccaac ttccagaagc gcctgttcac caagattgac 360
accattgcgc ccgatgagat caccgtcagc agcgacttcg aggcacgcca cgtgaagctg 420
aacgtggagg agcgctccgt ggggccgctc acccgcaaag gcttctacct ggccttccag 480
gatatcggtg cctgtgtggc gctgctctcc gtccgtgtct actacaagaa gtgccccgag 540
ctgctgcagg gcctggccca cttccctgag accatcgccg gctctgatgc accttccctg 600
gccactgtgg ccggcacctg tgtggaccat gccgtggtgc caccgggggg tgaagagccc 660
cgtatgcact gtgcagtgga tggcgagtgg ctggtgccca ttgggcagtg cctgtgccag 720
gcaggctacg agaaggtgga ggatgcctgc caggcctgct cgcctggatt ttttaagttt 780
gaggcatctg agagcccctg cttggagtgc cctgagcaca cgctgccatc ccctgagggt 840
gccacctcct gcgagtgtga ggaaggcttc ttccgggcac ctcaggaccc agcgtcgatg 900
ccttgcacac gacccccctc cgccccacac tacctcacag ccgtgggcat gggtgccaag 960
gtggagctgc gctggacgcc ccctcaggac agcgggggcc gcgaggacat tgtctacagc 1020
gtcacctgcg aacagtgctg gcccgagtct ggggaatgcg ggccgtgtga ggccagtgtg 1080
cgctactcgg agcctcctca cggactgacc cgcaccagtg tgacagtgag cgacctggag 1140
ccccacatga actacacctt caccgtggag gcccgcaatg gcgtctcagg cctggtaacc 1200
agccgcagct tccgtactgc cagtgtcagc atcaaccaga cagagccccc caaggtgagg 1260
ctggagggcc gcagcaccac ctcgcttagc gtctcctgga gcatcccccc gccgcagcag 1320
agccgagtgt ggaagtacga ggtcacttac cgcaagaagg gagactccaa cagctacaat 1380
gtgcgccgca ccgagggttt ctccgtgacc ctggacgacc tggccccaga caccacctac 1440
ctggtccagg tgcaggcact gacgcaggag ggccaggggg ccggcagcaa ggtgcacgaa 1500
ttccagacgc tgtccccgga gggatctggc aacttggcgg tg 1542
<210> 23
<211> 1914
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
atgagacttc tcctcctgac tttcctggga gtctgctgcc tcaccccatg ggttgtggaa 60
ggtgtgggga ctgaagtcct agaagagagt agctgtgtga acttacaaac ccagcggctg 120
ccagttcaaa aaatcaagac ctatatcatc tgggaggggg ccatgagagc tgtaattttt 180
gtcaccaaac gaggactaaa aatttgtgct gatccagaag ccaaatgggt gaaagcagcg 240
atcaagactg tggatggcag ggccagtacc agaaagaaca tggctgaaac tgttcccaca 300
ggagcccaga ggtccaccag cacagcgata accctgactg ggggcggagg cggaggatca 360
gggggagggg gaggaaagga agttgttttg ttggacttcg cagcaatgaa gggagagctc 420
ggctggctca cgcaccccta tggcaaaggg tgggacctga tgcagaacat catggacgac 480
atgcctatct acatgtactc ggtgtgcaac gtggtatccg gcgaccagga caactggctc 540
cgcaccaact gggtgtaccg ggaggaggcc gagcgcatct ttattgagct caagttcacg 600
gtgcgagact gtaacagctt cccgggtggc gccagctcat gcaaagagac cttcaacctc 660
tactatgcag agtcagatgt ggactatggc accaacttcc agaagcgcca gttcaccaag 720
attgacacca tcgcccctga cgagatcacg gtcagcagtg acttcgaggc tcgcaatgtc 780
aagctgaacg tagaggagcg catggtgggg ccccttaccc ggaagggctt ctacctggcc 840
ttccaggaca tcggcgcctg cgtggcgctg ctctccgttc gcgtctacta caagaagtgt 900
cccgagatgc tgcagagctt ggctcgcttc cccgagacca ttgctgtcgc tgtctccgat 960
acacaacccc tggccacggt ggccggtacc tgcgtggacc atgccgtggt gccttatggg 1020
ggcgaggggc ctctcatgca ctgcacggtg gatggcgagt ggctggtgcc catcgggcag 1080
tgcctgtgcc aggaaggcta cgagaaggtc gaggatgcct gccgagcctg ttctccagga 1140
ttcttcaagt ctgaggcatc tgagagccct tgcctggagt gtccagagca taccctgcca 1200
tccacagagg gtgccacctc ctgccagtgt gaagaaggct atttcagggc acctgaggac 1260
ccactgtcca tgtcttgcac acgtccaccc tctgccccca actacctcac ggccattggc 1320
atgggtgcca aagtagaact gcgttggaca gctcccaagg acactggtgg ccgccaggac 1380
attgtctaca gtgtcacttg cgaacagtgc tggccagagt ctggcgagtg tgggccctgt 1440
gaggcgagcg tgcgctattc agaacctcct cacgccctga cccgcacgag tgtgacagtc 1500
agtgacctgg agccccacat gaactatacc ttcgctgtcg aagcacgcaa tggtgtctca 1560
ggcctggtga ctagccgaag cttccggact gccagcgtca gtattaacca aacagagccc 1620
cccaaagtga ggctggagga ccgaagcacc acctccctga gtgtcacctg gagcatcccg 1680
gtgtcacagc agagccgtgt gtggaagtac gaagtcacct accgcaagaa gggggatgcc 1740
aacagctata atgtgcgccg cacggaaggc ttctccgtga ccctggatga ccttgctccg 1800
gataccacgt acctggtgca ggtgcaggcg ctgacgcagg agggccaggg agccggcagc 1860
aaagtgcacg agttccagac actgtccacg gaaggatctg ccaacatggc ggtg 1914
<210> 24
<211> 1914
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
atgagacttc tcatcctggc cctccttggc atctgctctc tcactgcata cattgtggaa 60
ggtgtaggga gtgaagtctc agataagagg acctgtgtga gcctcactac ccagcgactg 120
ccggttagca gaatcaagac ctacaccatc acggaaggct ccttgagagc agtaattttt 180
attaccaaac gtggcctaaa agtctgtgct gatccacaag ccacatgggt gagagacgtg 240
gtcaggagca tggacaggaa atccaacacc agaaataaca tgatccagac caagccaaca 300
ggaacccagc aatcgaccaa tacagctgtg actctgactg gcggaggcgg aggatcaggg 360
ggagggggag gagcgcaggg caaggaagtg gtactgctgg actttgctgc agctggaggg 420
gagctcggct ggctcacaca cccgtatggc aaagggtggg acctgatgca gaacatcatg 480
aatgacatgc cgatctacat gtactccgtg tgcaacgtga tgtctggcga ccaggacaac 540
tggctccgca ccaactgggt gtaccgagga gaggctgagc gtatcttcat tgagctcaag 600
tttactgtac gtgactgcaa cagcttccct ggtggcgcca gctcctgcaa ggagactttc 660
aacctctact atgccgagtc ggacctggac tacggcacca acttccagaa gcgcctgttc 720
accaagattg acaccattgc gcccgatgag atcaccgtca gcagcgactt cgaggcacgc 780
cacgtgaagc tgaacgtgga ggagcgctcc gtggggccgc tcacccgcaa aggcttctac 840
ctggccttcc aggatatcgg tgcctgtgtg gcgctgctct ccgtccgtgt ctactacaag 900
aagtgccccg agctgctgca gggcctggcc cacttccctg agaccatcgc cggctctgat 960
gcaccttccc tggccactgt ggccggcacc tgtgtggacc atgccgtggt gccaccgggg 1020
ggtgaagagc cccgtatgca ctgtgcagtg gatggcgagt ggctggtgcc cattgggcag 1080
tgcctgtgcc aggcaggcta cgagaaggtg gaggatgcct gccaggcctg ctcgcctgga 1140
ttttttaagt ttgaggcatc tgagagcccc tgcttggagt gccctgagca cacgctgcca 1200
tcccctgagg gtgccacctc ctgcgagtgt gaggaaggct tcttccgggc acctcaggac 1260
ccagcgtcga tgccttgcac acgacccccc tccgccccac actacctcac agccgtgggc 1320
atgggtgcca aggtggagct gcgctggacg ccccctcagg acagcggggg ccgcgaggac 1380
attgtctaca gcgtcacctg cgaacagtgc tggcccgagt ctggggaatg cgggccgtgt 1440
gaggccagtg tgcgctactc ggagcctcct cacggactga cccgcaccag tgtgacagtg 1500
agcgacctgg agccccacat gaactacacc ttcaccgtgg aggcccgcaa tggcgtctca 1560
ggcctggtaa ccagccgcag cttccgtact gccagtgtca gcatcaacca gacagagccc 1620
cccaaggtga ggctggaggg ccgcagcacc acctcgctta gcgtctcctg gagcatcccc 1680
ccgccgcagc agagccgagt gtggaagtac gaggtcactt accgcaagaa gggagactcc 1740
aacagctaca atgtgcgccg caccgagggt ttctccgtga ccctggacga cctggcccca 1800
gacaccacct acctggtcca ggtgcaggca ctgacgcagg agggccaggg ggccggcagc 1860
aaggtgcacg aattccagac gctgtccccg gagggatctg gcaacttggc ggtg 1914
<210> 25
<211> 75
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
atggagctcc gggcagtcgg tttctgcctg gcgctgctgt ggggttgcgc gctggcggcc 60
gcggcggcac aggga 75
<210> 26
<211> 69
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
atggagctcc aggcagcccg cgcctgcttc gccctgctgt ggggctgtgc gctggccgcg 60
gccgcggcg 69

Claims (10)

1. A fusion protein comprising the amino acid sequence of the extracellular domain of EPHA2 capable of eliciting a specific CD8+ T response or an mhc class i molecule-binding epitope-optimized form thereof; a joint; and human or murine XCL1 protein that specifically binds DC cells with cross-antigen presentation capability;
wherein:
the extracellular region of EPHA2 capable of inducing a specific CD8+ T response or an optimized form of its MHC class I molecule binding epitope has an amino acid sequence as shown in SEQ ID No.1 or 2; the human or mouse XCL1 specifically binding DC cells with antigen cross-presentation capability is shown as SEQ ID No.3 or 4;
or
(II) an amino acid sequence obtained by substituting, deleting or adding one or two amino acid residues in the amino acid sequence shown in the (I), and the amino acid sequence has the same or similar functions with the amino acid sequence shown in the (I);
or
(III) an amino acid sequence which has at least 90% sequence identity with the sequence of (I) or (II) and which is functionally identical or similar to the amino acid sequence of (I).
2. The fusion protein of claim 1, wherein the fusion protein comprises an amino acid sequence as set forth in SEQ ID No.9 or SEQ ID No. 10.
3. A nucleic acid molecule encoding the fusion protein of claim 1 or 2, comprising DNA and/or mRNA, wherein the sequence of the nucleic acid molecule has:
(1) a nucleotide sequence as shown in any of SEQ ID No. 17-32;
or
(2) The nucleotide sequence shown as the complementary nucleotide sequence of the nucleotide sequence shown in any SEQ ID No. 15-30; or
(3) The nucleotide sequence which encodes the same protein as the nucleotide sequence of (1) or (2) but differs from the nucleotide sequence of (1) or (2) due to the degeneracy of the genetic code;
or
(4) A nucleotide sequence obtained by substituting, deleting or adding one or two nucleotide sequences with the nucleotide sequence shown in (1), (2) or (3), and the nucleotide sequence has the same or similar functions with the nucleotide sequence shown in (1), (2) or (3);
or
(5) A nucleotide sequence having at least 90% sequence identity to the nucleotide sequence of (1), (2), (3) or (4).
4. Recombinant expression vector comprising a vector and the fusion protein according to claim 1 or 2 or the nucleic acid molecule according to claim 3.
5. The recombinant expression vector of claim 4, wherein the vector comprises pcDNA3.1(+), pcDNA3.1(-), pFastgac 1-dual-MBP, pVAX 1.
6. A recombinant strain or cell comprising the fusion protein of claim 1 or 2 or the nucleic acid molecule of claim 3.
7. Use of the fusion protein according to claim 1 or 2, the nucleic acid molecule according to claim 3, the recombinant expression vector according to claim 4 or 5, or the recombinant strain or cell according to claim 6 for the preparation of a vaccine for tumors highly expressing EPHA2 and/or for the preparation of a medicament for the prevention and/or treatment of tumors highly expressing EPHA 2.
8. The use of claim 7, wherein the metastatic cancer comprises tumors highly expressing EPHA2, including prostate, lung, esophageal, colorectal, cervical, ovarian, breast, and skin cancers.
9. A tumor vaccine targeting EPHA2, comprising the fusion protein of claim 1 or 2, the nucleic acid molecule of claim 3, the recombinant expression vector of claim 4 or 5, or the recombinant strain or cell of claim 6, and a pharmaceutically acceptable carrier, excipient and/or adjuvant.
10. Medicament for preventing and/or treating tumors highly expressing EPHA2, comprising the fusion protein of claim 1 or 2, the nucleic acid molecule of claim 3, the recombinant expression vector of claim 4 or 5 or the recombinant strain or cell of claim 6 and pharmaceutically acceptable excipients.
CN202110624607.7A 2021-06-04 2021-06-04 Cancer vaccine targeting EphA2 antigen Pending CN113072645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110624607.7A CN113072645A (en) 2021-06-04 2021-06-04 Cancer vaccine targeting EphA2 antigen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110624607.7A CN113072645A (en) 2021-06-04 2021-06-04 Cancer vaccine targeting EphA2 antigen

Publications (1)

Publication Number Publication Date
CN113072645A true CN113072645A (en) 2021-07-06

Family

ID=76617155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110624607.7A Pending CN113072645A (en) 2021-06-04 2021-06-04 Cancer vaccine targeting EphA2 antigen

Country Status (1)

Country Link
CN (1) CN113072645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657192A (en) * 2022-03-15 2022-06-24 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) EBNA1 truncated mRNA related vaccine and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201840A1 (en) * 2003-07-30 2012-08-09 Storkus Walter J EphA2 T-Cell Epitopes and Uses Therefor
CN111440244A (en) * 2020-04-09 2020-07-24 诺未科技(北京)有限公司 Metastatic cancer vaccine targeting VEGFR2

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201840A1 (en) * 2003-07-30 2012-08-09 Storkus Walter J EphA2 T-Cell Epitopes and Uses Therefor
CN111440244A (en) * 2020-04-09 2020-07-24 诺未科技(北京)有限公司 Metastatic cancer vaccine targeting VEGFR2

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DISHMAN AF等: "lymphotactin precursor [Homo sapiens]", 《NCBI GENBANK》 *
KAWABE, M等: "Heat Shock Protein 90 Inhibitor 17-Dimethylaminoethylamino-17-Demethoxygeldanamycin Enhances EphA2(+) Tumor Cell Recognition by Specific CD8(+) T Cells", 《WEB OF SCIENCE》 *
LEITER O等: "lymphotactin precursor [Mus musculus]", 《NCBI GENBANK》 *
WANG F等: "ephrin type-A receptor 2 isoform 1 precursor [Homo sapiens]", 《NCBI GENBANK》 *
ZHANG A等: "ephrin type-A receptor 2 precursor [Mus musculus]", 《NCBI GENBANK》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657192A (en) * 2022-03-15 2022-06-24 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) EBNA1 truncated mRNA related vaccine and preparation method and application thereof
CN114657192B (en) * 2022-03-15 2023-08-01 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) EBNA1 truncated mRNA related vaccine and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR102382942B1 (en) Hepatitis b virus core protein and surface antigen protein and vaccine comprising the same
CN107653260B (en) Preparation method and application of recombinant lactococcus lactis
KR20170102905A (en) New multivalent nanoparticle-based vaccine
CN112979829B (en) Fusion protein and application thereof in preparation of vaccine targeting new coronavirus SARS-COV-2
CN111440244B (en) Metastatic cancer vaccine targeting VEGFR2
CN107529534B (en) Protective antigen of avibacterium paragallinarum, expression and application thereof
CN108503714A (en) A kind of human interleukin 2 and anti-human signal transduction factor scfv fusion protein and its application
CN109328230A (en) The composition and method of chimeric alloantigen recipient T cells
CN103160530B (en) A kind of fusion and its application
CN111139233B (en) Broad-spectrum neutralizing anti-EV 71, CA16, CA10 and CA6 human-mouse chimeric IgM monoclonal antibody and application thereof
KR101832610B1 (en) Soluble recombinant antigen protein of porcine epidemic diarrhea virus and vaccine composition for preventing or treating porcine epidemic diarrhea comprising the same
CN113072645A (en) Cancer vaccine targeting EphA2 antigen
CN112159809B (en) gRNA of target CTGF gene and application thereof
KR101915949B1 (en) Gene expression cassette and expression vector comprising the same
KR101919002B1 (en) Soluble Multi-Epitope Antigen of Foot-and-Mouth Disease Virus and Uses Thereof
CN114929266A (en) Nucleic acid vaccination using neoepitope-encoding constructs
Yi et al. Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65
CN109468255B (en) Probiotic clone strain integrating single-copy functional F4 pilus operon gene, construction method and application
CN108794584B (en) Actinobacillus pleuropneumoniae immunoprotective antigen protein APJL _1380 and application thereof
CN108822192B (en) Actinobacillus pleuropneumoniae immunoprotective antigen protein APJL _1976 and application thereof
CN114437235B (en) Recombinant fusion protein of streptococcus equi subspecies 8 proteins, and preparation method and application thereof
CN114573716A (en) Fusion protein containing CCL1, preparation method and application
CN114058634A (en) Genetic engineering subunit vaccine of mycoplasma synoviae
CN110283795A (en) The recombined adhenovirus of EV71 virus and CVA16 virus Neutralization and crystallization is shown simultaneously
CN110950968B (en) gp 96-hog cholera E2 fusion protein, preparation method thereof and vaccine

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230821

Address after: 100084 Tsinghua Yuan, Beijing, Haidian District

Applicant after: TSINGHUA University

Applicant after: NEWISH TECHNOLOGY (BEIJING) Co.,Ltd.

Address before: 100022 room 103, 1 / F, block B, 18 Xihuan South Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing

Applicant before: NEWISH TECHNOLOGY (BEIJING) Co.,Ltd.