CN113066063B - 光纤待对芯端图像处理方法及光纤自适应对芯方法 - Google Patents

光纤待对芯端图像处理方法及光纤自适应对芯方法 Download PDF

Info

Publication number
CN113066063B
CN113066063B CN202110332904.4A CN202110332904A CN113066063B CN 113066063 B CN113066063 B CN 113066063B CN 202110332904 A CN202110332904 A CN 202110332904A CN 113066063 B CN113066063 B CN 113066063B
Authority
CN
China
Prior art keywords
optical fiber
image
processing
core
aligned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110332904.4A
Other languages
English (en)
Other versions
CN113066063A (zh
Inventor
邹辉
杨晟东
张云山
李瑞民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202110332904.4A priority Critical patent/CN113066063B/zh
Publication of CN113066063A publication Critical patent/CN113066063A/zh
Application granted granted Critical
Publication of CN113066063B publication Critical patent/CN113066063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/155Segmentation; Edge detection involving morphological operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Abstract

本发明公开了光纤待对芯端图像处理方法及光纤自适应对芯方法,光纤自适应对芯方法包括:色彩变换,高斯滤波,阈值化处理,轮廓识别和霍夫空间变换,直线参数方程检测和旋转光纤夹具自适应旋转;本发明所述方法解决了现有技术中存在的超细径光纤对芯难度大,偏差大的一系列对芯难题;运用该方法在光纤熔接机上进行验证,结果表明该方法是稳定有效的,且最终对芯的效果满足光纤的性能要求。

Description

光纤待对芯端图像处理方法及光纤自适应对芯方法
技术领域
本发明涉及光纤加工技术领域,特别是涉及光纤自适应对芯方法。
背景技术
目前市面上大部分光纤的对芯采用的是POL侧视成像技术,精度过低,对于125微米光纤,其误差较小,但对于单模光纤等超细径光纤,其精度很难达到要求。
一般情况下超细径光纤在熔接前,需要先对芯;在光纤熔接过程中,熔接点的光功率要损耗尽量小、对接尽可能精准。国内现有技术主要针对于125微米的光纤对接,但对于光纤等超细径光纤的精准对接存在较大地误差,如果能够提高超细径光纤的对芯精度,确保光纤的对接完成后的正常使用,同时对于我国航天航空领域的精密仪器制造,有着重大意义。
现有专利文件,公告号为CN105676356B、专利名称为一种纤芯的定位方法及光纤熔接的纤芯对位校准方法,针对纤芯较粗的大模场光纤肉眼观察误差较大的情况,通过图像采集装置采集的待测光纤的图像精确判断两个光纤的纤芯中心位置,以此调整两个光纤之间的相对位置以此校准纤芯的对位,但是其公开的纤芯的定位方法只能识别两根光纤的纤芯中心,公开的纤芯对位校准方法也只是获取灰度图像并识别出光纤轮廓,获得两根光纤的相对位置后进行人工控制调整,并不能够根据参考坐标直接确定纤芯的准确位置,也不能识别出待熔接的光纤切口的倾斜角度,因此其适用范围有限,不能适用于高精度要求的超细径光纤的对芯,也不能实现光纤切口的倾斜角度的可行性分析。
另一个现有专利文件,公开号为CN110455205A、发明名称为一种基于Halcon的光纤端面尺寸检测方法,公开了通过机器视觉的方法对图像进行处理及检测,降低人工操作,提高检测的精准度。在一定程度上提高了光纤切口的端面图像处理,提高了端面识别的精度,但后续的对芯操作还是需要人工对芯才能完成。
发明内容
本发明所要解决的技术问题是,提供一种光纤自适应对芯方法,采用本发明提供的光纤待对芯端图像处理方法,能够实现超细径光纤的高效精准对芯,从而降低光纤的熔接损耗,保持稳定的消光比;这种图像处理方法和对芯方法既可用于单模光纤的对芯,同时也可以适用于其他的光纤,如保偏光纤的对芯操作,当然本发明提供的这种对芯方法在单模光纤的对芯操作中优势更加明显。
需要明确的是,本申请所述的超细径光纤指的是芯径为1μm~60μm的光纤。
本发明采用的技术方案如下:
第一方面,
本发明提供一种光纤待对芯端图像处理方法,所述方法包括如下步骤:
步骤一:获取两根光纤的待对芯端侧面图,保证图像分辨率至少为480*640;
步骤二:采用加权平均值法对所述光纤待对芯端侧面图进行预处理,按照一定权值对R、G、B的值加权平均得到初始灰度图;
步骤三:采用固定阈值高斯滤波处理所述初始灰度图,得到高斯模糊后的灰度图即高斯模糊图像;根据不同阈值下包层识别结果,选择最佳的固定二值化阈值,对每个像素点进行固定二值化处理从而得到整个高斯模糊图像的二值化图像;
步骤四:对所述二值化图像进行光纤包层Canny边缘检测,采用轮廓绘制函数对所述二值化图像进行灰度对比,输出得到只含有光纤侧面包层的光纤边缘轮廓图;使用sobel算子对所述光纤边缘轮廓图的所有像素点做卷积计算即求梯度值,得到每个像素点的领域内的梯度值;
步骤五:将笛卡尔空间转化成参数空间;
步骤六:对参数空间使用直线的参数方程,遍历霍夫变换后的各直线方程,识别当前像素点是否位于直线上;
步骤七:根据霍夫线变换后的识别结果,计算直线的空间位置信息。
进一步的,所述步骤三中,所述固定阈值高斯滤波处理步骤包括:
根据二维高斯函数计算图像中每个像素点的权重值;
建立每个像素点的权重矩阵,选取合适大小的高斯内核,在X和Y两个方向上,设置一定的标准差;
将每个像点乘以对应权值,求和得到中心点的高斯模糊的值;
计算出所有像素点的高斯模糊值,输出高斯模糊图像。
进一步的优选的,所述二维高斯函数为:
Figure BDA0002996954790000041
其中,x、y为横纵坐标位置,σ为方差,e为自然常数。
进一步的,步骤三中,所述高斯模糊图像进行固定阈值的二值化,对每个像素点变换方法采用的公式如下:
Figure BDA0002996954790000042
其中,“maxval”表示二值化最大值如1,src(x,y)为(x,y)处像素点的值,“thresh”为设定二值化的阈值;“Otherwise”表示其他条件。
进一步的,步骤六,所述直线参数方程为:
ρ=xcos θ+ysin θ,其中参数ρ值作为判断像素点为线性相关的依据,其中x、y为横纵坐标位置,θ为光纤切面与竖直面夹角。
第二方面,
本发明还提供一种光纤自适应对芯方法,包括:
步骤一:将两根端面沿横截面切割角度不大于5°的光纤初步对准置于光纤熔接机平台上;
步骤二:采用上述光纤带对芯端图像处理方法对获取的图像进行处理,得到空间位置信息;
步骤三:旋转光纤夹具,将两段光纤在物理空间XY方向自左向右,自上向下移动;
步骤四:当夹具旋转超调时,控制夹具减速回调,重新进行XY轴对芯,直至完成XY轴对芯。
与现有技术相比,本发明的有益效果是:
第一发面,本发明提供的一种光纤待对芯端图像处理方法适用于各种光纤的对芯,且自适应效果良好,对接精度高;
本领域技术人员熟知熔接后的超细径光纤消光比越大,其性能越佳,而影响消光比的关键因素在于对芯的精度,本发明提供的光纤待对芯端图像处理方法在识别光纤纤芯的同时,会针对识别出切割端面的角度,进行对芯角度判断,若左右两侧光纤的切割角度差异大于设定阈值,则要求更换光纤,而不是盲目对接,而这一阈值的设定可以根据行业或者企业的标准设定,避免了熔接后光纤使用寿命过短,传输误码率高的问题;
而且,本发明提供的光纤待对芯端图像处理方法不仅能够识别出光纤切口的轮廓,还能够识别出纤芯的准确坐标位置,以及待熔接的光纤头部倾斜角度,是后续的自动对芯的前提条件;且本发明提供的光纤待对芯端图像处理方法无需获取灰度分布曲线,通过固定阈值灰度化以后,将图像进一步二值化,便于纤芯轮廓和位置的识别;
第二方面,本发明提供的一种光纤自适应对芯方法无需采集端面图像处理,只需要一部垂直的摄像头获取光纤的纤芯准确位置,自动定位后完成光纤的对芯操作。
本发明提供的一种光纤自适应对芯方法,适用于各种光纤的对芯,尤其适用于超细径光纤的对芯,对芯效率高,通过此方法对芯熔接后的光纤,其熔接损耗小。
附图说明
图1为具体实施方式中所述光纤自适应对芯方法流程示意图。
图2为具体实施方式中所述待对芯光纤示意图。
图3为具体实施方式中所述光纤侧面固定阈值灰度处理后示意图。
图4为具体实施方式中所述光纤侧面高斯滤波前后对比图。
图5为具体实施方式中所述识别结果展示。
图6为具体实施方式中所述为对接效果展示图。
图7为具体实施方式中所述光纤切面与竖直面夹角示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本实施例具体选取两根芯径为9微米的单模光纤,如图1所示光纤自适应对芯方法包括以下步骤:
S100将两根光纤的端面沿横截面切割角度为5°的光纤初步对准置于光纤熔接机平台上,用摄像头采集获取两根光纤的待对芯端RGB图像,图像分辨率为480*640,其示意图如图2所示。
S200采用线性加权法,根据RGB转为灰度值的心理学公式,由R、G、B线性加权得到灰度图,即
Grey=0.299*R+0.587*G+0.114*B
本实施例具体采用的是1W白光源侧面45°照射光纤,取灰度化最佳阈值为55,需要说明的是,在具体操作时,使用者可根据实际光照情况以及滤波前后图像平滑度选择合适的灰度化最佳阈值;
S300根据二维高斯函数计算图像中每个像素点的权重值,其中二维高斯函数为:
Figure BDA0002996954790000071
其中x、y为横纵坐标位置,σ为方差,e为自然常数;
本实施例中设定中心点的坐标为(0,0),建立权重矩阵,选取高斯内核大小为Size(9,9),即一个权重矩阵为9×9的二维矩阵,在X和Y两个方向上,设置标准差σ为3;
设定卷积核大小为9,则9×9矩阵为
Figure BDA0002996954790000072
选取方差σ=1.5,则可以计算出上述矩阵各个像素点的权重值如下:
Figure BDA0002996954790000081
将上述矩阵权重归一化,得到最终的权重矩阵:
Figure BDA0002996954790000082
将每个像点乘以对应权值,求和得到中心点的高斯模糊的值;
重复上一过程,计算出所有像素点的高斯模糊值,得到高斯模糊后的灰度图;如图3所示。
对上一过程得到的高斯模糊图像进行固定阈值的二值化;
根据不同阈值下包层识别结果,选择固定二值化阈值为120,根据熔接机内部光照强度条件,通过多次调试得出采用越大的阈值对于图像的信息丢失就越少,故对得到的灰度图进行固定阈值120的高斯滤波处理;
对每个像素点变换方法为:
Figure BDA0002996954790000091
其中,src(x,y)为(x,y)处像素点的值;“thresh”为设定二值化的阈值;“Otherwise”表示其他条件;
对每个像素点进行固定二值化处理,得到二值化图像;如图4所示。
S400,对得到的二值化图像进行光纤包层Canny边缘检测,采用轮廓绘制函数对目标图像进行灰度对比,输出得到只含有光纤侧面包层的轮廓的图像;对光纤边缘轮廓图使用sobel算子对图像像素做卷积即求梯度值,然后对新像素灰度值做阈值运算,确定边缘像素点的信息,利用高斯函数分离特性,
Figure BDA0002996954790000092
即卷积计算公式为:
|G|=|Gx|+|Gy|
其中Gx为x轴的卷积值,Gy为y轴卷积值。
由此可以计算出像素点的邻域内的梯度值,重复上一过程,计算全部像素点的邻域内的梯度值;
S500将X-Y坐标系中的点转换到变量空间,实现图像空间到“参数空间”的映射,变量空间的选择是由待检测的直线形状决定的;给定两个点A(x1,y2)和B(x2,y2),可以唯一确定一条直线,从而将笛卡尔空间转化成参数空间;
S600对参数空间使用直线的参数方程,将参数ρ值作为判断像素点为线性相关的依据,其中直线参数方程为:
ρ=xcos θ+ysin θ
遍历霍夫变换后的各直线方程,判断当前像素点是否位于直线上
S700霍夫线变换后,根据识别结果,计算直线的空间位置信息,如图5所示。
直线检测完成后,为展示效果,将检测结果绘制在图像上,如图6所示,以左侧光纤为例,直线检测可以得到光纤厚度d,以及光纤横向距离w,光纤纵向距离H;如图7所示,同时可以获得光纤切面与竖直面夹角θ1。同理获得右侧光纤的夹角θ2
S800在对芯前,首先进行角度可行性分析,若|θ12|≤2°,则驱动电机旋转光纤夹具,将两段光纤在物理空间XY方向左右移动,或上下移动;当夹具旋转超调时,控制夹具减速回调,重新进行XY轴对芯,直至完成XY轴对芯;若不符合对芯角度要求即|θ12|≤2,需要说明的是,这里的对芯角度要求可以根据行业或企业标准进行设定,若不满足对芯角度要求,则需要重新切割光纤,或者要求更换光纤。
测试例1:消光比测试
采用上述方法对芯后的光纤消光比测试,本次测试采用消光比测定方法进行效果测试,测试过程如下:
在管线熔接前,待熔接的一组光纤中的其中一根光纤插入适配器,后接入消光比测试仪,读取屏幕上的消光比的值,记录下此时读数为初始消光比;同样的方法,将熔接后的光纤接入消光比测试仪,读消光比为熔接后的消光比,样本数量为五组待熔接光纤,每个样本重复测量5次,将5次的平均值计入下表中。
光纤熔接前后的消光比:
实验样本 第一组 第二组 第三组 第四组 第五组
初始消光比 43.2dB 47.6dB 46.2dB 46.9dB 47.1dB
熔接后消光比 35.7dB 36.4dbB 35.6dB 37.8dB 38.1dB
通过测试例1的结果表明,通过上述对芯方法对芯后的超细径光纤在熔接后具有良好的消光比。
测试例2:熔接损耗测试:
测试系统包括保偏光源和光功率计,首先调整保偏光源的输出功率,使得输出功率在光功率计的范围以内,待系统预热以后,读取稳定的光功率值P0作为基准参考,将光功率计切换为相对模式,并做归零操作;将熔接后的光纤接入系统,注意熔接点距离光功率计的距离每次保持恒定且大于2m,测出此时的光功率值,此时为该光纤熔接后的熔接损耗。
多次实验,取平均值,测量结果如下表所示。
实验次数 第一次 第二次 第三次 第四次 第五次
熔接损耗 0.034dB 0.038dB 0.041dB 0.036dB 0.037dB
通过测试例2结果表明:通过上述对芯方法对芯后的超细径光纤在熔接后的熔接损耗很低。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.光纤待对芯端图像处理方法,其特征在于,所述方法包括如下步骤:
步骤一:获取两根光纤的待对芯端侧面图;
步骤二:对所述光纤待对芯端侧面图的RGB的值加权平均得到初始灰度图;
步骤三:采用固定阈值高斯滤波处理所述初始灰度图,得到高斯模糊图像;根据不同阈值下包层识别结果,选择最佳的固定二值化阈值,对每个像素点进行固定二值化处理从而得到整个高斯模糊图像的二值化图像;
步骤四:对所述二值化图像进行光纤包层Canny边缘检测,输出只含有光纤侧面包层的光纤边缘轮廓图;对所述光纤边缘轮廓图的所有像素点做卷积计算得到整个图像中每个像素点的领域内的梯度值;
步骤五:对整个图像的每一个像素点的梯度值进行加权霍夫变换投影即由笛卡尔空间转化成参数空间;
步骤六:对参数空间使用直线的参数方程,遍历霍夫变换后的各直线方程,识别当前像素点是否位于直线上;
步骤七:根据霍夫线变换后的识别结果,计算直线的空间位置信息,所述空间位置信息包括左侧光纤切面与竖直面夹角θ1、右侧光纤切面与竖直面夹角θ2
2.根据权利要求1所述的光纤待对芯端图像处理方法,其特征在于,所述步骤三中,所述固定阈值高斯滤波处理步骤包括:
根据二维高斯函数计算图像中每个像素点的权重值;建立每个像素点的权重矩阵,选取合适大小的高斯内核,在X和Y两个方向上,设置一定的标准差;将每个像点乘以对应权值,求和得到中心点的高斯模糊的值;计算出所有像素点的高斯模糊值,输出高斯模糊图像。
3.根据权利要求2所述的光纤待对芯端图像处理方法,其特征在于,所述二维高斯函数为:
Figure FDA0003782118320000021
其中,x、y为横纵坐标位置,σ为方差,e为自然常数。
4.根据权利要求1所述的光纤待对芯端图像处理方法,其特征在于,步骤三中,所述高斯模糊图像进行固定阈值的二值化采用公式如下:
Figure FDA0003782118320000022
其中,“maxval”表示二值化最大值如1,src(x,y)为(x,y)处像素点的值,“thresh”为设定二值化的阈值;“Otherwise”表示其他条件。
5.根据权利要求1所述的光纤待对芯端图像处理方法,其特征在于,步骤四中,使用sobel算子对所述光纤边缘轮廓图的所有像素点做卷积计算。
6.根据权利要求1所述的光纤待对芯端图像处理方法,其特征在于,步骤六,所述直线参数方程为:
ρ=xcosθ+ysinθ,其中参数ρ值作为判断像素点为线性相关的依据,其中x、y为横纵坐标位置,θ为光纤切面与竖直面夹角。
7.根据权利要求1所述的光纤待对芯端图像处理方法,其特征在于,步骤一中,所述光纤为单模光纤。
8.根据权利要求7所述的光纤待对芯端图像处理方法,其特征在于,所述光纤的芯径为9微米。
9.根据权利要求1所述的光纤待对芯端图像处理方法,其特征在于,步骤一中,所述光纤为保偏光纤。
10.光纤自适应对芯方法,其特征在于,所述方法包括以下步骤:
步骤一:将两根端面沿横截面切割角度不大于5°的光纤初步对准置于光纤熔接机平台上;
步骤二:采用权利要求1-9中任意一项权利要求所述的光纤待对芯端图像处理方法对获取的光纤待对芯端图像进行处理,得到光纤准确的空间位置信息;
步骤三:旋转光纤夹具,将两段光纤在物理空间XY方向自左向右,自上向下移动;
步骤四:当夹具旋转超调时,控制夹具减速回调,重新进行XY轴对芯,直至完成XY轴对芯。
CN202110332904.4A 2021-03-29 2021-03-29 光纤待对芯端图像处理方法及光纤自适应对芯方法 Active CN113066063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110332904.4A CN113066063B (zh) 2021-03-29 2021-03-29 光纤待对芯端图像处理方法及光纤自适应对芯方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110332904.4A CN113066063B (zh) 2021-03-29 2021-03-29 光纤待对芯端图像处理方法及光纤自适应对芯方法

Publications (2)

Publication Number Publication Date
CN113066063A CN113066063A (zh) 2021-07-02
CN113066063B true CN113066063B (zh) 2022-10-04

Family

ID=76564224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110332904.4A Active CN113066063B (zh) 2021-03-29 2021-03-29 光纤待对芯端图像处理方法及光纤自适应对芯方法

Country Status (1)

Country Link
CN (1) CN113066063B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116558777B (zh) * 2023-03-27 2024-04-09 珠海科技学院 一种光纤通导性检验方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207366784U (zh) * 2017-08-28 2018-05-15 广东藤友通信科技有限公司 一种一体式光纤熔接机对芯装置和光纤熔接机
CN208125951U (zh) * 2018-03-16 2018-11-20 佛山昕宇飞通通信科技有限公司 一种半分体式光纤熔接机对芯装置和光纤熔接机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207366784U (zh) * 2017-08-28 2018-05-15 广东藤友通信科技有限公司 一种一体式光纤熔接机对芯装置和光纤熔接机
CN208125951U (zh) * 2018-03-16 2018-11-20 佛山昕宇飞通通信科技有限公司 一种半分体式光纤熔接机对芯装置和光纤熔接机

Also Published As

Publication number Publication date
CN113066063A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
US7221805B1 (en) Method for generating a focused image of an object
US6636298B1 (en) Method and apparatus for focusing an optical inspection system
CN111223133B (zh) 一种异源图像的配准方法
CN110501342B (zh) 一种筒子纱纱杆定位视觉检测方法
US5164997A (en) Method and apparatus for aligning images using pixels of closed contours
CN109612689B (zh) 一种光纤端面检测方法及系统
CN107392849B (zh) 基于图像细分的靶标识别与定位方法
CN115100200B (zh) 基于光学手段的光纤缺陷检测方法及系统
CN106814083A (zh) 滤波片缺陷检测系统及其检测方法
CN107358628B (zh) 基于靶标的线阵图像处理方法
CN113066063B (zh) 光纤待对芯端图像处理方法及光纤自适应对芯方法
CN114119456A (zh) 一种基于机器视觉的管道自动对中方法
CN113219589B (zh) 基于霍夫梯度下降的熊猫眼保偏光纤自适应对轴方法
CN115825103B (zh) 一种基于图像技术的用于带角度端口光纤阵列的检端系统
CN114813061B (zh) 一种近眼成像设备的光学参数检测方法及系统
CN114755243A (zh) 一种基于机器视觉的fpc连接器表面裂纹检测方法
CN115014217A (zh) 一种基于激光测距的管材在线检测方法
CN114820761A (zh) 基于图像显微扫描平台xy方向夹角测量与运动补偿方法
CN102735220B (zh) 长焦距、大视场相机焦面装调方法
CN116563298B (zh) 基于高斯拟合的十字线中心亚像素检测方法
CN112902869A (zh) 轨廓测量系统激光平面调整方法及装置
CN112763496A (zh) 一种手机电池表面缺陷检测装置及其检测方法
CN111986266A (zh) 一种光度立体视觉点光源参数标定方法
JP2509772B2 (ja) 光コネクタの端面検査装置
CN114963981B (zh) 一种基于单目视觉的筒状零件对接非接触式测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant