CN113066049A - Mems传感器疵病种类识别方法及系统 - Google Patents
Mems传感器疵病种类识别方法及系统 Download PDFInfo
- Publication number
- CN113066049A CN113066049A CN202110259581.0A CN202110259581A CN113066049A CN 113066049 A CN113066049 A CN 113066049A CN 202110259581 A CN202110259581 A CN 202110259581A CN 113066049 A CN113066049 A CN 113066049A
- Authority
- CN
- China
- Prior art keywords
- mems sensor
- neural network
- defect
- generators
- maps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110259581.0A CN113066049B (zh) | 2021-03-10 | 2021-03-10 | Mems传感器疵病种类识别方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110259581.0A CN113066049B (zh) | 2021-03-10 | 2021-03-10 | Mems传感器疵病种类识别方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113066049A true CN113066049A (zh) | 2021-07-02 |
CN113066049B CN113066049B (zh) | 2023-04-07 |
Family
ID=76560343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110259581.0A Active CN113066049B (zh) | 2021-03-10 | 2021-03-10 | Mems传感器疵病种类识别方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113066049B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113899393A (zh) * | 2021-11-29 | 2022-01-07 | 武汉飞恩微电子有限公司 | 基于神经网络的mems传感器的检测方法、装置、设备及介质 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108171266A (zh) * | 2017-12-25 | 2018-06-15 | 中国矿业大学 | 一种多目标深度卷积生成式对抗网络模型的学习方法 |
CN109815920A (zh) * | 2019-01-29 | 2019-05-28 | 南京信息工程大学 | 基于卷积神经网络和对抗卷积神经网络的手势识别方法 |
WO2019221654A1 (en) * | 2018-05-17 | 2019-11-21 | Tobii Ab | Autoencoding generative adversarial network for augmenting training data usable to train predictive models |
CN111767861A (zh) * | 2020-06-30 | 2020-10-13 | 苏州兴钊防务研究院有限公司 | 一种基于多判别器生成对抗网络的sar图像目标识别方法 |
CN111815555A (zh) * | 2020-05-22 | 2020-10-23 | 武汉大学深圳研究院 | 对抗神经网络结合局部二值的金属增材制造图像检测方法及装置 |
US20200380366A1 (en) * | 2018-06-12 | 2020-12-03 | Shenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences | Enhanced generative adversarial network and target sample recognition method |
CN112101204A (zh) * | 2020-09-14 | 2020-12-18 | 北京百度网讯科技有限公司 | 生成式对抗网络的训练方法、图像处理方法、装置和设备 |
-
2021
- 2021-03-10 CN CN202110259581.0A patent/CN113066049B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108171266A (zh) * | 2017-12-25 | 2018-06-15 | 中国矿业大学 | 一种多目标深度卷积生成式对抗网络模型的学习方法 |
WO2019221654A1 (en) * | 2018-05-17 | 2019-11-21 | Tobii Ab | Autoencoding generative adversarial network for augmenting training data usable to train predictive models |
US20200380366A1 (en) * | 2018-06-12 | 2020-12-03 | Shenzhen Institutes Of Advanced Technology Chinese Academy Of Sciences | Enhanced generative adversarial network and target sample recognition method |
CN109815920A (zh) * | 2019-01-29 | 2019-05-28 | 南京信息工程大学 | 基于卷积神经网络和对抗卷积神经网络的手势识别方法 |
CN111815555A (zh) * | 2020-05-22 | 2020-10-23 | 武汉大学深圳研究院 | 对抗神经网络结合局部二值的金属增材制造图像检测方法及装置 |
CN111767861A (zh) * | 2020-06-30 | 2020-10-13 | 苏州兴钊防务研究院有限公司 | 一种基于多判别器生成对抗网络的sar图像目标识别方法 |
CN112101204A (zh) * | 2020-09-14 | 2020-12-18 | 北京百度网讯科技有限公司 | 生成式对抗网络的训练方法、图像处理方法、装置和设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113899393A (zh) * | 2021-11-29 | 2022-01-07 | 武汉飞恩微电子有限公司 | 基于神经网络的mems传感器的检测方法、装置、设备及介质 |
CN113899393B (zh) * | 2021-11-29 | 2024-03-19 | 武汉飞恩微电子有限公司 | 基于神经网络的mems传感器的检测方法、装置、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113066049B (zh) | 2023-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11055574B2 (en) | Feature fusion and dense connection-based method for infrared plane object detection | |
CN108985334B (zh) | 基于自监督过程改进主动学习的通用物体检测系统及方法 | |
CN110570396B (zh) | 一种基于深度学习的工业产品缺陷检测方法 | |
JP6766839B2 (ja) | 検査システム、画像識別システム、識別システム、識別器生成システム、及び学習データ生成装置 | |
CN108491858A (zh) | 基于卷积神经网络的疲劳驾驶检测方法及系统 | |
CN105678332B (zh) | 火焰图像cnn识别建模的转炉炼钢终点判断方法及系统 | |
CN111431986B (zh) | 基于5g和ai云边协同的工业智能质检系统 | |
CN112528934A (zh) | 一种基于多尺度特征层的改进型YOLOv3的交通标志检测方法 | |
CN116030048B (zh) | 灯检机及其方法 | |
CN110648310A (zh) | 基于注意力机制的弱监督铸件缺陷识别方法 | |
CN114359562B (zh) | 一种四维点云自动语义分割标注系统及方法 | |
CN115439458A (zh) | 基于深度图注意力的工业图像缺陷目标检测算法 | |
CN113221852B (zh) | 一种目标识别方法及装置 | |
CN112766283B (zh) | 一种基于多尺度卷积网络的两相流流型识别方法 | |
Papacharalampopoulos et al. | Deep quality assessment of a solar reflector based on synthetic data: detecting surficial defects from manufacturing and use phase | |
CN111652273A (zh) | 一种基于深度学习的rgb-d图像分类方法 | |
CN113066049B (zh) | Mems传感器疵病种类识别方法及系统 | |
CN115424237A (zh) | 一种基于深度学习的前向车辆识别与距离检测方法 | |
CN117611576A (zh) | 一种基于图文融合对比学习预测方法 | |
Xu et al. | Tackling small data challenges in visual fire detection: a deep convolutional generative adversarial network approach | |
CN117541587B (zh) | 太阳能电池板缺陷检测方法、系统、电子设备及存储介质 | |
CN114511785A (zh) | 基于瓶颈注意力模块的遥感图像云检测方法及系统 | |
CN113706496A (zh) | 一种基于深度学习模型的飞行器结构裂纹检测方法 | |
CN116958553B (zh) | 基于无参注意力和点级卷积的轻量级植物点云分割方法 | |
CN112464991A (zh) | 一种基于多种群动力学的多传感器证据演化博弈融合识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220118 Address after: 414024 floors 2, 3 and 4, R & D building, Yueyang modern equipment manufacturing industrial park, muligang Avenue, Yueyang Economic and Technological Development Zone, Yueyang City, Hunan Province Applicant after: Yueyang Luojia Intelligent Technology Co.,Ltd. Address before: 430072 Hubei Province, Wuhan city Wuchang District of Wuhan University Luojiashan Applicant before: WUHAN University |
|
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 414022 floors 2, 3 and 4, R & D building, Yueyang modern equipment manufacturing industrial park, muligang Avenue, Yueyang Economic and Technological Development Zone, Hunan Province Applicant after: Hunan Luojia Intelligent Technology Co.,Ltd. Address before: 414024 floors 2, 3 and 4, R & D building, Yueyang modern equipment manufacturing industrial park, muligang Avenue, Yueyang Economic and Technological Development Zone, Yueyang City, Hunan Province Applicant before: Yueyang Luojia Intelligent Technology Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |