CN113067324B - 柔性消弧装置直流侧电压的稳定控制方法 - Google Patents

柔性消弧装置直流侧电压的稳定控制方法 Download PDF

Info

Publication number
CN113067324B
CN113067324B CN202110354585.7A CN202110354585A CN113067324B CN 113067324 B CN113067324 B CN 113067324B CN 202110354585 A CN202110354585 A CN 202110354585A CN 113067324 B CN113067324 B CN 113067324B
Authority
CN
China
Prior art keywords
voltage
phase
current
arc extinction
flexible arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110354585.7A
Other languages
English (en)
Other versions
CN113067324A (zh
Inventor
郭宸杰
郭谋发
游建章
张彬隆
杨博雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110354585.7A priority Critical patent/CN113067324B/zh
Publication of CN113067324A publication Critical patent/CN113067324A/zh
Application granted granted Critical
Publication of CN113067324B publication Critical patent/CN113067324B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/08Limitation or suppression of earth fault currents, e.g. Petersen coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本发明提出一种柔性消弧装置直流侧电压的稳定控制方法,其特征在于:柔性消弧装置采用单相级联H桥变流器,柔性消弧装置挂接在相线和大地之间;柔性消弧控制方法为:系统正常运行时,柔性消弧装置从并网点吸收有功功率稳定单相级联H桥变流器直流侧电容电压;接地故障时,单相级联H桥变流器由直流侧电容稳压模式切换至柔性消弧,补偿接地故障电流至零。本发明解决了柔性消弧装置直流侧取源问题,节省了装置成本。

Description

柔性消弧装置直流侧电压的稳定控制方法
技术领域
本发明属于电网单相接地故障消弧技术领域,尤其涉及一种柔性消弧装置直流侧电压的稳定控制方法。
背景技术
配电网单相接地故障电弧容易引发山火和电气设备击穿,已有的消弧装置应用最为广泛的为消弧线圈,但其仅能补偿接地故障电流的无功分量,无法补偿有功分量,因此出现了以有源逆变器补偿接地故障电流有功分量的柔性消弧装置。
已有的柔性消弧装置主要问题有:逆变器的直流侧需提供稳定的直流源,多以降压变压器和整流器的方式给直流侧供电,但投入成本较高,装置体积大。
发明内容
有鉴于此,本发明的目的在于提供一种柔性消弧装置直流侧电压的稳定控制方法,省去直流侧单独的直流供电电源,能够迅速抑制接地故障电弧的同时具有更高的经济性。
其柔性消弧装置采用单相级联H桥变流器,柔性消弧装置挂接在相线和大地之间;柔性消弧控制方法为:系统正常运行时,柔性消弧装置从并网点吸收有功功率稳定单相级联H桥变流器直流侧电容电压;接地故障时,单相级联H桥变流器由直流侧电容稳压模式切换至柔性消弧,补偿接地故障电流至零。本发明解决了柔性消弧装置直流侧取源问题,节省了装置成本。
本发明具体采用以下技术方案:
一种柔性消弧装置直流侧电压的稳定控制方法,其特征在于:柔性消弧装置采用单相级联H桥变流器,挂接在相线和大地之间;柔性消弧控制方法为:系统正常运行时,柔性消弧装置从并网点吸收有功功率稳定单相级联H桥变流器直流侧电容电压;接地故障时,单相级联H桥变流器由直流侧电容稳压模式切换至柔性消弧,补偿接地故障电流至零。
优选地,所述单相级联H桥变流器连接于配电网相电源和大地之间,其直流侧电源采用电容储能。
优选地,分时控制级联H桥给直流侧电容充电和放电。
以及,一种柔性消弧装置直流侧电压的稳定控制方法,其特征在于,包括以下步骤:
步骤S1:将单相级联H桥变流器作为柔性消弧装置挂接于配电网相和接地之间;
步骤S2:实时采集系统母线三相电压、三相电流和零序电压以及变流器注入电流;
步骤S3:计算母线零序电压的幅值和相位;根据零序电压是否越线判定是否发生接地故障:
判断为正常运行时或接地故障消失后控制柔性消弧装置吸收有功电流给直流侧电容充电,并稳定在给定值,回到步骤S2:;
判断为接地故障时控制柔性消弧装置由直流侧电容稳压模式切换至消弧模式,输出接地故障全补偿电流,包括有功分量和无功分量,抑制故障相电压至零;并执行步骤S4;
步骤S4:判断接地故障是否已经消失,若故障消失,则柔性消弧装置由消弧模式切换至直流侧电容稳压模式,返回步骤S2。
与现有技术相比,本发明及其优选方案具有以下有益效果:
本发明提出的柔性消弧装置直流侧稳压和柔性消弧的切换控制方法,分时从电网吸收和释放有功功率使得直流侧电压稳定,将省去直流侧单独的直流供电电源,节省了装置的投入成本。
附图说明
下面结合附图和具体实施方式对本发明进一步详细的说明:
图1为本发明实施例带单相级联H桥变流器的配电网结构原理示意图;
图2为本发明实施例仿真模型示意图;
图3为本发明实施例一仿真实例直流侧电容电压控制效果的示意图;
图4为本发明实施例一仿真实例接地故障电流补偿效果的示意图。
具体实施方式
为让本专利的特征和优点能更明显易懂,下文特举实施例,作详细说明如下:
如图1所示,本发明实施例提供一种柔性消弧装置直流侧电容电压的稳定控制方法,其中,柔性消弧装置采用单相级联H桥变流器,直流侧用电容储能,柔性消弧装置连接于配电网相电源和大地之间。系统正常运行时,柔性消弧装置从并网点吸收有功功率以稳定级联H桥变流器直流侧电容电压;接地故障时,直流侧电容放电并控制柔性消弧装置输出接地故障全补偿电流,抑制接地故障电弧重燃,具体包括以下步骤:
步骤S1:将单相级联H桥变流器挂接于配电网相和接地之间;
步骤S2:实时采集系统母线三相电压、三相电流和零序电压以及变流器注入电流;
步骤S3:计算母线零序电压的幅值和相位;根据零序电压是否越线判定是否发生接地故障:
判断为正常运行时或接地故障消失后控制柔性消弧装置吸收有功电流给直流侧电容充电,并稳定在给定值,回到步骤S2:;
判断为接地故障时控制柔性消弧装置由直流侧电容稳压模式切换至消弧模式,输出接地故障全补偿电流,包括有功分量和无功分量,抑制故障相电压至零;并执行步骤S4;
步骤S4:判断接地故障是否已经消失,若故障消失,则柔性消弧装置由消弧模式切换至直流侧电容稳压模式,返回步骤S2。
在本实施例中,其主要结构特点在于:以单相级联H桥变流器作为柔性消弧装置,H桥变流器的直流侧电源采用电容储能。并通过分时控制级联H桥给直流侧电容充电和放电。
以下对本实施例的技术方案从原理角度进行详细说明:
1.柔性消弧原理
配电网发生单相接地故障时,柔性消弧装置向配电网注入补偿电流
Figure BDA0003003036920000035
根据图1可列出基尔霍夫电流方程
Figure BDA0003003036920000031
式中,
Figure BDA0003003036920000032
Figure BDA0003003036920000033
分别为系统A、B和C相对地电流,
Figure BDA0003003036920000034
为接地故障电流,各电流与电压的关系为
Figure BDA0003003036920000041
式中
Figure BDA0003003036920000042
Figure BDA0003003036920000043
为各相电源电压,
Figure BDA0003003036920000044
为中性点电压,Rf为接地过渡电阻,YA、 YB、YC为各相对地导纳。
将式(2)代入式(1)可得
Figure BDA0003003036920000045
由式(1)可知,只需将变流器注入电流的控制目标设定为系统总的对地电流,即
Figure BDA0003003036920000046
即可将接地点故障电流抑制为零,该方法称为电流消弧法;若以电压为控制目标,将式(3)中的中性点电压控制为故障相电源电压负值
Figure BDA0003003036920000047
则故障点电流
Figure BDA0003003036920000048
也将被抑制成零,该方法称为电压消弧法。
2.柔性消弧装置直流侧电压稳定控制方法
根据并网点电压
Figure BDA0003003036920000049
与计算的注入电流
Figure BDA00030030369200000410
的向量为非垂直量关系,在消弧过程中需要消耗有功功率,直流侧电容电压必然会下降,因此需要对直流侧电压进行稳定控制,保证消弧装置能够正常运行:在配电网正常运行和消弧过后,通过电压环控制,从配电网侧吸收功率对级联H桥进行充电,将直流侧电压稳定在参考值,同时进行均压控制,保证各H桥单元直流侧电压相等。
以下通过一个具体的仿真实例对本实施例方案做更进一步的说明。
实施例1:
本实施例中,利用Simulink软件搭建如图2所示含3条馈线的配电网仿真模型,配电线路采用Π型等效模型。对图2所示配电网络,接地故障点设置在馈线3,设置A相接地故障,仿真结果如图3和图4所示。
由图3可知,在配电网正常运行和消弧后,对级联H桥进行电压控制,从配电网吸收功率,给级联H桥直流侧电容充电,从投入充电到达到参考值电压用时约0.08s,充电完毕后保持电压稳定。
由图4可知,配电网在0.04s时刻发生单相接地故障,此时故障电流迅速增大,在0.08s时刻控制级联H桥注入补偿电流,故障电流迅速降低,达到可靠消弧的目的。
本专利不局限于上述最佳实施方式,任何人在本专利的启示下都可以得出其它各种形式的柔性消弧装置直流侧电压的稳定控制方法,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本专利的涵盖范围。

Claims (1)

1.一种柔性消弧装置直流侧电压的稳定控制方法,其特征在于:柔性消弧装置采用单相级联H桥变流器,挂接在相线和大地之间;柔性消弧控制方法为:系统正常运行时,柔性消弧装置从并网点吸收有功功率稳定单相级联H桥变流器直流侧电容电压;接地故障时,单相级联H桥变流器由直流侧电容稳压模式切换至柔性消弧,补偿接地故障电流至零;
所述单相级联H桥变流器连接于配电网相电源和大地之间,其直流侧电源采用电容储能;
分时控制级联H桥给直流侧电容充电和放电;
其具体包括以下步骤:
步骤S1:将单相级联H桥变流器作为柔性消弧装置挂接于配电网相和接地之间;
步骤S2:实时采集系统母线三相电压、三相电流和零序电压以及变流器注入电流;
步骤S3:计算母线零序电压的幅值和相位;根据零序电压是否越线判定是否发生接地故障:
判断为正常运行时或接地故障消失后控制柔性消弧装置吸收有功电流给直流侧电容充电,并稳定在给定值,回到步骤S2;
判断为接地故障时控制柔性消弧装置由直流侧电容稳压模式切换至消弧模式,输出接地故障全补偿电流,包括有功分量和无功分量,抑制故障相电压至零;并执行步骤S4;
步骤S4:判断接地故障是否已经消失,若故障消失,则柔性消弧装置由消弧模式切换至直流侧电容稳压模式,返回步骤S2;
其所基于的原理是:
配电网发生单相接地故障时,柔性消弧装置向配电网注入补偿电流
Figure FDA0003644412200000011
列出基尔霍夫电流方程:
Figure FDA0003644412200000012
式中,
Figure FDA0003644412200000013
Figure FDA0003644412200000014
分别为系统A、B和C相对地电流,
Figure FDA0003644412200000015
为接地故障电流,各电流与电压的关系为
Figure FDA0003644412200000016
式中
Figure FDA0003644412200000021
Figure FDA0003644412200000022
为各相电源电压,
Figure FDA0003644412200000023
为中性点电压,Rf为接地过渡电阻,YA、YB、YC为各相对地导纳;
将式(2)代入式(1)得:
Figure FDA0003644412200000024
由式(1)可知,只需将变流器注入电流的控制目标设定为系统总的对地电流,即
Figure FDA0003644412200000025
即可将接地点故障电流抑制为零,该方法称为电流消弧法;若以电压为控制目标,将式(3)中的中性点电压控制为故障相电源电压负值
Figure FDA0003644412200000026
则故障点电流
Figure FDA0003644412200000027
也将被抑制成零,该方法称为电压消弧法;
根据并网点电压
Figure FDA0003644412200000028
与计算的注入电流
Figure FDA0003644412200000029
的向量为非垂直量关系,在消弧过程中需要消耗有功功率,直流侧电容电压必然会下降,因此需要对直流侧电压进行稳定控制,保证消弧装置能够正常运行:在配电网正常运行和消弧过后,通过电压环控制,从配电网侧吸收功率对级联H桥进行充电,将直流侧电压稳定在参考值,同时进行均压控制,保证各H桥单元直流侧电压相等。
CN202110354585.7A 2021-04-01 2021-04-01 柔性消弧装置直流侧电压的稳定控制方法 Active CN113067324B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110354585.7A CN113067324B (zh) 2021-04-01 2021-04-01 柔性消弧装置直流侧电压的稳定控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110354585.7A CN113067324B (zh) 2021-04-01 2021-04-01 柔性消弧装置直流侧电压的稳定控制方法

Publications (2)

Publication Number Publication Date
CN113067324A CN113067324A (zh) 2021-07-02
CN113067324B true CN113067324B (zh) 2022-09-16

Family

ID=76565323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110354585.7A Active CN113067324B (zh) 2021-04-01 2021-04-01 柔性消弧装置直流侧电压的稳定控制方法

Country Status (1)

Country Link
CN (1) CN113067324B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114094562B (zh) * 2021-11-29 2024-03-22 福州大学 配电网单相接地故障柔性消弧退出方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610147B (zh) * 2016-03-24 2018-03-16 福州大学 一种基于三相级联h桥变流器的配电网接地故障消弧方法
CN111756030A (zh) * 2019-03-29 2020-10-09 南京南瑞继保电气有限公司 小电流接地系统无功补偿及单相接地故障消弧系统及方法
CN111130088B (zh) * 2020-01-07 2021-08-31 福州大学 一种配电网单相接地故障集成化柔性消弧方法
CN112234596B (zh) * 2020-10-15 2021-11-30 福州大学 配电网单相接地故障柔性自适应消弧方法

Also Published As

Publication number Publication date
CN113067324A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN111082409B (zh) 一种配电网单相接地故障主从式消弧系统
CN112769115B (zh) 一种接地残流自适应有源全补偿控制方法
CN113036730B (zh) 配电网单相接地故障柔性消弧装置的控制方法
CN105322528A (zh) 小电流接地故障有源消弧时注入电流两点计算方法
CN105119262A (zh) 同时实现电能质量调节和小电流接地故障有源消弧的电路
Nielsen et al. Comparison of system topologies for dynamic voltage restorers
CN110556811A (zh) 基于单一直流源级联h桥变流器的配电网柔性消弧方法
CN113067324B (zh) 柔性消弧装置直流侧电压的稳定控制方法
Li et al. The steady-state and fault ride-through control strategies of soft normally open point in distribution network
Omar et al. New control technique applied in dynamic voltage restorer for voltage sag mitigation
CN112865060A (zh) 一种新型四桥臂拓扑的配电网集成化消弧装置及方法
Wang et al. A current-limiting scheme for voltage-controlled inverter using instantaneous current to generate virtual impedance
CN113422369B (zh) 故障柔性消弧与电能质量调控复合系统的优化运行与控制方法
Suru et al. Design and analysis of the compensating capacitor charging algorithm for active filtering systems
Mohamed et al. FACTS Family for Voltage Sag Alleviation: Performance Study and Analysis
CN106159923A (zh) 低压三相四线供电有源不平衡治理n线过流保护器
Shendge et al. Simulink model for mitigation of sag/swell by dynamic voltage restorer using SPWM technique
Peterson et al. Smart grid technologies for reactive power compensation in motor start applications
Omar et al. Voltage Disturbances Mitigation in Low Voltage Distribution System Using New Configuration of Dynamic Voltage Restorer (DVR)
Toledo et al. Multi-modular scalable DC-AC power converter for current injection to the grid based on predictive voltage control
Basith et al. A novel approach of dynamic voltage restorer integration with ultra capacitor for proper voltage sag compensation
Onodera et al. Fault-Ride-Through (FRT) Characteristics of a Power-Decoupling-Type Photoinverter System
Wang et al. Research on voltage sag properties of medium-low voltage DC distribution system
Koushki et al. A model predictive control for a four-leg inverter in a stand-alone microgrid under unbalanced condition
Mishra et al. Power quality enhancement of micro-grid using DG and power quality conditioner

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant